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Abstract

In economic duration analysis, it is routinely assumed that the process which led

to censoring of the observed duration is independent of unobserved characteristics.

The objective of this paper is to examine the sensitivity of parameter estimates to this

independence assumption in the context of an economic model of optimal unemployment

insurance. We assume a parametric model for the duration of interest and leave the

distribution of censoring unrestricted, allowing it to be correlated with both observed

and unobserved characteristics. This leads to loss of point-identification. We provide

a practical characterization of the identified set with moment inequalities and suggest

methods for estimating this set. In particular, we propose a profiled procedure that

allows us to build a confidence set for a subvector of the model parameters. We apply

this approach to estimate the elasticity of exit rate from unemployment with respect to

unemployment benefit and find that both positive and negative values of this elasticity

are supported by the data. When combined with the welfare formula in Chetty (2008),

these estimates do not permit us to put an upper bound on the size of the welfare
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change due to an increase in the unemployment benefit. We conclude that given the

available data alone, one cannot credibly judge if the unemployment benefits in the US

are close to the optimal level.

1 Introduction

1.1 Motivation and summary of the results

Duration models are a useful tool for analyzing the relationship between time spent in

some state and observed characteristics. In practice data on the duration of interest is

frequently censored. The standard approach in duration analysis is to assume that censoring

is independent of unobserved heterogeneity (existing results allow censoring to be correlated

with observed characteristics). The objective of this paper is to examine the sensitivity of

parameter estimates to this independence assumption in the context of an economic model

of optimal unemployment insurance.

Firstly, we discuss identification and provide methods for estimating the mixed propor-

tional hazard (MPH) duration model when the distribution of censoring is left unrestricted.

We show that if no assumptions are put on the censoring process, the parameters of the

model are set- and not point-identified. We provide a practical characterization of the iden-

tified set and suggest procedures to estimate confidence sets for the parameters of interest.

In practice, as it is in our application, only a few elements of the parameter vector are of

interest to the researcher. Thus, following Gandhi, Lu & Shi (2013) we propose a profiled

procedure that allows us to build a confidence set for a subvector of the model parameters.

Secondly, we provide new set estimates of the elasticity of the exit rate from unemploy-

ment with respect to unemployment benefit from a model that does not restrict the dis-

tribution of censoring but uses a parametric model for the unemployment duration. These

estimates are robust to violations of independence between censoring and unobserved het-

erogeneity. In particular, it is possible that the true parameter value does not lie in the
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confidence interval constructed under the assumption of independent censoring but it is

contained in our confidence set (in Section 2.2 we show an example where this arises).

The value of the elasticity of unemployment exit rate with respect to unemployment

benefit is of interest in the economic analysis of optimal unemployment insurance. Chetty

(2008) shows that the welfare consequences of a change in unemployment benefit can be

derived from a small set of estimated parameters among which this elasticity plays a crucial

role. Thus, the estimate of this elasticity can be used in conjunction with Chetty’s welfare

formula to judge if the current level of unemployment benefits in the US is optimal. We

estimate this elasticity using a sample of unemployed persons from Survey of Income and

Program Participation (SIPP) and find that both positive and negative values are supported

by the data. We show that positive values of this elasticity are encountered in existing

studies and are not excluded on theoretical grounds.

When combined with the welfare formula, our set estimates do not permit us to put an

upper bound on the size of the welfare change due to an increase in the unemployment benefit.

We also show that this formula is not well suited to deal with the wide range of plausible

estimates for the elasticity of unemployment exit rate with respect to unemployment benefit.

In particular, it does not apply to a significant portion of our confidence set. We conclude

that given the SIPP data and the available theoretical formula one cannot credibly judge if

the unemployment benefits in the US are close to the optimal level.

Chetty (2008) uses his point estimates to deduce that the welfare gains from increasing

unemployment benefits would be positive but rather small, which implies that the benefits

in the US are set close to the optimal level. Allowing for correlated censoring, the empirical

results are not as informative about the optimality of unemployment benefits. Though,

these results are in line with Chetty’s results when interval estimates (incorporating standard

errors) are used.

We take as a starting point the mixed proportional hazard model, in which the hazard
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rate for a person who has stayed unemployed for y weeks is given by:

λ(y|Xi, Vi) = λ0(y)eX
′
iβVi (1)

where λ0(·) denotes the baseline hazard, Xi is a [K × 1] vector of observed characteristics

(including a constant term) and Vi is a scalar unobserved heterogeneity term.

In practice we do not observe a full spell Ỹi for each person but rather a censored spell:

Yi = min{Ỹi, Ci}

where Ci is the censoring variable. All the existing approaches assume independence between

censoring Ci and unobserved heterogeneity Vi. However, it is often hard to justify this

assumption. We provide several examples where this condition fails.1

Example 1 (survey attrition): Consider the 1996 panel of the Survey of Income and

Program Participation (SIPP), which is a part of our estimation sample. As reported by

Slud & Bailey (2006) 30% of individuals in the initial sample left the survey by the final wave

of the interviews. It is likely that unemployed leaving the survey differ from the remaining

unemployed both with respect to observed and unobserved characteristics. For example,

individuals may fail to complete the survey because of alcohol or drug problems. These

problems will also affect their chances to find a job. In other words, the same unobserved

characteristics will affect attrition and unemployment duration, which violates independence

between Ci and Vi.

Example 2 (administrative unemployment data): This assumption is questionable

in the studies of unemployment duration based on administrative data (see e.g Meyer (1990)).

With this type of data, we observe the unemployed person only as long as she receives

benefits. Therefore, the unemployed who use the full length of benefits are no longer observed

and their unemployment spells are censored. Those who do not exhaust their benefits may
1Further examples are given in Appendix A.
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also be censored if they do not accept a proposed job offer or refuse to participate in a

reemployment services program. Moreover, in the US an unemployed person can often

extend her benefits beyond the standard period at the cost of subjecting herself to stricter

job search requirements, e.g. contacting a specific number of employers every week, reporting

search effort etc. The extension can be canceled at any time if the person fails to satisfy

these requirements. In all these cases one can expect that the observed benefit period would

be affected by unobserved characteristics like motivation to find a job or search skills. For

example, a person with little motivation to become employed is more likely to lose her

benefits and, thus, be censored early. This would violate the assumption that censoring is

independent of unobserved characteristics.2

These examples show that independent censoring implicitly entails strong economic as-

sumptions that are rarely plausible. Thus, in this article we relax the assumption of inde-

pendence between censoring and unobserved heterogeneity in the mixed proportional hazard

model. We assume proportional hazard only for the exit from unemployment and leave the

distribution of censoring unrestricted. We derive moment inequalities that characterize the

identified set. In general, our moment inequalities allow for a nonparametric baseline hazard

λ0 and a nonparametric distribution of V . However, treating these components nonpara-

metrically significantly complicates inference and computation. Thus, for practical reasons

we maintain a parametric form for the baseline hazard and the distribution of unobserved

heterogeneity. These functions are point-identified and can be estimated under independent

censoring. Therefore, an applied researcher considering our approach faces a trade-off: he can

either assume away dependent censoring and estimate the model semi-/non-parametrically

or pose parametric (but possibly flexible) models for (λ0(·), V ) and allow for dependence

between censoring and unobserved heterogeneity.

We provide a method for obtaining marginal confidence sets for subvectors of the param-
2This will not be a problem if the researcher is willing to censor all the spells at 26 weeks or lower. The

existing tools will work well in such case.
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eter vector θ. Our confidence set is constructed by collecting candidate values that are not

rejected by a bootstrap test. Our procedure has the benefit that if only a component of θ

is of interest, as it is in our application, one only has to search over the space of values of

this specific component, not all values of the whole vector θ. This can significantly simplify

computation.

1.2 Related literature

Our model can be interpreted as a competing risks model with dependent risks, where the

risks are censoring and, for example, exit from unemployment. In this view there are several

alternatives to our approach. Firstly, one does not need to pose any model for either unem-

ployment duration nor censoring, in particular one can drop the proportionality assumption

underlying the MPH model. Peterson (1976) showed that one can obtain informative bounds

on the distributions of the risks without parametric assumptions on the joint distribution.

However, these bounds are usually very wide (see Peterson (1976), Honoré & Lleras-Muney

(2006)), which makes this approach unattractive to applied researchers.

Another possible choice is to assume mixed proportional hazards for both risks (exit from

unemployment and censoring), see e.g. Van den Berg, Lindeboom & Ridder (1994). This

restores point-identification under support conditions on the explanatory variables (cf. Heck-

man & Honoré (1989), Abbring & Van den Berg (2003)). However, justifying a parametric

model for the censoring variable may be problematic.

Therefore, we take an intermediate approach. We assume proportional hazard only for

the exit from unemployment and leave the distribution of the censoring variable unrestricted.

The methods developed in this paper allow analysis of a competing risk model with many

risks without the need to specify a model for all of the risks. For example, when studying

causes of death in some population one may be interested only in the effect of covariates

on one particular cause (e.g. cardiovascular disease). Our approach allows the researcher to

focus on this specific cause without the need of posing a model for the other possible causes.
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This makes the results more robust to misspecification.

Partial identification of a log-linear duration model with dependent censoring under me-

dian restriction was analyzed by Khan & Tamer (2009). However, they proceed with infer-

ence assuming that their condition for point-identification is satisfied. Khan, Ponomareva

& Tamer (2016) investigate consequences of endogenous censoring in a panel data model.

They suggest using a stochastic dominance test for inference but they discuss only inference

on the whole parameter vector. Honoré & Lleras-Muney (2006) analyze a semiparametric

competing risks model (accelerated failure time, AFT) with interdependent risks and a bi-

nary covariate. Thus, they relax the assumption on the support of covariates required for

point-identification (Heckman & Honoré (1989)) but still pose a semiparametric model for

both risks. In this paper we do not require covariates to be continuously distributed nor put

any semiparametric restrictions on the distribution of one of the risks.

When it comes to inference, our moment inequalities can be viewed as stochastic domi-

nance relationships. Additionally, they are indexed by a continuous parameter which resem-

bles the situation in conditional moment inequalities models. Therefore, we draw from the

literature on both of these topics (see Linton, Song & Whang (2010), Lee, Song & Whang

(2013), Lee, Song & Whang (2015) and Andrews & Shi (2013)) and suggest a profiled test

for inference on a subvector of parameters (θ1): for each candidate θ1 we minimize an ap-

propriate criterion function over the remaining parameters. Gandhi et al. (2013) provide a

general theorem for profiled inference in conditional moment inequality models. While their

setup is different from ours, their results can still be applied. We translate our setup to their

context and verify that their conditions are satisfied under our assumptions.

The article is organized as follows. Section 2 develops the moment inequalities delineating

the identified set. Section 3 discusses the inference procedure that uses these inequalities to

obtain a confidence set for the parameters of interest. The Monte Carlo study in Section 4

verifies that our test has the right size and assists us in picking the tuning sequence needed

for the application of the inference procedure. In Section 5 we apply the previously developed
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method to build a confidence set for the elasticity of unemployment exit rate with respect to

the unemployment benefit and use this estimate to analyze optimal unemployment insurance.

All proofs are relegated to the appendix.

2 Identification

This section provides moment conditions that partially identify the parameters of the mixed

proportional hazard (MPH) model given the joint distribution of covariates and censored

spells. We assume that the spells are observed from the beginning and are possibly right-

censored. Before proceeding to identification under endogenous censoring, it will be instruc-

tive to discuss identification of the single-spell mixed proportional hazard duration model

without censoring.

The identification of the MPH model in (1) has been investigated by Elbers & Ridder

(1982), Heckman & Singer (1984), Horowitz (1999) and Ridder & Woutersen (2003). These

papers differ in the assumptions they impose on the distribution of V and the baseline hazard

as well as types of normalizations used (see Abbring & Ridder (2015), Hausman & Woutersen

(2014) for a review).

