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Abstract

Assortative mechanisms can overcome tragedies of the commons that
otherwise result in dilemma situations. Assortativity criteria include var-
ious forms of kin selection, greenbeard genes, and reciprocal behaviors,
usually presuming an exogenously fixed matching mechanism. Here, we
endogenize the matching process with the aim of investigating how as-
sortativity itself, jointly with cooperation, is driven by evolution. Our
main finding is that full-or-null assortativities turn out to be long-run
stable in most cases, independent of the relative speeds of both pro-
cesses. The exact incentive structure of the underlying social dilemma
matters crucially. The resulting social loss is evaluated for general classes
of dilemma games, thus quantifying to what extent the tragedy of the
commons may be endogenously overcome.

Keywords: cooperation, (co-)evolution, assortativity, democratic con-
sensus

1 Introduction

What happens when a population would collectively benefit from coopera-
tive behavior by all its individuals, while each individual has a private incen-
tive to defect? In some such ‘social dilemma’ situations, collective action (Ol-
son, 1965) may fail and the tragedy of the commons (Hardin, 1968) may re-
sult. However, many mechanisms in nature exist through which cooperative
behaviors evolve (see Sachs et al., 2004; West et al., 2007, 2011, for reviews).
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Hence, the ‘puzzle of cooperation’ (Darwin, 1871) is that nature, involving hu-
mans and animals alike, provides us with many examples of social dilemma
situations that are successfully resolved by suitable mechanisms, but also with
many other examples that result in the tragedy of the commons.

Perhaps the best methodology to study the evolution of cooperation is pro-
vided by game theory (von Neumann and Morgenstern, 1944; Nash, 1951).
Without suitable mechanisms, game theory predicts non-cooperative behav-
ior in social dilemmas. The game-theoretic literature has addressed this is-
sue at length (beginning with Hamilton, 1963, 1964a,b; Axelrod, 1984). It was
shown that cooperation is not favored if interactions in the population are
well-mixed/random (Nash, 1950; Lehmann and Keller, 2006; Young, 2011).

The class of mechanisms that we study in this paper function by assort-
ing cooperators. The first assortative mechanisms date back to Wright (1921,
1922, 1965). Indeed, such mechanisms can lead to cooperative behavior in so-
cial dilemma situations; well-known examples include kin selection (Hamil-
ton, 1964a,b; Domingue et al., 2014) via limited dispersal/locality (‘spatial in-
teractions’; Nowak and May, 1992; Eshel et al., 1998; Skyrms, 2004; Hauert,
2006; Abdellaoui et al., 2014), greenbeard genes (Dawkins, 1976; Frank, 2010;
Jansen and Baalen, 2006; Sinervo et al., 2006; Brown and Buckling, 2008; Fletcher
and Doebeli, 2009, 2010; Gardner and West, 2010), preferences (‘homophily’;
Alger and Weibull, 2012, 2013; Xie et al., 2015), or are based on behavior (‘re-
ciprocal/meritocratic matching’; Clutton-Brock, 2010; Gunnthorsdottir et al.,
2010; Rabanal and Rabanal, 2014; Nax et al., 2014, 2015). Importantly, assort-
ment based on behavior is key for (but not restricted to) sustaining cooper-
ation in humans as both theoretical models (Biernaskie et al., 2011) and ex-
periments (Wang et al., 2012) show. In this study we focus on this class of
behavior-assortative mechanisms.

Under sufficiently assortative mechanisms, high levels of cooperation are
predicted (e.g. Hamilton and Taborsky, 2005a,b; Bergstrom, 2003; Jensen and
Rigos, 2014; Nax et al., 2014). It is unlikely, however, that assortativity fell from
the sky. More likely, it evolved driven by evolutionary dynamics within the
population and across populations. In this paper, we contribute to the assor-
tativity literature by providing a model to endogenize the evolution of assor-
tativity, in particular of behavior.

In our model, assortativity evolves by ‘democratic consensus’, a standard
mechanism to reach consensus in humans. Democratic consensus therefore
is a natural candidate for studying the evolution of behavior assortativity, which
is particularly relevant for human interactions (Biernaskie et al., 2011). Known
as range, average, cardinal, utility or score voting in voting theory, such decision-
making rules are used by numerous (proto-)democratic human collectives
(Staveley, 1972). Voting by clapping/shouting, financial lobbying, and other
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mechanisms resembling a tug-of-war-like competition in two opposite direc-
tions are examples. The basic feature of democratic consensus in our model
is that the underlying mechanism of our interaction gets more or less assorta-
tive depending on which direction yields greater surplus. Democratic consen-
sus is also similar to biological auctions, which are aggregation rules used by
many animal species (Couzin et al., 2011; Chatterjee et al., 2012) such as bees
selecting hive-locations (Seeley and Visscher, 2004) or ants choosing nest sites
(Franks et al., 2002). To the best of our knowledge there exists no comparable
prior study of evolving assortativity based on democratic consensus dynam-
ics. In biology, other models have been proposed based on different factors
such as invasion by mutants (Dieckmann and Doebeli, 1999; Jiang et al., 2013;
Dyson-Hudson and Smith, 1978; Bearhop et al., 2005). Related is also Newton
(2014) who studies evolving assortativity in the indirect evolutionary models
by Alger and Weibull (2012, 2013, 2014, 2015). Other ways of endogenizing
the matching rule such as dynamical networks may lead to different results,
and these are avenues for further research we shall sketch in our concluding
discussion.

