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Abstract
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that, if the realized frequency of types (the exact number of agents for each type)

is common knowledge, then a mechanism exists, which is consistent with truth-

ful revelation of private information and which implements first-best allocations

of resources as the unique equilibrium. The result requires the single crossing

property on utility functions and the anonymity of the Pareto correspondence.
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1 Introduction

As first shown by Akerlof (1970), Spence (1973) and Rothschild and Stiglitz (1976),

hidden-types (adverse selection) problems can have significant consequences in terms of

efficiency on economic outcomes. More specifically, incentive compatibility constraints

limit the set of feasible allocations that can be attained. How are these restrictions

relaxed as more information becomes common knowledge? And what is the minimum

additional information required for achieving first-best efficiency? These are some of

the questions that have emerged in the attempt to better understand the effects of

information aggregation on efficiency. Indeed, some early papers by McAfee (1992),

Armstrong (1999) and Casella (2002) already point toward this direction.

In this paper, we claim that if the number of agents with the same type is known

for all types in a population (in other words, the realized frequency of types is known),

then it is possible, under general conditions, to implement first-best allocations as a

unique equilibrium. More precisely, we consider an economy with asymmetric informa-

tion, where each agent has private information about his type. We also assume that:

(i) the realized frequency of types is common knowledge, (ii) preferences satisfy the

single crossing property, and (iii) the social choice rule satisfies anonymity. Given these

conditions, we show that it is possible to construct a mechanism which has a unique

equilibrium, where all agents reveal their type truthfully and they receive a first-best

allocation.

The result is interesting because we examine an asymmetric information problem

which is situated in-between the problem of Maskin (1999) (in which all agents know

the state of world but the mechanism designer does not know it) and the classic adverse

selection (in which each agent knows only his own type and the mechanism designer

knows the ex-ante distribution of types). The intuition behind the result is that, if

the realized frequency of types is known, then one can aggregate the messages that

all agents are sending out and uncover any misreport(s), even if the identity of the

liar is not known. That is, appropriately designed punishments for lying can induce

agents to reveal their information truthfully. We talk about appropriately designed

punishments, because one of the features of our mechanism is that punishments must

not be too harsh. If the punishment when a lie is detected is too severe, then some

agents may deliberately lie about their type in order to force other agents to also do so.

The lies cancel out at the aggregate level and the former agents “steal” the allocations

of the latter, who are forced to lie under the fear of the extreme punishments. This can
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lead to coordination failures and multiplicity of equilibria. Therefore, uniqueness of the

equilibrium requires a careful construction of the off-the-equilibrium path allocations

when lies are detected. We show that such punishments exist when the indifference

curves satisfy the single crossing property.

This result is also interesting for two more reasons. First, one may consider economic

applications with a finite number of agents, where, in addition to the private information

that each individual has, there is knowledge about how many agents have each type.

This additional information could come from a positive or negative informational shock.

For example, a retail store has received pre-paid orders from its customers, has already

the goods in stock and is ready to make the deliveries. However, the records on the

orders get destroyed due to an accident and the store’s manager does not know who

made each order. What is he to do? Can he induce the customers to truthfully reveal

the orders they have made without them making unreasonable claims or receiving orders

that were meant for other customers? We claim that this is possible, as long as the

manager posts a list with all the orders made and gives to each customer a basket of

goods, which depends on how many other agents have claimed to have ordered it.

Second, there are some well-known models of adverse selection (for example Akerloff

(1970) and Spence (1973)) which assume that the proportion of each type in the popu-

lation is common knowledge. For these models, the mechanism presented in this paper

can be used in order to provide first-best allocations. To the best of our knowledge,

this efficiency result has not been provided in the literature so far.

The most closely related paper to ours is Jackson and Sonnenschein (2007), who

consider an economy where agents play multiple copies of the same game at the same

time and their types are independently distributed across games. They allow for mech-

anisms, which “budget” the number of times that an agent claims to be of a certain

type. If the number of parallel games becomes very large, then all the Bayes-Nash

equilibria of these mechanisms converge to first-best allocations. Our model is different

from theirs, because we do not require multiple games to be played at the same time

but we impose a stronger assumption on what is common knowledge. Moreover, we

allow for interdependent values, while they consider an independent values setting, and

in our model asymmetric information may include other individual characteristics apart

from preferences (productivity parameters, proneness to accidents, etc.).