Let X ⊂ RK denote the support of Xi. In this paper we make the following assumptions:

Assumption 2.1. (a) Vi is a non-negative random variable with c.d.f. Fv and Vi ⊥ Xi,

(b) X is not contained in any proper linear subspace of RK,

(c) Λ0 : [0,∞) → [0,∞) is nondecreasing and differentiable almost everywhere, Λ0(0) = 0,

limy→∞ Λ(y) =∞,

(d) E(Vi) = 1.

These assumptions correspond to Elbers & Ridder (1982). Under Assumptions 2.1(a)-(d)

and no censoring (Λ0, β, FV ) are identified. The same identification argument holds also for a

model with completely random censoring and censoring correlated with observed covariates.
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2.1 Identification with arbitrary censoring

Let us turn to the case where the censoring variable may be correlated with unobserved

heterogeneity. Let Di = 1{Ỹi ≤ Ci} indicate observations that are not censored.

Although our identification results carry through to the general MPH model where Λ0 and

Fv are treated nonparametrically, for the ease of exposition, in what follows we will assume

that the distribution of unobserved heterogeneity and the baseline hazard are known up to

finitely dimensional parameters, i.e. Fv(·) = Fv(·; γ), γ ∈ Rdγ and Λ0(·) = Λ(·;α), α ∈ Rdα .

The parametric specifications need to satisfy Assumption 2.1. In the empirical application

we will use a gamma distribution for the unobserved heterogeneity.3 This is a common

choice in the duration literature (see e.g. Meyer (1990), Nielsen, Gill, Andersen & Sørensen

(1992)). We will also assume either a Weibull form for the hazard, Λ(y, α) = yα, or use a

step function Λ(y, α) =
∑L

l=1 αl1{y > cl}, αl ≥ 0, l = 1, . . . , L, where c1, . . . , cL are known

constants.

Denote θ = (α, β, γ) and let Θ be a subset of Rdθ , dθ = dα +dγ +K. Define F x
vc(v, c|x) to

be the joint cumulative distribution function of (V,C) conditional on X = x. Let F = {F x
vc :

E[V ] = 1, Fv(·) = Fv(·; γ), γ ∈ Rdγ} (note that we do not assume that the joint distribution

is continuous to allow the case of fixed censoring). Let p(y, d, x) = p(Y = y,D = d|X = x)

where p is the true density generating the data and pθ(y, d, x;F x
vc) denotes the respective

density generated from the censored parametric MPH model with dependence between V , C

and X governed by F x
cv. The identified set for the true value θtrue is the set of all θ’s for which

there exists a cumulative distribution function F x
cv ∈ F such that the model probabilities are

consistent with the true probabilities, i.e.

ΘI = {θ : p(y, d, x) = pθ(y, d, x;F x
vc) for some F x

vc ∈ F and all (y, d, x)}.

3We impose E(V ) = 1 and parametrize the distribution by γ in the following way: fv(v) = v1/γ−1e−v/γ

Γ(1/γ)γ1/γ ,
where Γ is the Gamma function.
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Alternatively, the identified set can be described as the set of maximizers of the log-likelihood:

ΘI = arg max
θ∈Θ

sup
Fxvc∈F

E[log pθ(y, d, x;F x
vc)],

where the expectation E is taken with respect to the true probability p. The latter charac-

terization falls in the class of models analyzed by Chen, Tamer & Torgovitsky (2011), who

suggest a sieve likelihood ratio test for doing inference. However, implementing their proce-

dure in our context is difficult since it requires approximating the CDF F x
vc by sieves. This

function has K + 2 arguments, thus the number of sieve coefficients will be large and the

resulting estimates may have a large bias in finite samples. Instead, we aim at providing an

alternative characterization of the identified set that leads to a simpler inference procedure.

Let

S(y|x) = P (Yi > y|X = x) and S̃(y|x) = P (Ỹi > y|X = x)

denote the survival functions for observed and latent spells and define:

Su(y|x) = 1− E[Di1{Yi ≤ y}|X = x].

Then, we have4: Yi ≤ Ỹi ≤ DiYi + (1−Di)∞, which implies:

S(y|x) ≤ S̃(y|x) ≤ Su(y|x). (2)

These inequalities provide a starting point for deriving the moment inequalities which char-

acterize the identified set. Let

Lv(s; γ) =

∫ ∞
0

e−svdFv(v; γ)

4We assume 0×∞ = 0 here.
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denote the Laplace transform of the distribution Fv. We have:

S̃(y|x) = Lv(Λ(y;αtrue)e
x′βtrue ; γtrue). (3)

which, together with (2), implies that ΘI is contained in a set defined by a collection of

moment inequalities.

Lemma 1. Let Θ0 be the set of θ = (α, β, γ)’s satisfying:

Lv(Λ(y;α)ex
′β; γ)− S(y|x) ≥ 0; ∀y ∈ [0,∞), x ∈ X (4)

Su(y|x)− Lv(Λ(y;α)ex
′β; γ) ≥ 0; ∀y ∈ [0,∞), x ∈ X , (5)

and suppose Assumption 2.1 holds:

(a) Then, ΘI ⊆ Θ0.

(b) If there exist ε > 0 such that the set

XID = {x ∈ X : P (Ci ≤ ε,Di = 0|Xi = x) = 0}

with P (x ∈ XID) > 0 satisfies Assumption 2.1(b) and Λ(·;αtrue) is an analytic function

on (0,∞), then we have Θ0 = {θtrue}.

Remark 1. Part (a) follows from noticing that the moment inequalities correspond to the

bounds in Peterson (1976). His bounds are nonparametric - he does not pose a paramet-

ric model for either of the risks (employment and censoring). Thus, we can interpret our

approach as an application of Peterson’s bounds in the case when the model for one of the

competing risks belongs to a MPH parametric family.

Remark 2. Θ0 may be bigger than the identified set. The situation here is similar to Ciliberto

& Tamer (2009) who use moment inequalities to estimate a static, discrete game. Though,
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their approach does not provide a sharp set, it is more practical then the other approaches

that indeed give sharpness.

For example, if censoring is independent of X and V but still random (and condition in

part (b) does not hold), we can write:

Su(y|x) = S(y|x) + P (Ỹi > Ci, Ci ≤ y|Xi = x).

and the second term in the above expression will be positive for y > 0. Thus, the inequalities

will yield a set of parameter values, even though the model is point-identified under such

random censoring (see Appendix B.3 for numerical examples). However, in view of the

examples discussed in the Introduction, full independence will rarely occur in practice so lack

of sharpness in this case is not a big concern.

Remark 3. Part (b) provides sufficient conditions for point-identification. It basically re-

quires that short durations are never censored for some values of covariates, for example,

short-term unemployed with large families never drop out of the survey before the end of

their spell. In particular, point identification obtains in the case of fixed censoring and

when censoring depends only on the observed covariates. The requirement for the integrated

baseline hazard function to be analytic is satisfied by the Weibull specification used in our

application or, for example, by any polynomial approximation.

Remark 4. Alternatively, the identified set can be characterized by the following moment

inequalities:


Lv(u; γ)− P (log Λ(Yi;α) + x′β > log u|Xi = x) ≥ 0;

1− E[Di1{log Λ(Yi;α) + x′β ≤ log u}|Xi = x]− Lv(u; γ) ≥ 0;

∀u ∈ [0,∞), x ∈ X .

It can be shown that both characterizations are equivalent. However, the previous description
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is more convenient when it comes to inference and application. In particular, it simplifies

the technical arguments involved in developing the confidence set for the unknown parameters

and it is computationally more attractive since the unknown parameters enter the moment

inequalities through a continuous function.

Remark 5. Note that (3) provides alternative characterization of the MPH model. Lv is

strictly decreasing, therefore the monotonicity of the Laplace transform can be used to obtain

bounds on β up to scale. Using (2) and (3) we get that X ′iβ ≥ X ′jβ implies Su(y|Xi) ≥

S(y|Xj) for all y. Hence, scale-free bounds for β can be obtained by minimizing an appro-

priate rank criterion function as in Khan et al. (2016). However, the scale of β is usually of

interest in applications (and is identified with independent censoring). Thus, we prefer our

approach which (partially) identifies the scale of β.

For given y and x the inequalities in Lemma 1 can be rewritten as:

S(y|x) ≤ Lv(Λ(y;α)ex
′β; γ) ≤ Su(y|x).

We can see that the identified set Θ0 (from now on, we will refer to Θ0 as "the identified

set") is an intersection of the areas between two level sets of the function Lv(Λ(y;α)ex
′β; γ)

for different values of y. This function is nonlinear, so the areas between the level sets will

not be convex and convexity of Θ0 is not guaranteed.

2.2 Shape of the identified set

In this section we analyze an example MPH model with dependent censoring to get some

insight about the shape of the identified set and potential consequences of assuming inde-

pendent censoring (here, as in the rest of the article, this means censoring independent of

unobserved heterogeneity, thus allowing for covariate-dependent censoring). Moreover, our

inference procedure will require discretizing the support of X. Since the moment inequalities

are indexed by values of X, a reduction in the number of points of support of X will lead to
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a decrease in the number of moment conditions and, in general, will increase the identified

set. Thus, we also take a chance here to investigate how the coarseness of discretization will

affect the size of Θ0.

We investigate the following MPH model:

α log Ỹ = −Xβ − log V + logU

α logC = c+ log V

where V, U have the unit exponential distribution (which implies γ = 1) and are mutually

independent. We set α = 1.5, β = −0.5, c = 2.7 and impose an upper bound on the observed

durations equal to 20 (BC = 20 in the notation of Section 3). This guarantees a censoring rate

around 22%. The model implies that the lower the unobserved “ability” (V ) the longer the

unemployment spell and the more likely the spell will be censored, which is in line with the

intuition that people with low ability or motivation will exit the unemployment records sooner

than highly motivated individuals. In this model logC and log V are perfectly correlated

(though, corr(log Ỹ , logC) = −0.71), thus this specification corresponds to a somewhat

extreme case. We investigate a model with imperfect correlation between censoring and

unobserved heterogeneity in Appendix B.2.

In this setup we can derive analytic expressions for the probabilities in (4)-(5) (see Ap-

pendix B.1). To check how the size of the identified set varies with the coarseness of the

discretization of X we consider x = 0, 1/M, 2/M, . . . , 1 − 1/M for M = 2, 20, 60. Figure

1 portrays the identified set. To get a sense of how mistaken we can be when we assume

independent censoring, we generate 1000 artificial samples of size 4000 (approx. the sam-

ple size in our application) from the model and estimate the Weibull-gamma model under

this assumption for each of these samples. We report the median of the estimates together

with the median confidence interval, where the latter is constructed using the median of the

standard errors across the simulated samples.
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Figure 1: Marginal identified sets

M = 2 M = 20 M = 60
α [1.48, 1.50] [1.48, 1.50] [1.48, 1.50]
β [-0.58,-0.33] [-0.54,-0.39] [-0.54,-0.39]
γ [0.45, 1.01] [0.45, 1.01] [0.45, 1.01]

Note: The table gives the marginal identified sets, i.e. the projection of the 3-dimensional identified set
on one of the dimensions. In the figures points for higher M are superimposed on points corresponding to
lower M . The cross corresponds to the true value in the model. The diamond and the dashed line mark
the median point estimate and median confidence interval obtained from estimating the model under the
assumption of independent censoring on 1000 simulated samples with n = 4000. The median confidence
interval is constructed using the median standard error across these simulations.

In our numerical examples the identified set Θ0 turns out to be convex despite the fact

that it is an intersection of non-convex regions (the same holds in the example in Appendix

B.2). Though, this may be specific to the examples considered.

Most importantly Figure 1 shows that the estimates obtained under the erroneous as-

sumption of independent censoring may be far both from the identified set and the true value.