In terms of underlying games, we focus on a class of symmetric two-player
social dilemmas that nests the standard prisoners’ dilemma (PD) (Rapoport
and Chammah, 1965) but also includes other games. All agents are of the same
kind, one whose strategy choices are driven by his own material self-interest
alone. All social dilemmas we consider, not just the PD, are important situ-
ations that often occur in reality with potential detrimental consequences to
cooperation.

The PD is the best-known example of social dilemmas, that is, of situations
with the common characteristic that individuals have an incentive to defect
when facing cooperators. The evolution of cooperation amongst humans and
animals in social dilemma situations has received enormous attention, and
the PD in particular has been studied widely in this context beginning with
Trivers (1971); Maynard Smith and Price (1973); Maynard Smith (1987) (see
also (Axelrod and Hamilton, 1981)). Beyond the PD, there are related, less well-
known social dilemmas of comparable practical importance. All our social
dilemmas share the public goods character, but games differ with respect to
which outcomes (i) are Nash equilibria and (ii) maximize total payoffs.

Our social dilemma situations include the prisoners’ dilemma, the snow-
drift game (also known as the hawk-dove game, the game of chicken, or the
volunteer’s dilemma (Maynard Smith and Price, 1973; Doebeli and Hauert,
2005; Diekmann, 1985; Myatt and Wallace, 2008; Raihani and Bshary, 2011)),
the missing hero dilemma (Schelling, 1971) and the underprovision dilemma.
As a byproduct of our operationalization, we introduce the ‘underprovision
dilemma’, a variant of the snowdrift game, which to the best of our knowledge
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has not previously been considered but certainly also represents an important
class of games deserving investigation.

Our dynamical analyses rely on standard evolutionary replicator equations
(Taylor and Jonker, 1978; Taylor, 1979). In the standard mathematical for-
mulation of such a dynamic (e.g. Eshel, 1983; Helbing, 1992; Weibull, 1995;
Eshel et al., 1997), we would assume a well-mixed population, that is, pairs
would be drawn uniformly at random from the population. Here, we shall fo-
cus on action-assortative matching instead, using recently introduced meth-
ods (Bergstrom, 2003; Jensen and Rigos, 2014). In our dilemma games, such
a rule is ‘meritocratic’ as it ‘rewards’ (‘punishes’) cooperators (defectors) by
matching them with other cooperators (defectors). Assortativity itself evolves
by democratic consensus. In the PD game, for example, cooperators prefer
more assortativity in order to be matched less often with defectors, while de-
fectors prefer less assortativity for the opposite reason. In which direction this
struggle evolves depends on how many people stand on either side, and by
how much they benefit from either change.

Our analysis proceeds in three steps. First, we study the stability of equilib-
ria given an exogenous level of assortativity. Second, we endogenize the evo-
lution of assortativity and investigate the stability of regimes under our voting
dynamic. Finally, we evaluate which outcome is more stable in the long run.

2 The model

2.1 Social dilemmas

We start by laying out the general setup. Here, we have an infinite population
taken to be the closed interval [0, 1] that can follow one of two strategies, either
‘cooperate’ (C ) or ‘defect’ (D ). (Alternative labels could be ‘contribute’ and
‘free-ride’.) Denote by x the proportion of individuals playing C . Individuals
in the population follow one of the two strategies, get matched to one other
individual in the population, and then carry out their strategy in their pair.
The exact process by which they get selected in pairs will be discussed in the
next section.

Social dilemma A social dilemma game in our setting is represented by a
matrix of the form shown in Table 1.
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Table 1: The payoff matrix of a social dilemma

C D

C r, r a , 1
D 1, a 0,0

Hence a social dilemma is defined by G = (r, a ). To ensure that C-C is not
an equilibrium under random matching, we impose 0< r < 1 for all G , which
defines the common ‘public goods character’: defection is always an individ-
ual best response against cooperation, but cooperation always increases the
opponent’s payoff. Moreover, we restrict a ∈ (−1, r ), so that C-D outcomes are
associated with either higher or lower total payoffs than C-C, while D-D re-
mains the outcome with lowest total payoffs in all cases. We therefore investi-
gate the following four different types of (well-known) social dilemma games:

Prisoners’ dilemma (Rapoport and Chammah, 1965) The PD game is ob-
tained by setting 2r > 1+a and a < 0. Defection is a strictly dominant strategy,
and total payoffs are highest in C-C. The unique Nash equilibrium is D-D.

Snowdrift game The SD game is obtained by setting 2r < 1+ a and a > 0.
Cooperation is a best response against defection, and the outcome where ex-
actly one player contributes maximizes total payoffs. The game is a symmet-
ric anti-coordination game with two (efficient) C-D Nash equilibria in pure
strategies and one in mixed strategies. The mixed-strategy equilibrium is the
unique symmetric one.

Underprovision dilemma The UD game is obtained by setting 2r > 1+ a
and a > 0. It is a natural variant of the SD, but, to the best of our knowledge,
has not been treated formally previously. Like in the SD, cooperation is a best
response against defection, but now the synergies to mutual cooperation (be-
yond cost sharing) are so high that C-C maximizes total payoffs. The game is a
symmetric anti-coordination game with two (inefficient) C-D Nash equilibria
in pure strategies and one in mixed strategies. As in SD, the mixed-strategy
equilibrium is the unique symmetric one.

Missing hero dilemma The MHD game is obtained by setting 2r < 1 + a
and a < 0 (see Schelling, 1971; Diekmann and Przepiorka, 2015). Defection
is a strictly dominant strategy and the unique Nash equilibrium is D-D, but –
other than in the standard PD – the C-D outcome maximizes total payoffs.
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Figure 1: Types of social dilemmas.