McLean and Postlewaite (2002, 2004) consider efficient mechanisms in economies

with interdependent values. The state of the world is unknown to all agents, but

each individual receives a noisy private signal about the state. They show that when
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signals are sufficiently correlated with the state of the world and each agent has small

informational size (in the sense that his signal does not contain additional information

about the state of the world when the signals of all the other agents are taken into

account), then their mechanism implements allocations arbitrarily close to first-best

allocations. However, in the model of McLean and Postlewaite, when private signals

are perfectly correlated, all agents learn not only their own type but also the type of

all other agents. That is, in the limit, the framework of McLean and Postlewaite is one

of complete information. In contrast, in our setting agents know, at most, the realized

frequency of types. 1

VCG-mechanisms (Vikrey, 1961, Clarke, 1971, Groves, 1973) are often reference

points in terms of results on efficiency. With respect to these mechanisms, our paper is

more general as they assume quasi-linear preferences while we allow for guasi-concave

utility functions. Moreover, these papers show that the respective mechanisms that

they examine produce truth-telling equilibria, but they do not examine whether other

equilibria, non-truth-telling, exist. In contrast, we consider this possibility and show

that the truth-telling equilibrium of our mechanism is unique.

Our paper is also related to the auctions literature with interdependent types. In

this context, Crémer and McLean (1985) and Perry and Reny (2002, 2005), show the

existence of efficient auctions when types are interdependent. Crémer and McLean,

however, require quasi-linear preferences while we do not. Perry and Reny are closer to

our result since they also assume that the single crossing property holds. Nonetheless,

our main focus is the uniqueness of the equilibrium, an issue which, as with the VCG

literature, is not studied in these papers.

Rustichini, Satterthwaite and Williams (1994) show that the inefficiency of trade

between buyers and sellers of a good, who are privately informed about their preferences,

rapidly decreases with the number of agents involved in the two sides of the market and

in the limit it reaches zero. Effectively, the paper examines the issue of convergence to

the competitive equilibrium as the number of agents increases. However, their model

is limited to private values problems and hence it can be seen as a special case of our

formulation.

More recently, the papers by Mezzetti (2004) and Ausubel (2004),(2006) examine the

issues of efficient implementation under interdependent valuations and independently

distributed types. However, they also assume that agents’ preferences are quasi-linear

1In a sense, in our model agents receive private signals as well, but one can think of them as perfect
signals about the frequency of types.
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with respect to the transfers they receive, whereas in our model utility may not be

transferable. Moreover, the mechanisms proposed in these papers may generate multiple

equilibria (in most of which truth-telling is violated), while we are interested in a

mechanism which has a unique truth-telling equilibrium.

Finally, several recent papers examine efficient mechanism design in dynamic set-

tings. The most notable papers in this category are the papers by Battaglini (2005),

Athey and Segal (2007), Gershkov and Moldovanu (2009), Bergemann and Välimäki

(2010), Pavan et al (2014), Athey and Segal (2013) and Escobar and Toikka (2013).

Our paper differs significantly from these papers. We assume that types are drawn only

once and the realized distribution of types becomes common knowledge subsequently,

while they assume that agents’ type evolves over time according to a stochastic process

which is common knowledge. On the other hand, we also use a multi-stage mecha-

nism in order to induce truthful reporting. As a result, even though agents’ private

information does not change in the various stages, their incentive to report truthfully

changes according to the information they learn from the previous stages, similarly to

the dynamic mechanism design literature.

2 An Example: Spence (1973)

First we demonstrate how the knowledge of the realized frequency of types can be used

to implement first best allocations as a unique equilibrium by applying the main idea

to the classic paper by Spence (1973). The economy consists of two types of workers.

Type 1 has low productivity a and its proportion of the population is q1. Type 2 has

high productivity a , (a > a) and its proportion of the population is 1− q1.2 Acquiring

y units of education costs y/a for type 1 and y/a for type 2. Productivity parameters

are private information and firms hire workers according to a wage schedule, based on

verifiable educational attainment. The payoff for an individual is the value of his wage

minus the educational cost and for a firm the productivity parameter minus the wage.

Spence argues that agents will acquire education (which does not increase produc-

tivity in his model) in order to signal their productivity to firms. In equilibrium, the

wage schedules are such that high productivity workers acquire some education and

2Note that in the original paper, Spence made the assumption that a known proportion of the
population belongs to one type and the remainder proportion belongs to the other type. Hence, he
implicitly made the assumption that the realized frequency of types is common knowledge and, hence,
we can apply our mechanism directly into his economy.

5



credibly signal their type, while low productivity workers acquire no education, and

firms correctly infer that they are of low productivity. The education acquired by type

2 is a deadweight loss, but necessary for credible signaling.