Apart from the Weibull parameter α, the confidence intervals under independent censoring

do not cover the true value nor they overlap with our identified set. As mentioned above,
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our example is somewhat extreme since corr(logC, log V ) = 1. However, the true value

is often outside the confidence intervals obtained under independent censoring also in the

second model analyzed in Appendix B.2 in which censoring and unobserved heterogeneity

are not perfectly correlated. This should serve as a warning sign that mistakenly assuming

independent censoring may lead to invalid inference.

The identified set for β shrinks considerably when the number of x values goes from 2

to 20 but we see only minor tightening of the set when we increase M from 20 to 60. These

observations suggest that discretization of covariates in our inference procedure should not

lead to significant widening of the confidence set as long as the number of points of support

is not extremely low. In our application x is multivariate and we discretize x′β so that it

takes around 60 values. The above results suggest that we should not lose a lot of identifying

power with this discretization.

3 Inference

This part shows how to obtain confidence regions for the identified set defined by the moment

inequalities (4)-(5). In our model we are faced with infinitely many moment inequalities

indexed by two continuous parameters y and x. One way to proceed is to take the supremum

over these parameters. In practice this would require the dimension of x to be low and may

involve a significant computational burden questioning the applicability of this approach

(e.g. when S(y|x) and Su(y|x) are estimated nonparametrically). Instead, we simplify the

problem by assuming that the support of the covariate vector X is finite. Let M denote the

cardinality of X .

Assumption 3.1. X contains finitely many values x1, x2, . . . , xM and P (X = xm) ≥ δ > 0

for all m = 1, 2, . . .M, 1 < M <∞ and for some δ > 0.

If some of the covariates are continuously distributed, one can discretize them. The

resulting confidence region will most likely differ from the confidence region without imposing
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discrete support. However, if the discretization is relatively fine, the two regions should be

close to each other, as shown in the previous section.

In addition to assuming discrete support for X one can also consider only a finite number

of y values. In practice, the observations on Y are often recorded on a discrete scale, e.g.

unemployment durations are recorded in weeks. In this case one can check if the moment

inequalities are satisfied for the points of support of Y recorded in the data which further

simplifies computation (if the cardinality of the support is relatively low). However, to keep

the discussion general we do not assume that Y has discrete support.

In practice, the observation window is always finite which implies that C has a bounded

support [0, BC ] where BC > 0 is known. To simplify notation we redefine y to be equal

y/BC , so that now y ∈ [0, 1]. Accordingly, we modify the integrated baseline hazard Λ such

that its domain is [0, 1].

3.1 Profiled ISD test

For a fixed value of x and θ the moment inequalities can be viewed as stochastic dominance

relationships. For example, the first inequality (4) implies that the distribution of Y given

X = x is stochastically dominated by the distribution 1− Lv(Λ(y;α)ex
′β; γ). This suggests

that one can verify whether a candidate point belongs to the identified set by testing if the

stochastic dominance condition holds for all xm ∈ X , thus we coin our procedure the profiled

integrated stochastic dominance (ISD) test.

Let

µm(θ, y) =


Lv(Λ(y;α)ex

′βm ; γ)− S(y|xm) for m = 1, ..,M

Su(y|xm−M)− Lv(Λ(y;α)ex
′βm−M ; γ) for m = M + 1, .., 2M
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and µ̂m(θ, y) denote the estimator of µm(θ, y), e.g.

µ̂1(θ, y) = Lv(Λ(y;α)ex
′
1β; γ)−

∑n
i=1 1{Yi > y,Xi = x1}∑n

i=1 1{Xi = x1}
.

In practice one is interested only in a component of the parameter vector θ. In our

empirical application the object of interest is a single element of the β vector. Thus, we

provide a procedure that can be used to build a marginal confidence set for a subvector θ1

of θ.5 First, partition the parameter space Θ = Θ1 ×Θ−1 and let:

Θ0,1 = {θ1 ∈ Θ1 : ∃θ−1 ∈ Θ−1 such that (θ1, θ−1) ∈ Θ0}.

Next, define the profiled statistic:

Tn(θ1) = min
θ−1∈Θ−1

2M∑
m=1

∫ 1

0

[
√
nµ̂m(θ, y)]2−dw(y). (6)

where [·]− = min{·, 0} and w(·) is either the Lebesgue measure or a finite counting measure

on [0,1]. In the former case the integral over y can be approximated using quadratures or

Monte Carlo integration. In the latter case the integral amounts to a (weighted) sum over the

support of Yi in the dataset. As mentioned above, in practice durations are often recorded

on a discrete grid (e.g. in our application Yi ∈ {1, 2, . . . , 50}) so instead of taking the integral

we can check if the moment conditions are satisfied for the points on this grid.6

Alternative choice of the test statistic would involve taking the supremum over xm and y

instead of integrating (summing) over them. We prefer the integrated statistic for computa-

tional reasons. Note that the estimator of the survival function Ŝ(y|xm) is a discontinuous

function of xm and y. Thus, µ̂m(θ, y) may have multiple local maxima with respect to y
5Alternatively, one could build a confidence set for the whole vector θ and project it on the component of

interest, θ1. However, this approach would produce highly conservative confidence bounds on θ1, as argued
by e.g. Kaido, Molinari & Stoye (2016).

6Note that we assume that w(·) does not depend on n. Alternatively, one could use a U-statistic type
criterion function: TUn (θ) =

∑2M
m=1

∑n
i=1[
√
nµ̂−i

m (θ, Yi)]
2
−, where µ̂−i

m (θ, Yi) is an estimator of µm(θ, Yi) from
a sample excluding the i-th observation. We leave this extension for further work.
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since it is equal to the difference between Ŝ(y|xm) and the smooth function Lv(Λ(y;α)ex
′β).

Therefore, calculation of the supremum statistic would be prohibitively costly. Our form of

the statistic is especially attractive when the integral over y turns into a sum as it is in our

application.

The asymptotic distribution of this statistic will depend on the set of θ−1’s that contains

local deviations from Θ0 (“limit graph” in the nomenclature of Chernozhukov, Hong & Tamer

(2007)). This set cannot be consistently estimated, thus we need to resort to resampling

methods to obtain the critical value. We suggest using a bootstrap procedure similar to

Gandhi et al. (2013).7 Although Bugni, Canay & Shi (2016) show that there are power

benefits from combining this procedure with another resampling test, these benefits come at

a high computational cost. Therefore, we forego this opportunity to improve on power of

our test in order to keep the computational burden manageable.

We employ a nonparametric bootstrap, i.e. {Y ∗i , D∗i , X∗i }ni=1 is obtained by drawing from

{Yi, Di, Xi}ni=1 with replacement. Let µ∗m(θ, y) be a bootstrap counterpart of µ̂m(θ, y) and

define µ̄∗m(y, θ) = µ∗m(θ, y)− µ̂m(θ, y). Define the bootstrap statistic:

T ∗n,r(θ1) = min
θ−1∈Θ−1

2M∑
m=1

∫ 1

0

[
√
nµ̄∗m(θ, y) +

√
κnµ̂m(θ, y)]2−dw(y).

where:

Assumption 3.2. κn →∞, κn/n→ 0.

Denote Lv(Λ(y;α)ex
′
mβ; γ) by Lm(θ, y) and let the distance of a point a from a set A be

given by:

d(a,A) = inf
ã∈A
‖a− ã‖ .

7One can also use simulations to approximate the asymptotic distribution. We prefer the bootstrap
procedure since its computational cost is the same as that of using simulations and Andrews & Soares (2010)
show that the bootstrap procedure may have better power properties in finite samples (though bootstrap
does not provide asymptotic refinements in this case).
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where ‖ · ‖ is the Euclidean norm. Next define:

Q(θ) =
2M∑
m=1

∫ 1

0

[µm(θ, y)]2−dw(y).

In order to show validity of the bootstrap procedure we introduce the following assumptions:

Assumption 3.3. (a) Θ is compact, Θ−1 is convex for each θ1 ∈ Θ1 and Θ0 is a strict

subset of Θ.

(b) Lm(θ, y) is differentiable with respect to θ and the elements of the Hessian matrix d2Lm(θ,y)
dθ2

are bounded above for all (θ, y) ∈ Θ× [0, 1] and all m = 1, . . . ,M .

(c) For any θ1 ∈ Θ0,1 there exist constants C, c > 0 such that:

Q(θ) ≥ C{d(θ,Θ0)2 ∧ c}

for all θ ∈ Θ such that θ = (θ1, θ−1).

Assumption 3.3(a) is needed to guarantee the existence of the minimum in the definition of

the profiled statistic and its bootstrapped version. Assumption 3.3(b) allows us to analyze the

asymptotic distribution of the statistic on the local parameter space using Taylor expansion

arguments.8 Note that for the Weibull baseline hazard Λ(y, α) = yα, α > 0 the second

derivative d2Lm(θ,y)
dα2 may not be bounded around y = 0. Therefore, a model with the Weibull

hazard fails to satisfy Assumption 3.3(b). However, this is not worrisome in practice because

we rarely observe durations very close to zero. In our application the unemployment duration

is given in weeks and we do not observe unemployment spells shorter than one week. In order

to satisfy this assumption it is enough to redefine the model with the Weibull hazard such

that the hazard takes a finite value near zero and has the Weibull shape further from zero.
8In fact Gandhi et al. (2013) require only some form of Hölder continuity of the gradient. However, in

our case Lm(θ, y) is smooth for all the interesting specifications of Λ and Fv, thus we prefer to state this
condition in a stronger form.
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Given the sampling scheme the data would not be able to distinguish this model from the

standard Weibull hazard model.

Assumption 3.3(c) is a partial identification assumption and is used by Chernozhukov

et al. (2007) and Gandhi et al. (2013), among others. It bounds below the rate at which

the criterion function Q approaches the identified set - it prevents Q from being very flat

in the neighborhood of Θ0. This condition helps to derive the rate of convergence of the

minimizer of Q to the identified set Θ0 using the distance d(·, ·) (see Chernozhukov et al.

(2007)). As noted by Kaido et al. (2016) Assumption 3.3(c) is violated when the identified

set Θ0 locally exhibits corners with extremely acute angles. Looking at all of our numerical

examples (Section 2.2 and Appendix B.2) this does not seem to be the case in our model.

Define:

c∗τ (θ1) = inf

{
t :

1

R

R∑
r=1

1{T ∗n,r(θ1) ≤ t} ≥ 1− τ

}
,

where R is the number of bootstrap replications. The following theorem describes the asymp-

totic size of our bootstrap test:

Theorem 1. Let θ1 ∈ Θ0,1 and {Yi, Di, Xi}ni=1 be an i.i.d. sample. Then under Assumptions

2.1-3.3 we have that as n→∞:

lim inf
n→∞

P (Tn(θ1) ≤ c∗τ (θ1)) ≥ 1− τ.

if c∗τ (θ1) is the continuity point of the asymptotic distribution of Tn(θ1).

The theorem shows that the test with bootstrap critical value has a correct null rejection

probability. This theorem is a consequence of Theorem 2(b) in Gandhi et al. (2013). In

Appendix C.2 we verify that our assumptions are sufficient to apply their result. Theorem 1

can be strengthened to hold uniformly over all potential null distributions under additional

assumptions as in Gandhi et al. (2013).
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As argued by Chernozhukov et al. (2007), a normalized statistic:

T̃n(θ1) = min
θ−1∈Θ−1

2M∑
m=1

∫ 1

0

[
√
nµ̂m(θ, y)]2−dw(y)−min

θ∈Θ

2M∑
m=1

∫ 1

0

[
√
nµ̂m(θ, y)]2−dw(y) (7)

may often yield improvement in power over the basic statistic if Tn does not attain the

population value zero in finite sample. Similarly we can define the normalized bootstrap

statistic:

T̃ ∗n,r(θ1) = min
θ−1∈Θ−1

2M∑
m=1

∫ 1

0

[
√
nµ̄∗m(θ, y) +

√
κnµ̂m(θ, y)]2−dw(y)

−min
θ∈Θ

2M∑
m=1

∫ 1

0

[
√
nµ̄∗m(θ, y) +

√
κnµ̂m(θ, y)]2−dw(y).