Figure 1 illustrates how the different social dilemmas live in r –a space. The
differences in the nature of the dilemmas are summarized in Table 2.

Table 2: Social dilemma classification

Outcome with maximal total payoffs
C-D C-C

(a > 2r −1) (a < 2r −1)

Best Reply C (a > 0) SD UD
versus D D (a < 0) MHD PD

Note that only in the SD game it is the case that the pure-strategy Nash equilib-
ria of the baseline normal-form game and the outcomes that maximize total
payoffs coincide (the ‘baseline loss’ of the Nash equilibrium prediction is 0).
In all other cases, there is a positive ‘baseline loss’: either C-C maximizes to-
tal payoffs but D-D (prisoners’)/ C-D (underprovision) is equilibrium, or C-D
maximizes total payoffs but D-D is the equilibrium (missing hero dilemma).
Since we consider a one-population matching protocol, only the symmetric,
mixed-strategy Nash equilibrium of the normal form game can be achieved
as an equilibrium population strategy whereas the asymmetric pure-strategy
equilibria (C-D) cannot.
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2.2 Action assortativity

We follow Nax et al. (2014) in the definition of an action-assortative match-
ing rule represented by a constant index of assortativity α ∈ [0, 1] (Bergstrom,
2003). For α ∈ [0, 1], α represents the difference between the probability that a
cooperator has to meet another cooperator and the probability that a defector
has to meet a cooperator. At one extreme (α= 1) is full assortativity, where co-
operators are matched with cooperators (and defectors with defectors) with
probability one. The other extreme (α = 0) is random matching – the stan-
dard assumption in the literature – where individuals are uniformly randomly
matched with each other independently of their actions.

Environment The environment E is defined by a social dilemma, G = (r, a ),
together with a given level of assortativity, α; E = (G ,α).

We use the formalization introduced by Jensen and Rigos (2014) so that any
matching rule can be described by a vector f = ( f1, f2, f3) where fi represents
the proportion of type-i pairs formed after the matching process. Pairs of type
1 contain two cooperators, pairs of type 2 contain one cooperator and one
defector, and pairs of type 3 contain two defectors. For the matching rule to
be consistent, the number of cooperators in the population must be equal to
the number of cooperators that are found in the matched pairs. Therefore, the
accounting identity x = f1 + f2/2 has to hold (similarly for defectors, 1− x =
f3+ f2/2).

Given the above, the probability that a cooperator meets another coop-
erator is simply pC C = f1/x whereas the probability that a defector meets a
cooperator is pD C = f2/(1− x ). Under a matching rule with a constant index
of assortativity α, the difference pC C −pD C = α is constant for all values of x .
Therefore, the components of f are given by

f1(x ) = αx + (1−α)x 2

f2(x ) = 2(1−α)x (1− x )
f3(x ) = α(1− x ) + (1−α)(1− x )2.

The average payoff of a cooperator is πC = (r f1 + a f2/2)/x , and that of a
defector is πD = ( f2/2)/(1− x ). The average payoff in the population is there-
fore xπC + (1− x )πD . We refer to this average payoff as efficiency and discuss
it in subsection 2.4.

The proportion of cooperators in the population x evolves according to the
replicator dynamics where the average fitness of cooperators and defectors
are πC and πD respectively. Thus, the dynamics of x are given by

ẋ = x (1− x ) (πC −πD ) . (1)
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Definition 1 (Environment equlibrium) Given environment E = (G ,α), x ∗ ∈
[0, 1] is an environment equilibrium if it is asymptotically stable under the repli-
cator dynamics (1).

Lemma 1 Almost all environments have an environment equilibrium.

Proof. See A.1.

As shown in the proof of Lemma 1, there are some social dilemmas for
which there are environments with multiple environment equilibria. These
are the subset of Prisoners’ Dilemmas with a ≤ r − 1. For these social dilem-
mas, when α≤ 1− r there is a unique equilibrium at x = 0 and when α≥ a

a−r ,
there is a unique equilibrium at x = 1. However, for values ofα ∈ (1− r, a/(a − r )),
both x = 0 and x = 1 are equlibria. In environments with a − r + 1 = 0 and
α = 1 − r , all x ∈ [0, 1] are neutrally stable and the replicator dynamics (1)
have no asymptotically stable points. Therefore, such environments have no
equilibrium. The set of these environments is “small” in the sense that it is
of measure zero under any continuous probability measure over the space of
environments.

2.3 Environment equilibrium robustness

We aim to evaluate how robust each of the environment equilibria is when
more than one exist. In light of the previous paragraph, environments with
a < r − 1 and α ∈ (1− r, a/(a − r )) have two equilibria (at x = 0 and x = 1).
Our notion of robustness takes an ‘invasion-barrier’ approach (see for exam-
ple Weibull, 1995, p. 42). Consider populations that evolve separately, in dif-
ferent demes, but under the same environment E . All such populations (un-
less they start from the interior rest point x =

�

a − r + r (1−α)−1
�

/(a − r + 1))
will eventually be driven to either x = 0 or x = 1, depending on their respective
initial conditions.

Now consider a population 1 which has reached the equilibrium at x1 = 1
being invaded by members of another population 2 that has reached the equi-
librium at x2 = 0. Obviously, the resulting population will depend on the
proportions with which populations 1 and 2 mix. Let λ be the proportion
of individuals of population 2 in the resulting population. Then the propor-
tion of individuals of population 1 in the resulting population will be 1− λ.
Obviously, the proportion of cooperators in the resulting population will be
x =λ · x2+(1−λ) · x1 = 1−λ. Our measure of robustness of the equilibrium at
x = 1 is the answer to the following question: “What is the biggest λ such that
the dynamics will eventually bring the resulting population back to x1?” So,
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robustness of the equilibrium at x = 1 is the largest shock that a population at
x = 1 can sustain. More formally, we provide Definition 2.

Definition 2 (Environment equilibrium robustness) For any environment E =
((r, a ),α)with a < r −1 andα ∈

�

1− r, a
a−r

�

, the robustness%E of the equilibrium
at x = 1 is

%E = sup
�

λ ∈ [0, 1] : (1−λ) ∈ basin of attraction of x = 1
	

.

We will say that the equilibrium at x = 1 is more robust than the equilibrium
at x = 0 if %E > 1/2. This happens for environments with α > (1− a − r )/(1−
a+r ). Notice that this invasion-barrier measure is conceptually related to but
different from ‘stochastic stability’ (Foster and Young, 1990).

2.4 Efficiency

For a given environment E = (G ,α) and a proportion of cooperators x , the
average payoff in the population, i.e. efficiency, is given by

W (x ,α) = r f1+
1+a

2
f2+0 · f3 = r x + (1−α)(1− x )x (1+a − r ).

We now focus our attention to the highest level of efficiency that can be at-
tained in an equilibrium of a given environment (G ,α). Notice that for social
dilemmas G for which there are values of α such that (G ,α) has two equilibria
(i.e. when a < r −1), the highest level of efficiency is reached when x = 1. This
is achieved in equilibrium for environments with α> 1− r . We refer to this as
the maximum environment equilibrium efficiency of environment (G ,α).

Lemma 2 For all our social dilemmas G , maximum environment equilibrium
efficiency is non-decreasing in the assortativity, α, of the environment.

Proof. See A.2.

This result is important for our setting, because higher levels of assorta-
tivity will therefore typically mitigate or overcome the social dilemma that
is associated with random interactions. The open question that remains is
whether the endogenous dynamics that drive the evolution of assortativity
will implement high levels of assortativity or not.

9



2.5 Full dynamics

The dynamics on assortativity α that we consider are motivated by utility vot-
ing. The tendency for α to increase/decrease is driven (i) by the relative size of
the two populations that would benefit from an α-increase/decrease and (ii)
by the extent of that benefit. In particular, α is governed by the following dy-
namics: each individual gets one vote to cast; either for higher or for lower α.
In order to decide whether to vote for higher or lower assortativity, individu-
als use a logit choice rule (Blume, 1993) (also ‘Fermi function’) based on their
most recently received payoff. The probability for an individual i , currently
matched into a homogeneous pair (C-C or D-D), to vote for an increase of α
is increasing in i ’s payoff. Similarly, the probability for an individual j who is
currently matched into a heterogeneous pair (C-D) to vote for an increase of
α is decreasing in j ’s payoff.

More specifically, let us denote by M and m respectively the highest and
lowest payoff that can be attained by a player in a given social dilemma. If
an individual gets M (m), then, with probability one, he votes for an increase
(decrease) of α if in a homogeneous (heterogeneous) pair and for a decrease
of α if in a heterogeneous (homogeneous) pair. If receiving a payoff of u ∈
(m , M ), an individual in a homogeneous pair votes for an increase of αwith a
probability given by

p+homog(u ) =
e g (u )

1+ e g (u )
, (2)

where u is the payoff the individual received and g (·) is a normalizing function
given by

g (u ) =
1

M −u
−

1

u −m
. (3)

Consequently this means that, for u ∈ (m , M ), the probability that the indi-
vidual votes for a decrease of α is

p−homog(u ) =
1

1+ e g (u )
. (4)

Hence, the “excess” probability for an individual matched in a homogeneous
pair to vote for an increase of α is

zhomog(u ) =
e g (u )−1

e g (u )+1
(5)

Similarly, for individuals in heterogeneous pairs, the excess probability for
them to vote for an increase in αwill be

zheter(u ) =
1− e g (u )

e g (u )+1
. (6)
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Figure 2: The principal patterns that result from the full dynamics for the dif-
ferent types of social dilemmas when the relative speed of the dynamic pro-
cesses is s = 1. Black dots indicate the full equilibria. The figures are obtained
by plotting the direction of the (α̇, ẋ ) vector as given by equations (1) and (8).

Obviously, zheter(u ) =−zhomog(u ). In our calculations, we will use the function
z (·) given by

z (u ) =







−1 if u =m
exp(g (u ))−1
exp(g (u ))+1 if u ∈ (m , M )
1 if u =M

(7)

Let v + and v − denote the number of votes for an increase and for a decrease
of the level of assortativity respectively. Aggregating the votes, these are v + =
f1(x ,α)z (r ) + f3(x ,α)z (0) and v − = f2(x ,α)(z (a ) + z (1))/2.

Now the exact form of the dynamics takes a replicator-style form:

α̇= s ·α(1−α)(v +− v −) (8)

where s ∈ (0,∞) denotes the relative speed of the α dynamics and the x dy-
namics. The higher the value of s , the faster α adjusts. At the limit of s → 0,
the whole system is governed by equation (1) whereasα remains constant and
equal to its initial value.

The main patterns that arise under these dynamics for s = 1 are depicted
in Figure 2.