Arguments mirroring exactly the proof of Theorem 1 imply that such modified bootstrap

procedure gives a correct null rejection probability. The computational issues involved in

using the latter normalized test statistic are discussed in Appendix E.

4 Monte Carlo simulations

We investigate the performance of our testing procedure using the following designs. The

unemployment duration is generated from the MPH model:

α log Ỹi = −Xiβ − log Vi + logUi

where α = 1.5, β = −0.5, Vi, Ui have the unit exponential distribution (which implies γ = 1)

and are mutually independent as well as independent ofX. The censoring process is described
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by:

α logCi = c1 −Xiβ (design 1)

α logCi = c2 + log Vi (design 2)

α logCi = c3 −Xiβ + log Vi (design 3)

where c1 = 1.3, c2 = c3 = 2.5. We impose an upper bound on the observed durations equal to

20. This guarantees a censoring rate around 22%. The covariate Xi is drawn from a discrete

uniform distribution on X = {−1,−29/30,−28/30, . . . , 29/30}. The parameter values are

chosen such that the designs resemble possibly closely the empirical application discussed in

the next section.

In the first design Ci depends only on Xi, hence the parameter vector (α, β, γ) is point

identified. The second design is similar to the one described in Section 2.2. The parameters

are partially-identified in this setup, which is also the case in the third design. We report

simulations for the profiled statistic, where β is the object of interest. In our SIPP dataset

the unemployment durations are recorded in weeks from 1 to 50. Thus, instead of integrating

over [0,1] in (6) we evaluate the statistic by taking a sum over this grid, i.e.

Tn(θ) = min
θ−1∈Θ−1

2M∑
m=1

Sy∑
s=1

[
√
nµ̂m(θ, ys)]

2
−,

where ys = 0.5, 1, 1.5, . . . , 20 are points of support of Yi. We set κn = n/(κ log(n)) and

consider κ = 0.5, 1, 1.5. We consider different values of β to check if our test controls size

correctly (β = −0.5, β = −0.546 and β = −0.572) and to examine power properties of

our tests (β = −0.7). The results are reported in Table 1. We report results only for the

normalized statistic given in (7) since simulations for the non-normalized statistic in (6)

reveal that the latter leads to highly conservative inference (see Appendix F.1 for details),

thus we recommend using the normalized test in applications.
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Table 1: Results of Monte Carlo simulations, M = 60

n = 4000 n = 8000
coverage 1 - power coverage 1 - power

interior boundary interior boundary
design 1 (point-identified)

β = −0.5 β = −0.5 β = −0.7 β = −0.5 β = −0.5 β = −0.7
90% 95% 90% 95% 90% 95% 90% 95% 90% 95% 90% 95%

κ = 0.5 0.99 1 0.99 1 0.09 0.26 0.98 1 0.98 1 0 0.02
κ = 1 0.98 0.99 0.98 0.99 0.05 0.11 0.97 0.99 0.97 0.99 0 0
κ = 1.5 0.97 0.99 0.97 0.99 0.05 0.10 0.97 0.99 0.97 0.99 0 0

design 2 (partially-identified)
β = −0.5 β = −0.546 β = −0.7 β = −0.5 β = −0.546 β = −0.7
90% 95% 90% 95% 90% 95% 90% 95% 90% 95% 90% 95%

κ = 0.5 0.99 1 0.94 0.99 0.27 0.62 0.99 1 0.94 0.99 0.12 0.35
κ = 1 0.95 0.99 0.79 0.94 0.05 0.17 0.95 0.99 0.76 0.93 0.01 0.04
κ = 1.5 0.92 0.98 0.72 0.88 0.02 0.09 0.92 0.98 0.68 0.86 0 0.02

design 3 (partially-identified)
β = −0.5 β = −0.572 β = −0.7 β = −0.5 β = −0.572 β = −0.7
90% 95% 90% 95% 90% 95% 90% 95% 90% 95% 90% 95%

κ = 0.5 1 1 0.94 0.99 0.40 0.72 1 1 0.92 0.99 0.17 0.47
κ = 1 0.99 1 0.84 0.95 0.12 0.32 0.99 1 0.77 0.92 0.02 0.10
κ = 1.5 0.99 1 0.81 0.92 0.08 0.20 0.99 1 0.72 0.88 0.01 0.04

Note: 2000 Monte Carlo simulations, 500 bootstrap replications. The column “1 - power” gives the probability
that the value outside the identified set is included in the confidence set. Boundary value is the value on the
boundary of the marginal identified set (calculated numerically).

For the lower end of our confidence set (β = −0.546 or β = −0.572) we get coverage

fairly close to the nominal values only when κ = 0.5 with undercoverage for higher values

of κ. Based on these results we choose κ = 0.5 for the empirical application. Additionally,

with n = 4000 the test at the 90% level includes β = −0.7, which is outside the identified

set, in at most 40% of the cases (for κ = 0.5).

We note that our test is quite conservative in the point-identified design. Thus, our

approach comes at a cost compared to the standard approach when censoring is in fact

independent (we compare the power of our approach and the standard approach in more

detail in Appendix F.2). However, compared to the cost of misspecifying the censoring

mechanism evidenced in Section 2.2 it seems worth incurring this power cost and using our

approach instead of the standard one.
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Table 2: Summary statistics

mean std. err. min max
unemployment duration in weeks 21.3 21.9 1 171
censored 0.22 . . .
benefit level in $ 163 27 102 234
pre-unemployment annual wage in $ 21 150 13 797 10 169 690
average unemployment rate 5.9 0.9 3.3 9.1
age 36.8 11.1 18.0 64.0
married 0.60 . . .

5 Optimal unemployment insurance

We re-investigate the question of optimal unemployment insurance using our novel approach

which relaxes the assumption of independent censoring. As shown by Chetty (2008), welfare

consequences of a change in unemployment benefits can be derived from a small set of

estimated parameters. The crucial parameter in his welfare formula is the elasticity of

unemployment exit rate with respect to unemployment benefit. All the previous studies

(see e.g. Meyer (1990), Chetty (2008)) estimated this parameter assuming that censoring

is independent of unobserved characteristics. Our goal is to find out what can be learned

about this elasticity and, as a result, about optimality of unemployment benefits in the US

if one disposes of this assumption.

5.1 Data

We use a sample from SIPP 1985-2000 similar to Chetty (2008). The only difference is that

we drop second and further unemployment spells for people who entered unemployment

multiple times in our sample, which reduced the number of observations from 4529 to 3986.9

This way we obtain an i.i.d. sample of single spells. The data consists of prime-aged males

who receive benefits, search for a job, have at least 3 months of work history and are not on

temporary layoff (see Appendix B in Chetty (2008) for a detailed description of the sample).
9Chetty (2008) estimates a Cox model without unobserved heterogeneity component using all spells. He

treats subsequent spells for the same person as separate observations.
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Our explanatory variables are: logarithm of unemployment benefit level, annual wage be-

fore unemployment, average state unemployment rate in years 1985-2000, age and a dummy

indicating if the individual is married. Annual wage and average state unemployment rate

are meant to control for observed productivity and local labor market conditions’ differences,

respectively. As in Chetty (2008), we let the unemployment benefit level equal the average

state unemployment benefit level in the year of entry into the unemployment pool. Table

2 reports the summary statistics for our sample. An unemployed person spent around 21

weeks in unemployment on average and the longest unemployment spell goes over 2 years.

The censoring rate equals 22%.

There are large differences in observed characteristics between censored and uncensored

observations. Individuals that are subject to censoring had earned $1700 less before they

became unemployed, they are older (average age of 38.3) and less likely to be married (55%

are married versus 60% in the whole sample). Thus, we should also not expect these two

groups to be homogeneous when it comes to unobserved characteristics.

Our set of covariates is highly restricted when compared to Chetty (2008). He includes

many other controls, in particular, a full set of year, occupation, industry and state dum-

mies as well as high school completion dummy. However, as shown in Appendix G.1 one

obtains almost identical estimates of the elasticity of exit rate from unemployment using our

restricted set of covariates. This is not surprising given that almost none of the year, indus-

try and occupation dummy variables included in Chetty (2008) are statistically significant.

Only state dummies appear to be significant. This is because they control for local labor

market conditions, which instead can also be captured by the average state unemployment

rate. Adding other variables from his model (education, total household wealth, “seam effect”

dummy) also does not significantly change the results (cf. Appendix G.1), which suggests

that our set of covariates provides sufficient control of observed productivity differences.

We include a small set of covariates because our estimation of moment conditions involves

estimating the conditional survival function S(y|x). With too many covariates, the number
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of observations available to estimate S(y|x) for each x will be small and the resulting estimate

of poor quality, which would create difficulties for our estimation method. Thus, we do not

include these remaining covariates in our model.

5.2 Results

In our first specification we assume that the baseline hazard has the Weibull form and that

unobserved heterogeneity is distributed gamma with mean one, which implies:10

Lv(Λ(y;α)ex
′β; γ) =

1

(1 + γyαex′β)
1
γ

.

We also consider a second specification with a piecewise constant hazard with ten steps:

Λ(y, α) =
∑10

l=1 αl1{y ≥ cl}, αl > 0, where cl = 1, 6, . . . , 46.

We pick κ = 0.5 for the bootstrap statistic. We also estimated the confidence sets with

κ = 1 and obtained thinner sets, which confirms the results of MC simulations that the

latter value will yield lower coverage probabilities. We employ the following discretization

procedure. If the desired number of points in the support is greater than two, we divide the

support of the covariates according to the quantiles and assign a value equal to the mean

within each quantile group11, e.g. if we want to have 4 points of support for log UI benefit,

we divide the support by quartiles and for each quartile calculate the mean UI benefit within

the quartile. For binary support, we use dummy variables - below/above median.

Table 3 gives the results of our empirical study. For comparison we also report interval

estimates from the model assuming independent censoring.12 In the baseline specification

(column (1)) we include log UI benefit, log annual wage and average unemployment rate as
10This specification satisfies Assumption 3.3(b) if γ > 0 and α, β are bounded, subject to the caveat

mentioned in the discussion after the statement of Assumption 3.3.
11We consider alternative choice of values within quantiles in Appendix G.4.
12These estimates use discretized variables, thus the differences between the first and the last row of Table

3 can be associated with different identification strategies and not dicretization. That discretization plays
only a minor role for our results is also confirmed for the Cox model under independent censoring (see
Appendix G.1).
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Table 3: Confidence sets for the elasticity of unemployment exit rate with respect to unem-
ployment benefit, 90% level

Weibull hazard Piecewise constant hazard
(1) (2) (3) (4)

log UI benefit [-1.61,0.6] [-0.81,0.48] [-2.49,1.26] [-1.3,0.6]
log annual wage x x x x
avg. unemployment rate x x x x
age x x
married x x
censoring rate 0.26 0.26 0.26 0.26
discretization 10× 2× 3 4× 2× 2× 2× 2 10× 2× 3 4× 2× 2× 2× 2
n 3986 3986 3986 3986
CI under independent

censoring [-1.06,-0.49] [-0.99,-0.4] [-1.06,-0.49] [-0.99,-0.4]

Note: The row “discretization” gives the number of discrete values of the variables included in the model in
the order they appear in the rows of the table, e.g. 10× 2× 3 means 10 values of log UI benefit, 2 values of
log annual wage, 3 values of unemployment rate. The number of bootstrap replications is 500 and κ = 0.5.

covariates. As in Chetty (2008) we also censor durations exceeding 50. This increases the

censoring rate to 26%. Next we add the demographic controls to the model (column (2)).

In Appendix G.3 we compare our results to the previous results available from Meyer (1990)

and Chetty (2008).

The confidence set in column (1) contains the interval estimate under independent cen-

soring, thus we cannot rule out that censoring is independent of unobserved heterogeneity.