2.6 Full equilibrium

We are interested in identifying states that are stable under the full dynamics.
We define a full equilibrium as follows.
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Definition 3 (Full equilibrium) For any social dilemma G = (r, a ), a pair (x ∗,α∗)
will be called a full equilibrium if it is a stable node of the full dynamics (equa-
tions 1 and 8).

Obviously, for (x ∗,α∗) to be a full equilibrium, it is necessary for x ∗ to be an
environment equilibrium of E = (G ,α∗), and α∗ to be an evolutionarily stable
state of the voting dynamics given x ∗.

Observation 1 All full equilibria of any social dilemma G have eitherα∗ = 1 or
α∗ = 0.

Proof. For a proof and discussion see A.3.

So, for any social dilemma G there are two candidate full equilibria: one at
(x ,α) = (x ∗0 , 0) = x0 (where x ∗0 = 0 when a ≤ 0 and x ∗0 = a/(a −r +1)when a > 0)
and one at (x ,α) = (1, 1) = x1.

In light of Observation 1, we want to assess and quantify how robust each
of the two equilibria is. As done in section 2.3, we do so by following an invasion-
barrier approach. Consider populations that evolve separately, in different
demes, but under the same social dilemma G = (r, a ). All such populations
(unless they start from the interior rest point where ẋ = α̇= 0) will eventually
be driven to either x0 or x1, depending on their respective initial conditions.

Now consider a population 1 which has reached the equilibrium at x1 be-
ing invaded by members of another population 2 that has reached the equilib-
rium at x0. Obviously, the resulting population will depend on the proportions
with which populations 1 and 2 mix. Let λ be the proportion of individuals of
population 2 in the resulting population. Then the proportion of individuals
of population 1 in the resulting population will be 1− λ. The proportion of
cooperators in the resulting population will be x = λx ∗0 + (1 − λ). The level
of assortativity in the resulting population (the tendency of its members to
match assortatively) will be α = 1−λ. Our measure of robustness of the full
equilibrium at x1 is the largest invasion that a population at x1 can sustain by a
population at x0. Since full equilibria have eitherα= 0 orα= 1, we refer to the
robustness of the full equilibrium at x1 as full assortativity robustness. More
formally, we provide Definition 4.

Definition 4 (Full assortativity robustness) For any social dilemma G = (r, a )
full assortativity robustness is

%G = sup
�

λ ∈ [0, 1] :λx0+ (1−λ)x1 ∈ basin of attraction of x1

	

.
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We will say that full assortativity is more robust than null assortativity if %G >
1/2. Whether full assortativity is ‘more robust’ than null assortativity depends
on the type and exact parameter values of the underlying social dilemma G .1

Note that assortativity robustness%G can be seen as a measure of the expected
full equilibrium efficiency relative to full assortativity (the assortative opti-
mum).2 Figure 3 summarizes the robustness analysis in r –a space for various
values of s .
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Figure 3: Robustness of full assortativity. The white line separates the cases
where full/null assortativity is more robust (% = 0.5). The figures are obtained
by numerically integrating the system of differential equations (1) and (8) for
each social dilemma (r, a ) and finding the highest λ for which λx0 + (1−λ)x1

is in the basin of attraction of x1 using a grid search algorithm.

We find that full assortativity is highly robust in most underprovision dilem-
mas and snowdrift games with r > 0.5. Cooperative outcomes close to socially
optimal levels are therefore expected. By contrast, in missing-hero dilemmas
and snowdrift games with r < 0.5, random matching is highly robust, and the
efficient outcome is not reached. In prisoner’s dilemmas, the robustness de-
pends on the exact parameters of the game.

The intuition behind these results is the following. When a > 0 (SDs and
UDs), individuals compare their payoff to the maximum and minimum pay-
offs in the game, 1 and 0 respectively. All defectors vote for a decrease in assor-

1Note that Bergstrom (2013) studies games where types with different assortativity levels
(beyond full-or-null) compete.

2The expected full equilibrium efficiency is expressed by%G r +(1−%G )(a/(1−r +a ))when
a > 0 and %G r when a ≤ 0 which is compared to r , the efficiency under full assortativity,
yielding an expression that is linear in %G in both cases.
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tativity for sure. If r < 1/2, then cooperators in C-C pairs are more likely to vote
for a decrease in assortativity than for an increase as they do not receive a high
enough payoff when matched to other cooperators. The only individuals who
are more likely to vote for a higher assortativity are the cooperators who were
matched to defectors. But if assortativity does increase, then the proportion
of such individuals in the population decreases and thus assortativity is self-
defeating. When r > 1/2 (UDs and some SDs), cooperators in C-C pairs are
more likely to vote for more assortativity and thus if there are enough cooper-
ators in the population, higher levels of assortativity can be reached which is
now self-reinforcing. Notice that a higher value of r contribute to the increase
of assortativity in two ways: it makes cooperators (i) grow faster and (ii) more
likely to vote for higher assortativity. Similar arguments hold for MHDs and
PDs.

Relative speeds Cooperation and assortativity co-evolve. The relative speeds
of their two adjustment dynamics affect the robustness of full assortativity de-
pending on the nature of the underlying social dilemma. In particular, faster
(slower) adjustment of the assortativity level makes full assortativity more (less)
robust for the class of social dilemmas for which there are environments with
two equilibria (PDs with a < r − 1). In contrast, for social dilemmas with
a > r−1, higher s leads to full assortativity being less robust. These results can
be clearly seen in Figure 3. The intuition and analysis for this result is given in
B.

3 Discussion

The ‘puzzle of cooperation’ in the sense of how and why cooperation amongst
animals or humans emerges and survives in some social dilemmas but not in
others, has kept scientists busy for many years. One strand of research in this
area has been to understand the role of assortativity, through various mecha-
nisms, in overcoming the inherent social dilemma. Indeed, some of the best-
known mechanisms that lead to cooperative behavior such as kin selection
and greenbeards belong to this family. In this paper, we focus on behavior
assortativity and break with the assumption of a pre-existent, fixed level of as-
sortativity. Instead, we propose a dynamic by which assortativity co-evolves
with cooperation through democratic consensus. That way, we are able to
study what assortativity-cooperation pairs are evolutionarily co-stable.

Our main findings summarize as follows. Only null-or-full assortativities
are long-run stable, providing evolutionary support for models making ei-
ther assumption depending on context as in Wright (1921, 1922, 1965). We
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relate the resulting dynamics’ long-run properties –in terms of assortativity
and cooperativeness– to the exact incentive structure of the underlying so-
cial dilemma. Seemingly small differences between social dilemmas, even
within the same class of strategic interactions, may matter crucially for con-
vergence properties. Our analysis quantifies to what degree the tragedy of
the commons is overcome through endogenous assortativity evolution. De-
pending on the nature of the game, higher levels of cooperation than what is
achieved under random interactions may emerge. In underprovision dilem-
mas and snowdrift games with r > 0.5, cooperation reaches efficient levels. In
prisoners’ dilemmas, similarly high levels of assortativity and cooperation are
reached for most games. In missing-hero dilemmas and in snowdrift games
with r < 0.5, the population remains completely non-assortative and cooper-
ation does not emerge.

The full-or-null feature of our assortativity results is driven by the absence
of frictions for moving in-between (or the absence of ‘costs’ for upholding)
assortativity regimes. However, there are also real-world systems displaying
intermediate levels of assortativity. An important avenue for future work is
therefore to extend our analysis to systems where assortativity is associated
with costs, in which case intermediate levels of assortativity could be explained
as a tradeoff between upholding cooperation and costly assortativity. Our re-
sults are likely to apply also to the context of n-player social dilemmas games
such as public goods games, where assortativity/assortment are known ex-
planations for the evolution of cooperation (Fletcher and Doebeli, 2009, 2010;
Nax et al., 2015).

Another avenue for generalization of our model is to consider negative as-
sortativity. Indeed, in situations where asymmetric outcomes lead to higher
payoffs, there may be matching processes that favor the creation of mixed
pairs rather than homogeneous ones and have a “dissociative” rather than an
associative/assortative character. Amongst the games considered in this pa-
per, the missing-hero dilemmas and snowdrift games are such games, where
the efficient outcome is achieved by matching cooperators to defectors. In-
deed, our dynamics could result in negative assortativities, and Jensen and
Rigos (2014) discuss such rules with “(almost) constant indices of dissocia-
tion”. In our setting, the dynamics resulting from negative assortativities can
be very different from the ones under positive assortativities, because all in-
dividuals that follow one of the two behaviors are matched in mixed pairs if
either x <−α/(1−α) or x > (1−α)−1, in which case the matching outcome no
longer changes as α increases. Studying negative assortativity is therefore left
for future research.

Finally, different ways of endogenizing the matching process as tailored –
not to humans– but to evolving kin selection and greenbeard genes in animals
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should be explored. For example, when interactions are spatial, then individ-
uals’ choices to relocate would determine evolving assortativity through dy-
namical networks. Importantly, we note that dynamical networks may lead to
the re-scaling of payoffs, as reported by Pacheco et al. (2006a,b), to instability,
as reported by Cavaliere et al. (2012), as well as to the emergence of multilevel
selection and strong heterogeneities, as reported by Szolnoki and Perc (2009)
and Szolnoki et al. (2008). This surely has implications for local assortativity
and voting procedures (which may no longer be global) and is an interesting
aspect that deserves attention in future research.
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Appendix

A Omitted Proofs

A.1 Proof of Lemma 1

In order for x ∗ ∈ (0, 1) to be an environment equilibrium, we need

πC (x
∗,α) =πD (x

∗,α). (9)

When a − r +1 6= 0 the above condition yields

x ∗ =
a − r + r

1−α

a − r +1
. (10)

Notice that the above condition is only necessary as we haven’t verified that
the stability condition is satisfied. Taking stability into account, we get:

ẋ > 0⇒πC (x ,α)>πD (x ,α)⇒

x (a − r +1)< a − r +
r

1−α
(11)

So x ∗ ∈ (0, 1) given by (10) will be an environment equilibrium for social dilem-
mas with a − r +1≥ 0 as in that case (11) yields ẋ > 0⇒ x < x ∗.

Also, x ∗ = 0 will be an equilibrium if

α≤
a

a − r
(12)

and x ∗ = 1 will be an equilibrium if

α≥ 1− r . (13)

Following (Jensen and Rigos, 2014) we can separate the set of social dilemmas
in three classes depending on their equilibrium behavior.

Case A: a − r +1> 0. This class contains most of the social dilemmas con-
sidered here and includes all MHDs, SDs, UDs and some PDs. All environ-
ments of social dilemmas of this class always have a unique equilibrium given
by

x ∗ =







0 if α≤ a
a−r

a−r+ r
1−α

a−r+1 if a
a−r <α< 1− r

1 if α≥ 1− r
(14)
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Case B: a − r + 1 < 0. This class contains a subset of PDs. In this type of
social dilemmas the only possible environment equilibria are at x ∗ = 0 and
x ∗ = 1. More specifically, for α≤ 1− r we have a unique environment equilib-
rium at x ∗ = 0. For α ∈ (1− r, a

a−r )we have two environment equilibria: one at
x ∗ = 0 and one at x ∗ = 1. Finally, for α ≥ a

a−r we have a unique environment
equilibrium at x ∗ = 1.