On the other hand, our results are robust to this assumption. Though we obtain a larger

set, we are more confident that the true value lies within this set. For example, if the true

value happens to be in the corner of the identified set as in Figure 1, then the confidence

interval under independent censoring may often fail to cover this true value whereas our set

will include it with approximately 90% confidence.

Interestingly, our confidence set in column (2) does not overlap completely with the set

obtained under independent censoring, which shows that dependent censoring may be a

concern here. Specifically, elasticities between −9.9% and −8.1% are not supported by the

data even though they are plausible estimates under the (most likely) misspecified indepen-

dent censoring model. This shows the advantage of our agnostic approach to modelling the
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censoring mechanism.

Looking at the results in columns (3) and (4) we find substantially wider bounds than

in columns (1) and (2), which is natural given that piecewise constant hazard specification

involves more parameters than the Weibull hazard with single parameter. What is re-assuring

is that these bounds cover the respective values in columns (1) and (2), suggesting that,

though parsimonious, the Weibull model is not misspecified.

All of our confidence sets are wide and include a range of positive elasticities. For example,

based on the result in column (2) we cannot rule out that the 10% increase in the benefit

would lead to a 4.8% increase in the hazard rate. Thus, without imposing independent

censoring assumption we are not able to say whether the benefits would have positive or

negative impact on the exit rate from unemployment. Positive estimates ought not to be

viewed as an odd anomaly. For example, when Chetty (2008) estimates the elasticity of

unemployment exit rate with respect to severance pay (Table 4, pp. 214 in his paper), as

a by-product he also obtains an estimate of elasticity with respect to the UI benefit. The

estimated elasticity equals 0.292 and is statistically different from zero (this result is not

reported in his paper, we obtained it using the Stata codes available on his website, see

Appendix G.2).

Certainly, one can think of an economic mechanism that would lead to positive effect of

unemployment benefit on chances of finding a job. If the unemployed are liquidity constrained

and job search is costly, then they may pick low (or no) search effort because of insufficient

funds. In this case, a higher UI benefit may relax their liquidity constraint and induce more

search. If this effect dominates the moral hazard effect (i.e. reduced incentive to search due

to the conditional nature of unemployment benefits), the resulting change in the probability

of finding a job will be positive. We discuss the theoretical background for positive elasticity

in Appendix H.
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5.3 Policy implications

In this section we ask what can be learned about optimality of unemployment insurance in

the US given our set estimates. First, we endeavor to apply the welfare formula developed

by Chetty (2008).

Let W denote social welfare and b the benefit level. Using a general theoretical model

Chetty (2008) finds that the money-metric welfare gain at the benefit level equaling to half

of the weekly wage can be written as:

dW

db
= K1

[
f(ε1, ε2)

1− f(ε1, ε2)
+
ε1

K2

]
(8)

where:

f(ε1, ε2) =
eε2 − 1

eε1 − 1
K3,

ε1 is the elasticity of the unemployment exit rate with respect to the benefit level and ε2 is

the percentage change in unemployment exit rate associated with receipt of severance pay.

K1, K2, K3 are positive constants that are calibrated from the macro data.

The main idea of Chetty’s approach is that ε1 captures two effects. On one hand, addi-

tional cash in form of UI benefits creates moral hazard - it reduces the incentive to search

for a job. On the other hand, it induces a liquidity effect - if the unemployed are liquidity

constrained, then receipt of UI benefits relaxes their financial constraint and allows them to

achieve unconstrained optimum. Chetty’s model implies that the liquidity effect is negative

and its value exceeds the total effect, i.e. the above welfare formula is valid only when:

0 ≤ f(ε1, ε2) ≤ 1. (9)

With the above welfare formula at hand we can now assess what are the policy implica-

tions of our set estimate of ε1. For example, a big estimated welfare gain would suggest that
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a jump in the benefit level would be desirable. The welfare gain gives an average weekly rise

in money-metric utility resulting from a 1$ increase of the benefit at the benefit level equal

to 50% of the average wage (the average replacement rate for our sample is close to 50%,

see Chetty (2008) Table 1). We aggregate this over a year and over the whole population

to obtain a total yearly gain and translate it into the percent of GDP. We fix the value of

ε2 at -0.233, the point estimate obtained by Chetty (2008), and use the same calibration for

K1, K2 and K3 as in his paper.

Figure 2: Yearly welfare change from a 1$ increase in weekly UI benefit as a percent of GDP

Note: The confidence set contains the range of values in our confidence set from column (2) in Table 3 that
are consistent with condition (9).

Figure 2 portrays the results. We use the estimates from column (2) of Table 3 since this

specification provides a better control of observed heterogeneity than the model in column

(1) (note that using bounds from column (4) would lead to similar conclusions). The black

curve plots the welfare change as a function of the unemployment exit rate elasticity. The

shaded area corresponds to our confidence set. Unfortunately, condition (9) is not satisfied

31



for all values of ε1 in our confidence set13, thus in the figure we only include a relevant region

where condition (9) holds.

Even in this restricted region we cannot put any upper bound on the welfare effect. The

welfare gain diverges to infinity when ε1 approaches the point for which f(ε1, ε2) = 1. Thus,

we can only conclude that the welfare change from increasing the benefits is in the range

[−0.01,∞]% GDP. This implies that the current level of benefits may be optimal or a jump

in the benefit level would be desirable.

Chetty (2008) uses his point estimates to conclude that the welfare gain from increasing

the benefit level would be around 0.04%, which means that in the 1990s the unemployment

benefits in the US were set close to the optimal level. We argue that if one is concerned

about dependent censoring and wants to stay robust to the assumptions on the censoring

distribution, then such sharp conclusions cannot be drawn and a wide range of possible

welfare effects are consistent with the model and the data.14

We conclude that given the available data and the existing welfare formula one cannot

credibly judge if the unemployment benefits in the US are close to the optimal level. First,

the estimates of the elasticity of unemployment exit rate with respect to UI benefit vary in

a wide range both with our partial identification approach and with standard independent

censoring approach. Secondly, the available welfare formula is not applicable to the whole

range of plausible estimates so it is not known what their welfare implications are.

6 Conclusion

We argue that the standard assumption in duration modeling that censoring is independent

of the unobserved characteristics imposes strong economic assumptions on the underlying
13The welfare formula in (8) is discontinuous at ε1 for which f(ε1, ε2) = 1 and approaches −∞ to the right

of this point.
14We can use delta method to calculate the confidence interval for the welfare gain in Chetty (2008) (taking

into account that both ε1 and ε2 are estimated from the data). The resulting interval is [-0.57, 1.03]% GDP.
Thus, also his point estimate comes with a lot of estimation uncertainty.
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behavior that fail in many applications of interest. We show how to proceed with inference

without this assumption. Our model does not restrict the distribution of censoring and

partially identifies the parameters of interest.

Our procedure is computationally intensive because it involves optimization and boot-

strapping. If one is not willing to estimate the whole confidence set, one can use our test as

a check of validity of the assumption of independent censoring. Namely, after estimating the

model under the assumption of independent censoring we can run the test to check if our

point or interval estimate would belong to the confidence set in a model without imposing

this assumption. To the best of our knowledge, this is the first test of this kind in the liter-

ature. One can model unemployment duration and censoring using a competing risk MPH

model and then test if they are independent using a likelihood ratio test. Van den Berg et al.

(1994) implement this method using a competing risks model with Weibull hazards and two-

point distributions for unobserved heterogeneity. They test if the unobserved heterogeneity

in unemployment duration is correlated with unobserved heterogeneity in censoring. How-

ever, our test is more general since it does not impose a specific model on the distribution of

censoring and does not restrict unobserved heterogeneity to have a two-point distribution.

We applied our test to estimate the elasticity of the unemployment exit rate with respect

to the unemployment benefit. The estimates might be used to draw policy conclusions about

the optimal level of benefits in the US. However, we found that given the available data the

welfare formula obtained in the literature does not allow to draw any substantive policy

conclusions. This calls for the need to obtain alternative formulas and richer datasets to

sharpen the discourse about unemployment insurance policies.
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A Further examples of endogenous censoring

Example 3 (censoring through competing risks): Suppose we are studying the im-

provements in the treatment of cancer over time (e.g. as in Honoré & Lleras-Muney (2006)).

We observe the minimum of durations until death from various causes, e.g. if a person

with cancer dies because of cardiovascular disease, her duration until death from cancer is

censored. Individuals who have cancer may also possess risk factors that make them more

prone to die from other causes, e.g. cardiovascular disease. Thus, the underlying observed

and unobserved risk factors will be correlated both with the duration until death from cancer

as well as with the censoring variable (here, the minimum of durations until death from other

causes). Similar concerns arise in economic contexts. For example, suppose we investigate

unemployment exit rates among people aged 55-65. People in this group face important

health risks so they would often exit to disability or die and their unemployment spells are

censored. Individuals with poor health will usually have more trouble finding a job. If

health status is not observed perfectly, this would mean that unobserved characteristics are

correlated both with employment risk and with competing risks (disability, death).

Figure 3: Distribution of entries into unemployment

Note: Figure plots densities of entries into unemployment within the 10 quarter window for two groups of
unemployed - H and L. Ci denotes a censoring time for an individual who entered the unemployment pool
between the sixth and the seventh quarter.
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Example 4 (entry into unemployment during business cycle): Suppose there are

two types of people - high (H) and low (L) - and H types leave unemployment faster (due

to better motivation, search technology, higher unobserved productivity etc.). We observe a

sample of individuals entering unemployment over a period of 10 quarters. Unemployment

spells still running at the final date of observation are right-censored. Suppose that the

distributions of entries into the unemployment pool differ between two types and are as in

Figure 3. Here Ci is the time from entering unemployment until the end of the observation

window. Thus, for the person starting her jobless spell at time t we will have Ci = 10 −

t. Clearly, the distribution of censoring is not independent of the unobserved type. The

pattern of entries presented in the graph may arise in applications if the employment of low

productivity workers is more procyclical than that of high productivity types (the problem

arises also if it is more anticyclical, just flip H and L in the figure).

B Shape of the identified set

B.1 Closed form expressions for the moment conditions in Section

2.2

The following results will be useful in the derivation below:

∫ w

−∞
e−e

−s(ed+1)e−sds =
e−e

−w(ed+1)

ed + 1
(10)∫ w

0

e−ps
2−sds = e

1
4p

√
π

p

[
Φ

(√
2p

(
w +

1

2p

))
− Φ

(
1√
2p

)]
(11)

where Φ is the standard normal c.d.f. and the second equality holds for w ≥ 0. These results

follow from integration by parts.
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Let’s turn to the first moment inequality. We have:

P (Y > y|X = x) = P (Ỹ > y,C > y|X = x) = P (α log Ỹ > α log y, α logC > α log y|X = x) =

= P (− logU < −α log y − βx− log V,− log V < c− α log y|X = x) =

=

∫ ∞
−∞

P (− logU < −α log y − βx+ s, s < c− α log y|X = x,− log V = s)e−e
−s
e−sds =

=

∫ c−α log y

−∞
e−e

−s(eα log y+βx+1)e−sds =
e−y

αe−c(yαeβx+1)

yαeβx + 1
,

where the last equality follows from (10).

For the second moment condition we obtain:

E[D1{Y ≤ y}|X = x] = P (Ỹ ≤ C, Ỹ ≤ y|X = x) =

= P (− logU ≥ −βx− c− 2 log V,− logU ≥ −βx− log V − α log y|X = x) =

=

∫ ∞
−∞

P (− logU ≥ max{−βx− c+ 2s,−βx− α log y + s}|X = x,− log V = s)e−e
−s
e−sds =

=

∫ ∞
−∞

1−max{e−eβx+c−2s
, e−e

βx+α log y−s}e−e−se−sds =

= 1−
∫ ∞
c−α log y

e−e
βx+c−2s

e−e
−s
e−sds−

∫ c−α log y

−∞
e−e

βx+α log y−s
e−e

−s
e−sds =

= 1− e
1

4eβx+c

√
π

eβx+c

[
Φ

(√
2eβx+c

(
yαe−c +

1

2eβx+c

))
− Φ

(
1√

2eβx+c

)]
− e−y

αe−c(yαeβx+1)

yαeβx + 1
,

where the last equality follows from integration by substitution, (11) and (10).