Case C: a − r + 1 = 0. This class contains a subset of PDs. In this type of
social dilemmas we have a unique environment equilibrium at x ∗ = 0 for α <
1− r (= −a ), a unique environment equilibrium at x ∗ = 1 for α > 1− r . When
α= 1− r , any x ∈ [0, 1] is a stationary point (indifferent stability) and there are
no environment equilibria. The set of these environments is “small” in the
sense that it is of measure zero under any continuous probability measure
over the space of environments.

A.2 Proof of Lemma 2

Consider a social dilemma G = (a , r ) and it’s corresponding environments E =
(G ,α)with α ∈ [0, 1].

If x ∗ ∈ (0, 1) can be an environment equilibrium only for social dilemmas
with a − r +1≥ 0 and it has to satisfy

x ∗ =
a − r + r

1−α

a − r +1

(see equation 10).
The uniform population without any cooperators (x = 0) will be an envi-

ronment equilibrium if

α≤−
a

r −a
and the uniform population consisting solely of cooperators (x = 1) will be an
environment equilibrium if

α≥ 1− r .

Now using the efficiency formula

W (x ,α) = r x + (1−α)(1− x )x (1+a − r )

we can calculate efficiency at an interior environment equilibrium. After cal-
culation, this gives

W int
G (α) =

αr + (1−α)a
1+a − r

. (15)

It is clear that efficiency when the environment equilibrium is x ∗ = 1 will be

W 1
G (α) = r
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and when the environment equilibrium is x ∗ = 0 efficiency is

W 0
G (α) = 0.

Notice that 0≤W int
G (α)≤ r .

We look into efficiency for the three classes of social dilemmas mentioned
in the proof of Lemma 2.

Case A: a − r +1> 0. As described in (11), the interior point will be an en-
vironment equilibrium for some environments if 1+a − r > 0 in which case it
is the unique environment equilibrium and it is clear from (15) that efficiency
in this case is increasing in α. More specifically:

max W ∗(α) =W ∗(α) =







a
1+a−r if α≤ a

a−r
αr+(1−α)a

1+a−r if a
a−r <α< 1− r

r if α≥ 1− r
(16)

Case B: a−r +1< 0. In such environments, for low values ofα (α≤−a/(r −
a )) the unique environment equilibrium is x ∗ = 0 and equilibrium efficiency
is 0. For high values of α (α > 1− r ), the unique equilibrium is at x ∗ = 1. For
intermediate values of α there are two environment equilibria at x ∗ = 0 and
x ∗ = 1. In these types of environments, maximum equilibrium efficiency is
achieved for the environment equilibrium at x ∗ = 1 and from the analysis here
it is clear that in these social dilemmas maximum equilibrium efficiency is
increasing in α.

Case C: a−r +1= 0. In such environments, for low values ofα (α≤−a/(r −
a ) = 1 − r ) the unique environment equilibrium is x ∗ = 0 and equilibrium
efficiency is 0. For high values of α (α > 1− r ), the unique equilibrium is at
x ∗ = 1. For α = 1− r there are no environment equilibria. In these types of
environments, from the analysis here it is clear that in these social dilemmas
maximum equilibrium efficiency is increasing in α. More specifically:

max W ∗(α) =

�

0 if α< 1− r
r if α> 1− r

As the set of environments with a − r + 1= 0 and α= 1− r is of measure zero
and as such an α is never encountered in a full equilibrium (see Obesrvation
1), not having a well-defined maximum equilibrium efficiency for these envi-
ronments does not affect the results reported here.

A.3 Proof of Observation 1

We formally prove the statement of Observation 1 for cases where either z (0)<
0 (SDs with r < 0.5 and all MHDs) or z (0) + z (1) + z (a ) + z (r ) > 0 (PDs with
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a − r + 1 < 0, and SDs and UDs with a > 1− r ). For the rest of the cases we
provide computational results to support the statement.

All proofs are provided for relative speed s = 1. Increasing or decreasing
the value of s does not change the loci ẋ = 0 and α̇= 0 nor does it change the
type of the stationary points (nodes are still nodes and saddle points are still
saddle points). Therefore the result holds for any s ∈ (0,∞).

Clearly, in order for the pair (x ∗,α∗) to be a full equilibrium (i.e. an asymp-
totically stable state of the full dynamics), we need x ∗ to be an environment
equilibrium for E = (G ,α∗), and α∗ to be an evolutionarily stable state of the
voting dynamics given x ∗. We begin with the following observation.

Observation 2 Consider a social dilemma G . If (x ∗,α∗)with α∗ ∈ (0, 1) is a full
equilibrium, then x ∗ ∈ (0, 1).

Proof.
By way of contradiction, say (1,α∗)withα∗ ∈ (0, 1) is a full equilibrium. Then

the α dynamic (8) for x = 1 yields

α̇=α(1−α)z (r ).

So, for all points (1,α) with α ∈ (0, 1), α̇ retains its sign. That is, if z (r ) > 0 the
only possible full equilibrium with x ∗ = 1 will be the one at (x ∗,α∗) = (1, 1)
and if z (r )< 0 the only possible full equilibrium with x ∗ = 1 will be the one at
(x ∗,α∗) = (1, 0). Finally, if z (r ) = 0, there exists no full equilibrium with x ∗ = 1
as α̇= 0 for all (x ,α)with x = 1. This is a contradiction.