B.2 Shape of the identified set - alternative specification

We analyze a MPH competing risks model of the form:

α log Ỹ = −Xβ − log V + logU

αc logC = c+ log V + logUc
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Figure 4: Shape of the identified set (M=20)

where V, U, Uc have the unit exponential distribution (which implies γ = 1) and are mutually

independent. We set α = 1.5, β = −0.5, αc = 1, c = 3.5 and impose an upper bound BC = 20.

This implies a censoring rate around 22%.

In this setup the expressions for the probabilities in (4)-(5) are given by:

P (Yi ≥ y|Xi = x) = P (Ỹi ≥ y, Ỹi ≤ Ci|Xi = x) + P (Ỹi > Ci, Ci ≥ y|Xi = x) =

=

∫ ∞
−∞

∫ ∞
−∞

[
max

{
e−e

−s+α log y+βx − e−e
−(1+ α

αc
ρ)s− α

αc
(sc−c)+βx

, 0
}

+ max
{
e−e

ρs+αc log y−c − e−e
−c+(αcα +ρ)s−αcα (sc+βx)

, 0
}]
e−e

−s−e−sce−s−scdsdsc

1− E[Di1{Yi < y}|Xi = x] =∫ ∞
−∞

∫ ∞
−∞

(
1− e−e

−max{s−α log y−βx,(1+ α
αc

ρ)s+ α
αc

(sc−c)−βx})
e−e

−s−e−sce−s−scdsdsc.

We use numerical integration to evaluate the expressions and employ grid search with step
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0.01 to find the identified set. We include the candidate value in the set if it satisfies the

inequalities for y = 0, 0.4, 0.8, 1.2, . . . , 20 within integration tolerance 1e-5. As in Section 2.2

we consider x = 0, 1/M, 2/M, . . . , 1 − 1/M for M = 2,M = 20 or M = 60. Figures 4-5

portray the identified set.

Figure 5: Marginal identified sets

M = 2 M = 20 M = 60
α [1.21, 1.57] [1.21, 1.57] [1.21, 1.57]
β [-0.94,0.17] [-0.7,-0.11] [-0.69,-0.12]
γ [0.33, 1.12] [0.33, 1.12] [0.33, 1.12]

Note: The table gives the marginal identified sets, i.e. the projection of the 3-dimensional identified set
on one of the dimensions. In the figures points for higher M are superimposed on points corresponding to
lower M . The cross corresponds to the true value in the model. The diamond and the dashed line mark
the median point estimate and median confidence interval obtained from estimating the model under the
assumption of independent censoring on 1000 simulated samples with n = 4000. The median confidence
interval is constructed using the median standard error across these simulations.

Similar to the example in Section 2.2 the identified set turns out to be convex. The

identified set and the confidence interval that we would get if we disregard dependent cen-

soring overlap here. The median confidence interval under independent censoring contains
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the true α but does not cover the true γ. The true value of β lies on the boundary of this

interval. This means that if we assume independent censoring, we may often fail to cover the

true values of β and γ with the resulting confidence interval. This confirms that imposing

an erroneous assumption about dependence between censoring and durations may lead to

invalid inference. Moreover, as in Section 2.2 we conclude that discretization of covariates

should not lead to significant widening of the confidence set if the number of support points

is reasonably large (here M ≥ 20).

B.3 Identified set under random censoring

As discussed in Remark 2 our moment inequalities do not provide a sharp characterization

of the identified set when censoring is fully random, i.e. independent both of observed

and unobserved characteristics. In order to visualize how much identifying power is lost in

this case, we look at two numerical examples. Unemployment duration and censoring are

generated from the model similar to the one in Section 2.2:

α log Ỹ = −Xβ − log V + logU

α logC = c+ log ε

where β = −0.5;V, U ∼ Exponential(1);X ∼ U [−1, 1] and in design RC1: α = 1, c = 0, ε ∼

U [0, 20], in design RC2: α = 1.5, c = 1.9, log ε ∼ Logistic.

Figures 6 and 7 show the calculated marginal sets. First note that the MPH model is

point-identified under the assumption of random censoring whereas our moment inequalities

only partially identify the model parameters and the resulting identification regions may be

quite large (especially for design RC2). Thus, our method should not be used when the

researcher has all the reasons to believe that data has been censored completely randomly

since it would lead to unnecessarily conservative inference. Nonetheless, random censoring

happens rarely in practice so lack of sharpness in this case is not of major concern. Recall that
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Figure 6: Marginal identified sets, RC1

M = 60
α [0.89, 1.06]
β [-0.54, -0.42]
γ [0.78, 1.1]

Figure 7: Marginal identified sets, RC2

M = 60
α [1.2, 1.6]
β [-0.59, -0.33]
γ [0.54, 1.29]

43



if censoring depends only on observed covariates or is random with support bounded from

below (and integrated baseline hazard is an analytic function), our moment inequalities point-

identify the model parameters, thus they provide sharp characterization of the identified set.
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C Proofs

C.1 Proof of Lemma 1

Proof. (a) Note that:

S(y|x) = P (Ỹ > y, Ỹ ≤ C|X = x) + P (C > y, Ỹ > C|X = x)

Su(y|x) = P (Ỹ > y, Ỹ ≤ C|X = x) + P (Ỹ > C|X = x)

Thus, the bounds S(y|x) ≤ S̃(y|x) ≤ Su(y|x) correspond to the bounds in Peterson (1976), Theorem

1, part 2. He shows that these bounds are sharp. Since his bounds are nonparametric and we impose

a parametric model on S̃(y|x), we have ΘI ⊆ Θ0.

(b) Note that the width of Peterson’s bounds is P (C ≤ y,D = 0|X = x). Thus, under

our assumption bounds collapse and pin down S̃(y|x) over y ∈ [0, ε]. We assume that S̃(y|x) =

Lv(Λ(y;αtrue)e
x′βtrue ; γtrue) but Lv(·; γtrue) is an analytic function (see e.g. Doetsch (1974)). To-

gether with the assumption that Λ(·;αtrue) is analytic, this implies that S̃(y|x) is analytic as a

function of y and by analytic continuation it’s uniquely pinned down on y ∈ [0,∞) for any x ∈ XID.

Thus, we can apply standard identification arguments for the MPH model (e.g. as in Elbers &

Ridder (1982)) to show that θ = (α, β, γ) is point-identified.

C.2 Proof of Theorem 1

Let l∞(X) be the set of uniformly bounded, real functions on X and  denote weak convergence

as defined in Van der Vaart & Wellner (1996). We need the following lemma:

Lemma C.1. Define S(y) = [S1(y) . . . S2M (y)]′, Ŝ(y) = [Ŝ1(y) . . . Ŝ2M (y)]′ where:

Sm(y) =


P (Y > y|X = xm) m = 1, . . . ,M

E[D1{Y ≤ y}|X = xm−M ] m = M + 1, . . . , 2M
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and:

Ŝm(y) =


∑n
i=1 1{Yi>yXi=xm}∑n
i=1 1{Xi=xm}

m = 1, . . . ,M

∑n
i=1Di1{Yi≤y,Xi=xm−M}∑n

i=1 1{Xi=xm−M}
m = M + 1, . . . , 2M.

Then:

√
n(Ŝ(y)− S(y)) G(y),

where G(y) = [G1(y) . . . G2M ]′ is a tight Gaussian process on l2M∞ ([0, 1]) with covariance kernel:

Rm1,m2(y1, y2) =

=



cov(1{Yi>y1,Xi=xm}−pm(y1)1{Xi=xm},1{Yi>y2,Xi=xm}−pm(y2)1{Xi=xm})
P (X=xm)2

for m1 = m2 = m ≤M

cov(Di1{Yi≤y1,Xi=xm−M}−pm(y1)1{Xi=xm−M},Di1{Yi≤y2,Xi=xm−M}−pm(y2)1{Xi=xm−M})
P (X=xm−M )2

for M < m1 = m2 = m

cov(1{Yi>y1,Xi=xm1}−pm1 (y1)1{Xi=xm1},Di1{Yi≤y2,Xi=xm2−M}−pm2 (y2)1{Xi=xm2−M})
P (X=xm1 )2

for m2 = M +m1

0 otherwise,

where pm(·) = P (Y > ·|X = xm) for m = 1, . . . ,M and pm(·) = P (D = 1, Y ≤ ·|X = xm−M)

for m = M + 1, . . . , 2M .

Proof. We have:

√
n(Ŝm(y)− Sm(y)) =

=


1

1
n

∑n
i=1 1{Xi=xm}

( 1√
n

∑n
i=1 1{Yi > y,Xi = xm} − pm(y)1{Xi = xm}) m ≤M

1
1
n

∑n
i=1 1{Xi=xm−M}

( 1√
n

∑n
i=1Di1{Yi ≤ y,Xi = xm−M} − pm(y)1{Xi = xm−M}) m > M.

Note that Di1{Yi ≤ y,Xi = xm−M} = 1{Yi ≤ Ci, Yi ≤ y,Xi = xm−M}. Let fy1,m : X × [0, 1] 7→
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[−1, 1], fy2,m : X × [0, 1]2 7→ [−1, 1] and:

F1,m = {fy1,m : fy1,m(z1, z2) = 1{z2 > y}1{z1 = xm} − pm(z2)1{z1 = xm}; y ∈ [0, 1]}

and

F2,m = {fy2,m : fy2,m(z1, z2, z3) = 1{z2 ≤ z3}1{z2 ≤ y}1{z1 = xm} − pm(z2)1{z1 = xm}; y ∈ [0, 1]}.

The classes F1,m are Donsker classes of functions for each m. This can be shown as follows. The

class 1{· ≤ y} is Donsker by Example 2.5.4 in Van der Vaart & Wellner (1996). This implies also

that 1{· > y} is Donsker. The functions pm(·),1{· = xm} and 1{· ≤ ·} are not indexed by y and

are uniformly bounded. Thus, the claim follows by Example 2.10.10 in Van der Vaart & Wellner

(1996).

Therefore, the processes

v̂1,m(y) = 1/
√
n

n∑
i=1

fy1,m(Xi, Yi)

and

v̂2,m(y) = 1/
√
n

n∑
i=1

fy2,m(Xi, Yi, Di)

are stochastically equicontinuous, which implies that the vector-valued process v̂(y) = [v̂1,1 . . . v̂2,2M ]

is stochastically equicontinuous. Since E[1{Yi > y,Xi = xm} − pm(y)1{Xi = xm}] = 0 and

E[Di1{Yi ≤ y,Xi = xm−M} − pm(y)1{Xi = xm−M}] = 0, the central limit theorem and Cramer-

Wold device imply fi-di convergence of v̂(y). Moreover, Assumption 3.1 implies:

1
1
n

∑n
i=1 1{Xi = xm}

→p 1

P (X = xm)
.

Therefore, by Slutsky’s lemma (cf. Example 1.4.7 in Van der Vaart & Wellner (1996)) we have that

Ĝ(y) =
√
n(Ŝ(y) − S(y)) converges weakly to G(y) in l2M∞ ([0, 1]), where G has a covariance kernel
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given in the statement of the lemma.

Proof of Theorem 1. The statement of the theorem follows from Theorem D.1 in the next section,

proved in Gandhi et al. (2013) (GLS). First, let’s translate their setup to our environment. Let ‖ · ‖

be the Euclidean norm. Our profiled statistic and bootstrap statistic can be written as follows:

Tn(θ1) = n min
θ−1∈Θ−1

∫ 1

0
‖[µ̂(θ, y)]−‖2 dw(y),

T ∗n,r(θ1) = min
θ−1∈Θ−1

∫ 1

0

∥∥[
√
n(µ∗(θ, y)− µ̂(θ, y)) +

√
κnµ̂(θ, y)]−

∥∥2
dw(y).

Comparing them to (12) and (13) we observe that γ in GLS corresponds to our θ1, Γ−1(γ) to Θ−1,

g to y, dµ(g) to dw(y), ρ̄n(θ, g) to µ̂(θ, y) and ρ̄∗n(θ, g) to µ∗(θ, y). Our arguments assume that the

integral (or the sum) over y is evaluated precisely thus Gn in GLS corresponds simply to [0, 1] in

our case and their Assumption D.4 is irrelevant in our setup.

Now we verify that their conditions are satisfied.

Assumption D.1 In our case Γ(θ) = θ1, thus this assumption is implied by our Assumption 3.3(a).

Assumption D.2(a) It is assumed in the statement of Theorem 1 that the observations are i.i.d.

Assumption D.2(b) Note that in GLS ρ̄(θ, g) is just a sample mean of ρ(Wi, θ, g). In this case

the Donsker property of the class {ρ(·, θ, g) : (θ, g) ∈ Γ(γ)−1 × Ḡ} means that the empirical pro-

cess
√
n(ρ̄n(θ, g) − ρ(θ, g)) converges weakly to some tight Gaussian process and implies that this

empirical process is stochastically equicontinuous with respect to Euclidean metric. It also implies

(e.g. by Theorem 3.6.1 in Van der Vaart & Wellner (1996)) that the bootstrap empirical process
√
n(ρ̄∗n(θ, g)− ρ̄n(θ, g)) converges weakly to the same Gaussian process and is stochastically equicon-

tinuous w.p. 1. This is all that’s needed for the proof of Theorem D.1 in GLS. It is not necessary

that ρ̄(θ, g) has the form of the sample mean.

Thus, in order to verify Assumption D.2(b) we need to show that the vector-valued empiri-

cal process v̂(y) =
√
n(µ̂(θ, y) − µ(θ, y))and the bootstrap process

√
n(µ∗(θ, y) − µ̂(θ, y)) converge

weakly to a tight Gaussian process (w.p.1 for the latter). The first part follows from Lemma C.1

since v̂(y) =
√
n(Ŝ(y) − S(y)). The weak convergence of the bootstrap process follows from the

same arguments as in Lemma C.1 and Theorem 3.6.1 in Van der Vaart & Wellner (1996).

Assumption D.2(c) We need to show that the gradient of µ w.r.t. θ exists and is Hölder continu-
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ous. Since every differentiable function is Lipschitz, and thus Hölder, if it has a bounded derivative,

our Assumption 3.3(b) implies that this assumption is satisfied with δ1 = 1.

Assumption D.3 This is satisfied with δ2 = 2 by Assumption 3.3(c).

D Notation and results in Gandhi, Lu & Shi (2013)

GLS prove a general theorem for inference on a subvector of parameter vector in conditional moment

inequality models. Here we present a simplified version of their results that corresponds closely to

our setup. In particular we do not discuss uniformity over the underlying distribution. Secondly,

we consider only specific form of the criterion function in the profiled test statistic that does not

allow studentization of the estimators of moment conditions. As a result, we can simplify or drop

some of the assumptions in their paper.

GLS analyze the following moment inequality model:

E[ρ(Wi, θ0, g)] ≥ 0, ∀g ∈ G,

where ρ(·, ·, ·) is a vector-valued function of size k, Wi is a vector of random variables, θ0 ∈ Θ0 ⊂ Θ

is a finite-dimensional vector and G is a collection of indicator functions over properly defined sets

(see GLS for details). The parameter of interest, γ0, is a function of θ0. They are related through

a mapping Γ:

γ0 ∈ Γ(θ0).

For example, Γ may return the first component of θ.

In principle, the inequalities will only partially identify γ0 so we need a procedure to estimate

confidence sets for this parameter. Let Γ−1(γ) = {θ ∈ Θ : γ ∈ Γ(θ)} and define:

ρ̄n(θ, g) =
1

n

n∑
i=1

ρ(Wi, θ, g).
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Let ‖·‖ denote the Euclidean norm. GLS propose to build the confidence set by inverting the

following test statistic:

T̂n(γ) = n min
θ∈Θ:θ∈Γ−1(γ)

∫
Gn
‖[ρ̄n(θ, g)]−‖2 dµ(g), (12)

where Gn is a truncated/simulated version of G, µ(·) is a probability measure on G.

The critical value for the test can be obtained by bootstrapping the following modified statistic:

T ∗n(γ) = min
θ∈Θ:θ∈Γ−1(γ)

∫
Gn

∥∥[
√
n(ρ̄∗n(θ, g)− ρ̄n(θ, g)) +

√
κnρ̄n(θ, g)]−

∥∥2
dµ(g), (13)

where κn is a slackness sequence and ρ̄∗n(θ, g) is the equivalent of ρ̄n(θ, g) calculated on the bootstrap

sample. Let c∗bt(γ, p) be the p-th quantile of the bootstrap distribution. Then the critical value for

the test is given by:

cbtn (γ, p) = c∗bt(γ, p+ η∗) + η∗,

where η∗ > 0 is an infinitesimal number. If one is willing to assume that the asymptotic distribution

of T̂n(γ) doesn’t have a mass point at zero of size greater or equal than p, then one can set η∗ = 0.

Now we list the assumptions needed for the main result in GLS.

Assumption D.1. (a) Θ is compact, (b) Γ is upper hemi-continuous, (c) Γ−1(γ) is either convex

or empty for any γ ∈ Rdγ , and (d) Θ0 is a strict subset of Θ.

Let Ḡ = G∪{1}, ρ(θ, g) = E[ρ(Wi, θ, g)] and G(θ, g) denote the derivative of ρ(θ, g) with respect

to θ.

Assumption D.2. For all γ ∈ Rdγ such that Γ−1(γ) ∩Θ 6= ∅:

(a) {ρ(Wi, θ, g)}ni=1 is an i.i.d. sample for any (θ, g) ∈ Θ× Ḡ;

(b) the class of functions {ρ(·, θ, g) : (θ, g) ∈ Γ(γ)−1 × Ḡ} is Donsker;

(c) ρ(θ, g) is differentiable w.r.t. θ ∈ Θ and there exist constants C and δ1 > 0 such that, for any
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(θ(1), θ(2)):

sup
g∈Ḡ

∥∥∥G(θ(1), g)−G(θ(2), g)
∥∥∥ ≤ C ∥∥∥θ(1) − θ(2)

∥∥∥δ1 ;

Let Γ0 denote the identified set for γ. Define:

Q(θ) =

∫
G
‖[ρ(θ, g)]−‖2 dµ(g).

and Θ0(γ) = {θ ∈ Θ : Q(θ) = 0 & γ ∈ Γ(θ)}.

Assumption D.3. For any γ ∈ Γ0 there exist C, c > 0 and 2 ≤ δ2 < 2(δ1 + 1) such that:

Q(θ) ≥ C(d(θ,Θ0(γ))δ2 ∧ c)

for all θ ∈ Γ(γ)−1.

Assumption D.4. (a) Gn ↑ G as n→∞;

(b) limn→∞ supθ∈Γ(γ)−1

∫
G/Gn ‖[

√
nρ(θ, g)]−‖2 dµ(g) = 0 for all γ ∈ Γ0.

Note that we do not need Assumption C.6 in GLS since their Lemma C.1(a) verifies that it

is satisfied in the above setup. Moreover, we add D.1(d) which is implicitly assumed in GLS (for

example, it is required for step 4 in their proof of Theorem E.1).

We are now ready to state the main theorem in GLS:

Theorem D.1. Suppose that Assumptions D.1-D.4 hold, then:

lim inf
n→∞

P (T̂n(γ) ≤ cbtn (γ, p)) ≥ p

for all γ ∈ Γ0.

This theorem corresponds to Theorem 2(b) in GLS.
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E Computation

To facilitate discussion define:

Qn(θ) =
2M∑
m=1

Sy∑
s=1

[
√
nµ̂m(θ, ys)]

2
−

Q∗n(θ) =
2M∑
m=1

Sy∑
s=1

[
√
nµ̄∗m(θ, ys) +

√
κnµ̂m(θ, ys)]

2
−

Since µ̂m(θ, ys),m = 1, 2, . . . , 2M are differentiable in θ, Qn(θ) and Q∗n(θ) are differentiable

everywhere besides points at which µ̂m(θ, ys) = 0 for some m. Therefore, we can use gradient

based methods to find minimum of Qn(θ) and Q∗n(θ) over θ−1 or θ. We use the MATLAB

fmincon function with supplied gradient to find the minima involved in calculating our test

statistic.

The function Qn(θ) may not be globally convex. This problem does not arise in simu-

lations since we can start the optimization procedure at the true parameter value, which in

every simulated sample will be close to the identified set, and Qn is convex in the relevant

region. In application we start our optimization procedures at several points to look for the

global optimum. In a few bootstrap samples we get a negative value of T̃ ∗n,r(θ1). In such

cases we reset minθQ
∗
n(θ) to the value we get from minθ−1 Q

∗
n(θ) and recalculate the critical

value (if necessary, we iterate this procedure until the fraction of bootstrap samples with

negative values is zero). Since we fix the bootstrap samples for testing different values of θ1,

the tests for different values of θ1 give us multiple runs of the local optimization minθQ
∗
n(θ)

with different starting values (though, only in the θ1 dimension).

Moreover, note that since Qn and Q∗n are continuous in θ1 and the minimum with respect

to θ−1 is taken over a compact set (Assumption 3.3(a)), the test statistic T̃n(θ1) as well as

the critical value obtained from bootstrapping T̃ ∗n,r(θ1) should be continuous in θ1 (given

that we use the same bootstrap samples for each θ1). Thus, if any discontinuities appear,

this would suggest that the optimization procedures find a local optimum not a global one
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so the number of the starting points should be increased. In our application starting the

minimization at only two points worked well in practice.

The average time to compute the test for a single candidate value was around 2-3 hours.

We used cluster computing so the total time needed to obtain a confidence set was around

4-6 hours (first we used a coarse grid and then refined the grid around the edges of the set

found in the first step).

F Monte Carlo simulations: additional results

F.1 Non-normalized statistic

We compare the performance of non-normalized and normalized statistics given in (6) and

(7). Coverage probabilities in Table 4 show that the non-normalized test is highly conserva-

tive. All the values considered, including the ones outside the identified set, are contained in

the confidence set with probability one. In fact, simulations for β = −1 (Table 5) show that

for n = 4000 this value is included in the confidence set almost with certainty. One requires

a sample as large as n = 12000 for this test to have good power.

We would expect the test to be conservative for the first design since it poses a worst-case

scenario. In this setup all the inequalities are binding or very close to binding for all y values.

As shown by Linton et al. (2010), the stochastic dominance test will not have power against

local alternatives where the inequalities are close to binding uniformly over y. Moreover, we

have a large number of inequalities in our design (120 in total), which further exacerbates

power properties of our test.