Similarly for x ∗ = 0. Say (0,α∗) is a full equilibrium. Then the α dynamic
for x = 0 yields

α̇=α(1−α)z (0).

As z (0) < 0 for all social dilemmas, α̇ < 0 for all α ∈ (0, 1) and thus, the only
possible full equilibrium with x ∗ = 0 is (x ∗,α∗) = (0, 0). This is a contradiction.

In light of Observation 2, any potential full equilibrium (x ∗,α∗) that con-
tradicts the statement of Observation 1 needs to have x ∗ ∈ (0, 1) and α∗ ∈ (0, 1).

For the rest of the proof, we define the quantity Z = z (1)+z (a )+z (r )+z (0)
which turns out to be crucial for the behavior of the dynamic system.

Case 1: Z > 0 For α ∈ (0, 1), the α dynamics equation (8) gives:

α̇ > 0⇒αx (1− x )Z > x (1− x )(z (a ) + z (1))+ x 2z (r ) + (1− x )2z (0)

So, for social dilemmas with Z > 0 any interior steady state (x ∗,α∗) (with α̇ =
ẋ = 0) will not be stable as a small deviation to (x ∗,α∗+ε)will drive the system
away from (x ∗,α∗).
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Case 2: z (r ) < 0 So, we now focus on social dilemmas with Z < 0. In this
case, the sign of z (r ) is important.

We proceed with another observation.

Observation 3 For any social dilemma G = (r, a )with Z < 0 and z (r )< 0, and
for all α ∈ (0, 1) and x ∈ (0, 1), α̇ < 0.

Proof. Define V = v +− v −. For (x ,α) ∈ (0, 1)2, we have the following:

α̇ > 0⇔V > 0

∂ V

∂ α
= x (1− x )Z < 0

So, V would obtain its maximum value for α= 0. This value is

V0 = (x
2z (r ) + (1− x )2z (0))+ (−x (1− x )(z (a ) + z (1)))

As z is increasing, the maximum value the first term of the right-hand side
of the above equation is z (r ), which is negative in the social dilemmas under
consideration. Also, notice that as z (1) = 1 for all social dilemmas and z (a ) >
−1, the second term in the equation will also be negative.

So, any full equilibrium would need to have α∗ = 0.

Case 3: Z < 0 and z (r ) > 0 For the rest of the cases, we note that there is
always at most one interior rest point of the full dynamics.

We numerically calculate the Jacobian matrix of the dynamical system and
take the real parts of its two eigenvalues at the the interior rest point. Figure 4
provides the plot of the maximum real part of the aforementioned eigenval-
ues. Since there is always at least one eigenvalue with a positive real part, we
can conclude that the interior rest point cannot be stable and thus cannot be
an environment equilibrium.

Furthermore, as the interior rest point (if it exists) is unique and a sad-
dle point, there can be no closed trajectories in the interior of the state space.
From this, we conclude that there must exist stable points (sinks) at the bound-
ary of the state space which are the full equilibria.

B Analysis for different relative speeds

Consider a social dilemma G with a < r −1 and take the limit where s → 0. In
that case, the α-adjustment is so slow that, for initial conditions (x0,α0), the
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Figure 4: Maximum eigenvalue of the Jacobian matrix calculated at the inte-
rior rest point for social dilemmas with z (r )> 0

level of cooperation fully adjusts to one of the two environment equilibria (at
either x = 0 or at x = 1, see the discussion in subsection 2.2) before assortativ-
ity gets a chance to evolve. If the environment equilibrium reached is x = 0,
then the α-dynamics will slowly bring the population to the full equilibrium
x0. On the other hand, if the environment equilibrium reached is x = 1, the
population is led to the full equilibrium at x1. So, assortativity robustness will
be the highest λ for which x = 1−λ is in the basin of attraction of the equilib-
rium at x = 1 under the environment (G , 1−λ). At this limit, the social dilem-
mas where full assortativity is more robust than null assortativity (%G > 1/2)
are the ones with r > (1−α)/3. Our numerical results reflect this (see the dia-
gram for s = 0.01 in Figure 3).

Increasing speed s leads some of the initial conditions (those below the
ẋ = 0 curve and above the α̇ = 0 curve) to higher levels of α (see top row of
Figure 5). This, in turn, decreases the threshold for x to start being increasing
in time. These initial conditions would be driven to x = 0 by the dynamics if s
was low and, therefore, eventually led to the full equilibrium x0.

The opposite is true for social dilemmas with a > r − 1. Let (x ∗,α∗) be the
interior rest point of the full dynamics. When s → 0, initial conditions with
α0 <α

∗ are first attracted to the ẋ = 0 locus and then, slowly, to the x0 equilib-
rium. As s increases, a larger set of initial conditions along the λx0+ (1−λ)x1

line are being attracted to x0 and therefore full assortativity robustness de-
creases (see bottom row of Figure 5).
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ẋ = 0
α̇ = 0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x
α

s = 100.00
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Figure 5: Top: Full dynamics for a Prisoners’ Dilemma with r = 0.80, a =−0.60
for different values of speed s . Higher speeds of the α-dynamics lead to a
larger basin of attraction of the full equilibrium x1 and to higher robustness
of full assortativity.
Bottom: Full dynamics for a Snowdrift game with r = 0.52, a = 0.12 for dif-
ferent values of speed s . Higher speeds of the α-dynamics lead to a higher
basin of attraction of the full equilibrium x0 and to loweer robustness of full
assortativity.
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