On the other hand, design 2 does not suffer from these difficulties since only a small subset

of inequalities is binding at the boundary of the identified set. The overall poor performance

of the non-normalized test may stem from the moment inequalities being violated around

y = 0 due to the sampling error in estimating the survival functions around this point. This

may lead to non-zero value of the test statistic in finite sample even for β’s in the identified
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Table 4: Results of Monte Carlo simulations, n = 4000,M = 60

non-normalized normalized
coverage 1 - power coverage 1 - power

interior boundary interior boundary
design 1 (point-identified)

β = −0.5 β = −0.5 β = −0.7 β = −0.5 β = −0.5 β = −0.7
90% 95% 90% 95% 90% 95% 90% 95% 90% 95% 90% 95%

κ = 0.5 1 1 1 1 1 1 0.99 1 0.99 1 0.09 0.26
κ = 1 1 1 1 1 1 1 0.98 0.99 0.98 0.99 0.05 0.11
κ = 1.5 1 1 1 1 1 1 0.97 0.99 0.97 0.99 0.05 0.10

design 2 (partially-identified)
β = −0.5 β = −0.546 β = −0.7 β = −0.5 β = −0.546 β = −0.7
90% 95% 90% 95% 90% 95% 90% 95% 90% 95% 90% 95%

κ = 0.5 1 1 1 1 1 1 0.99 1 0.94 0.99 0.27 0.62
κ = 1 1 1 1 1 1 1 0.95 0.99 0.79 0.94 0.05 0.17
κ = 1.5 1 1 1 1 1 1 0.92 0.98 0.72 0.88 0.02 0.09

design 3 (partially-identified)
β = −0.5 β = −0.572 β = −0.7 β = −0.5 β = −0.572 β = −0.7
90% 95% 90% 95% 90% 95% 90% 95% 90% 95% 90% 95%

κ = 0.5 1 1 1 1 1 1 1 1 0.94 0.99 0.40 0.72
κ = 1 1 1 1 1 1 1 0.99 1 0.84 0.95 0.12 0.32
κ = 1.5 1 1 1 1 1 1 0.99 1 0.81 0.92 0.08 0.20

Table 5: False coverage probabilities (β = −1) for various n, M = 60

design 2 (partially-identified)
90% level 95% level

n = 4000 n = 8000 n = 12000 n = 4000 n = 8000 n = 12000
κ = 0.5 0.99 0.06 0 1 0.17 0
κ = 1 1 0.05 0 1 0.15 0
κ = 1.5 1 0.20 0 1 0.45 0

Note: 1000 Monte Carlo simulations, 500 bootstrap replications. All simulations were performed for the
non-normalized statistic in (6).

set. We interpret the results for the non-normalized test as a manifestation of this problem.

F.2 Power loss under point-identification

As mentioned in Section 4 our approach will lead to conservative inference when censoring

is in fact independent (i.e. possibly correlated with X but not with V ). In order to get

some insight about the power cost of using our method compared to the standard maximum

likelihood approach with independent censoring, we run additional Monte Carlo simulations
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Figure 8: Power curves for profiled ISD test (arbitrary censoring) and likelihood-ratio test
(independent censoring), design 1.
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(without discretizing the covariates). We run 2000 simulations with n = 4000.

and compare the power curves of the standard method and our method around the true

parameter value (β = −0.5) for design 1 (point-identified). Figure 8 shows the results. We

can see that the power cost of using our method versus the standard method is significant,

especially around the true value β = −0.5, but the differences start to narrow quickly for

values ±0.2 from the true value. Overall, we think this cost is still small compared to the

cost of mistakenly assuming independent censoring, as portrayed in Section 2.2 (cf. Figure

1).
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Table 6: Cox model estimates

(1) (2) (3) (4) (5)
log UI benefit -0.504∗∗ -0.520∗∗ -0.455∗∗ -0.487∗∗ -0.410∗∗

[-0.795,-0.214] [-0.795,-0.246] [-0.727,-0.183] [-0.791,-0.182] [-0.726,-0.0930]

log annual wage 0.0522∗∗ 0.103∗∗∗ 0.0948∗∗∗ 0.0865∗∗ 0.113∗∗∗
[0.0153,0.0892] [0.0663,0.139] [0.0480,0.142] [0.0297,0.143] [0.0605,0.166]

av. unempl. rate -0.110∗∗∗ -0.105∗∗∗ -0.107∗∗∗ -0.0987∗∗ -0.0473
[-0.161,-0.0596] [-0.154,-0.0564] [-0.153,-0.0604] [-0.165,-0.0324] [-0.153,0.0585]

age -0.0161∗∗∗ -0.0174∗∗∗ 0.261∗∗∗
[-0.0194,-0.0127] [-0.0208,-0.0140] [0.193,0.328]

married 0.223∗∗∗ 0.243∗∗∗ 0.183∗∗∗
[0.160,0.285] [0.163,0.323] [0.121,0.245]

onseam -0.0349
[-0.0949,0.0251]

education 0.000649
[-0.0103,0.0116]

log total HH wealth 0.00644
[-0.0160,0.0289]

discretization none none none 10× 2× 3 4× 2× 2× 2× 2
N 4529 4529 4054 4529 4529
90% confidence intervals in brackets
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.001
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G Application: additional results

G.1 Cox model estimates with a restricted set of covariates

We re-estimate the Cox model in Chetty (2008) based on the restricted sets of covariates

used in our application. The sample is exactly the same as in his paper (e.g. the durations

over 50 weeks are censored). The variables “education” and “log HH wealth” are the same as

the education and log total household wealth variables in Chetty’s model (they are denoted

“ed” and “l_hh_twlth” there, see Stata codes on his website). The “onseam” variable is a

dummy indicating if the person is on the “seam” between the interviews (see Chetty (2008)

for details). The results are in Table 6.

The point estimate of the elasticity of exit rate from unemployment w.r.t. UI benefit

level in his model is -0.527 when he does not control for log total HH wealth (reported in

the publication) and -0.514 when he does (obtained by us using his codes).15 We see that

our restricted set of covariates (columns (1) and (2)) give estimates (-0.504 and -0.52) very

close to those reported in Chetty (2008). Moreover, including other variables in the model

only slightly affects the estimate of the elasticity and none of these additional variables is

statistically significant with low values of t statistics.

Next, in columns (4)-(5) we check how discretization affects our results. Although the

grid for the regressors is quite coarse, the resulting point estimates and confidence intervals

are very similar to respective estimates without discretization (columns (1) and (2)). In

particular, the confidence intervals for the discretized model are not much wider than for the

model with continuous covariates. This is reassuring. It confirms that discretization plays a

minor role and that the wide bounds in our final result in Section 5 are not driven by the

reduced variation in explanatory variables due to discretization but rather by relaxation of

the independent censoring assumption.
15In fact the note under Table 2 in his paper claims that the reported estimates control for total household

wealth but they do not. Nevertheless, the estimates from both models are very similar.
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G.2 Severance pay and unemployment duration: Chetty (2008)

Table 7: Replication of Chetty(2008), Table 4, column (2)

severance pay dummy -0.233∗∗∗
(0.071)

age -0.0191∗∗∗
(0.001)

marital status dummy 0.305∗∗∗
(0.046)

high school dropout -0.308∗∗∗
(0.063)

college graduate 0.127∗∗
(0.053)

log UI benefit 0.292∗∗∗

(0.041)
N 2428
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.001

Note: The model includes additional controls: state, occupation, industry dummies, 10 point log annual
wage and tenure splines and time-varying effect of the severance pay.

Table 7 shows results from estimating a Cox model as in Chetty (2008). The only

difference between his and our table is that we report estimates of additional coefficients, in

particular the estimate of elasticity of unemployment exit rate w.r.t. UI benefit.
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G.3 Comparison with previous estimates

Table 8: Comparison with previous estimates

assumptions data 90% CI
hazard V V ⊥ C

column (2) of Table 3 Weibull yes no SIPP 1985-2000 [-0.81, 0.48]
Meyer (1990) nonparam. yes yes UI records 1978-1983 [-1.22, -0.54]
Chetty (2008) nonparam. no . SIPP 1985-2000 [-0.97, -0.09]

Note: The estimates from Meyer (1990) are based on column 5 in Table V in his paper. The estimates from
Chetty (2008) are based on column 1 in Table 2 in his paper.

G.4 Different values within the quantiles

In this section we repeat our main empirical exercise for datasets that use different dis-

cretizations than the one in the main text: within each quantile we set xm to the minimal or

maximal value within the quantile instead of the mean value. Comparing the results, given

in Table 9, to those in Table 3 in the main text shows that the choice of the point within

the quantile group does not affect the results in any dramatic manner. If anything, it leads

to narrower bounds in most of the cases. Thus, our main conclusions would be preserved if

we used these alternative discretizations.

H Modified search model with liquidity contraints

In this section we show that, if one allows the cost of job search in Chetty’s model to

vary with the amount of assets and assume that marginal search cost is decreasing in asset

holdings, then both the liquidity effect and the total effect of increasing UI benefits may

have a positive sign. The intuition behind this modification is that the unemployed who are

liquidity constrained may face higher marginal cost of search than wealthier individuals. For

example, it may be more difficult or even impossible for them to search for a job in distant

locations if they cannot afford to pay the transportation cost. Thus, the theory need not
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Table 9: Confidence sets for the elasticity of unemployment exit rate with respect to unem-
ployment benefit, 90% level

(1) (2) (1) (2)
minimum within quantile maximum within quantile

log UI benefit [-1.15,0.36] [-0.5,0.37] [-1.75,0.5] [-0.7,0.42]
log annual wage x x x x
av. unemployment rate x x x x
age x x
married x x
discretization 10× 2× 3 4× 2× 2× 2× 2 10× 2× 3 4× 2× 2× 2× 2
n 3986 3986 3986 3986
CI under independent

censoring [-0.84,-0.28] [-1.16,-0.49] [-0.73,-0.26] [-0.95,-0.35]

Note: The row “discretization” gives the number of discrete values of the variables included in the model in
the order they appear in the rows of the table, e.g. 10× 2× 3 means 10 values of log UI benefit, 2 values of
log annual wage, 3 values of unemployment rate. The number of bootstrap replications is 500 and κ = 0.5.

exclude positive values of ε1.

Let st equal the probability of finding a job in the current period, At denote the current

holding of assets and v(·), u(·) denote flow consumption utilities if employed and unemployed,

respectively. Further, let wt be the wage, bt denote the unemployment benefit and τ a lump

sum tax. Agents face a lower bound on assets L. Both the agent’s discount rate and interest

rate are zero. The cost of search effort is denoted by ψ(st, At) where

ψs(s, A) > 0, ψss(s, A) > 0, ψsA(s, A) < 0,

i.e. the cost function is increasing and convex in s and marginal cost of search effort is

decreasing in the amount of asset holdings.

The value function for an individual who finds a job at the beginning of period t and

holds assets At is:

Vt(At) = max
At+1≥L

v(At − At+1 + wt − τ) + Vt+1(At+1).

The value function for an individual who fails to find a job at the beginning of period t and
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remains unemployed is:

Ut(At) = max
At+1≥L

u(At − At+1 + bt) + Jt+1(At+1) (14)

where

Jt(At) = max
0≤st≤1

stVt(At) + (1− st)Ut(At)− ψ(st, At).

The first order condition for optimal search choice is:

ψs(st, At) = Vt(At)− Ut(At). (15)

Differentiating with respect to At we obtain a formula for the liquidity effect (the effect of

an unconditional cash grant on search intensity):

dst
dAt

=
v′(cet )− u′(cut )− ψsA(st, At)

ψss(st, At)

where cet , cut are consumption levels in the employed and the unemployed state, respectively.

Therefore, even if v′(ce)−u′(cu) ≤ 0 as in Chetty (2008), the liquidity effect may be positive

if −ψsA is sufficiently large. This shows that the liquidity effect cannot be signed in our

extended model.

Furthermore, suppose that the unemployed is liquidity constrained, i.e. the constraint

At+1 ≥ L in (14) is binding. Now, if:

ψs(0, L) > Vt+1(L)− Ut+1(L)

the unemployed chooses zero search effort. An increase in the benefit level bt relaxes the

liquidity constraint At+1 ≥ L and the unemployed can choose assets At+1 > L. With this

61



new level of assets it is possible that:

ψs(s
∗
t+1, At+1) = Vt+1(At+1)− Ut+1(At+1), s∗t+1 > 0

because the left hand side of (15) is decreasing in At (we need the right hand side to decrease

slower than ψs). This shows that an increase in the UI benefit level may lead to an increase

in the unemployment exit rate in our extended model.
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