W(y)

FBa2

1U

2U

a

a

y

FBa1

1

0a

a

Figure 1: Spence, 1973

Assume that the total population is N . Then Nq1 is the total number of agents

of type 1 and N(1 − q1) is the total number of agents of type 2. Given this, the

following mechanism can separate types without any agent incurring educational costs

in equilibrium. Let all workers report their type. If the number of agents who report

type 1 and 2 is Nq1 and N(1− q1) respectively, then agents who report type 1 receive

wage w1 = a and zero education (contract αFB1 in figure 1) and those who report type

2 receive wage w2 = a and zero education (contract αFB2 in figure 1). In any other

case, where the reported number of types do not match their population size, those

who report type 1 receive w1 = a and those who report type 2, are asked to undertake

one unit of education and receive w2 = a + ε, with 1
a
< ε < 1

a
(recall that a unit of

education costs 1
a

for high productivity workers and 1
a

for low productivity workers).

The above mechanism fully implements the first-best allocations in this economy.

First, consider the strategies of type 2. It is clear that, irrespectively of the reports of the

other agents, it is a strictly dominant strategy for him to report his type truthfully. This
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is because, when everybody else reports truthfully, type 2 prefers to report truthfully

as well (then his payoff is a) than to misreport his type (then his payoff is a), given that

a > a. Similarly, if someone else lies, type 2 prefers to report truthfully and receive

a payoff of a + ε − 1
a

than to cover the lie by misreporting and receive a, given that

a + ε − 1
a
> a. Given the dominant strategy of type 2 and a > a + ε − 1

a
, it is a

best-response for type 1 to report truthfully as well. Hence, all agents report truthfully

in equilibrium and acquire zero education. In Figure 1, contract a0 denotes the offer to

the workers, who report high productivity, when lies are detected.

3 The Economy

The previous example was used in order to show that it is possible to eliminate asym-

metric information problems if the realized frequency is common knowledge. We now

proceed to show that this result is general and does not depend on the specifics of the

example. First, we introduce the economy and the notation.

The economy consists of a finite set I of agents, with I standing for the aggregate

number of agents as well. Θ is the finite set of potential types with elements ϑ. In

order to make our problem non-trivial we assume that I ≥ 2 and Θ ≥ 2. Each agent

has private information about his own type, but does not know the types of the other

agents. β is the vector of realized frequencies of types in the population. That is β

denotes the ex post distribution of types in the population, i.e. the relative frequency of

each type, which materializes after types are drawn. Therefore, β(ϑ) is the proportion

of agents who have type ϑ in the population and N(ϑ) is the total number of agents of

type ϑ: N(ϑ) = β(ϑ)I.

Let A be the set of all feasible allocations, with elements a ∈ A ⊆ RI×L
+ , with

L ≥ 2. L can be interpreted as the number of commodities in the economy. Also, for

any subset J of the set I, let AJ be the set of feasible allocations for the agents in J

(AJ ⊆ RJ×L
+ ). For the analysis that follows it is also useful to define allocations on

an individual basis. That is, given an allocation a ∈ A, the individual allocation

ai ∈ RL
+ is the bundle that agent i consumes. Moreover, since later on we will require

that agents of the same type consume the same bundle, it is useful to denote individual

allocations with respect to types. That is, aϑ denotes the individual allocation that an

agent of type ϑ consumes within allocation a.

u : RL × Θ × ΘI\i → R is the Bernoulli utility function for agent i, which we
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assume to be strictly quasi-concave. The following definitions are also useful. Lϑ(aϑ) is

the lower-contour set of an agent with type ϑ associated with individual allocation

aϑ: Lϑ(aϑ) = {c ∈ RL
+ : uϑ(c) < uϑ(aϑ)}. Vϑ(aϑ) is the upper-contour set of type ϑ

associated with aϑ: Vϑ(aϑ) = {c ∈ RL
+ : uϑ(c) > uϑ(aϑ)}.

Overall, the economy is described by the following primitives: E = {I, A, u,Θ, β}.
This formulation of the economy allows for modeling a wide variety of economic sit-

uations. Since we impose no restrictions on β or the type-generating process that

produces β, types may or may not be independently distributed. Moreover, the utility

function of agents may or may not depend on the types of other agents, and so both

adverse-selection problems with independent or inter-dependent valuations can be seen

as special cases of our formulation. The model also allows for public goods problems,

since some elements of the individual allocations can be common.

Economies with uncertainty can be easily accommodated by our model as well. For

example, let φ : β → ∆S be the probability distribution function over states, where S

the finite set of states and ∆S is the unit simplex {φ ∈ RS
+|
∑

s∈S φs = 1}. In this case,

L = S × T , where T is the finite set of final commodities, and the agents’ expected

utility function is ui(ai, β) =
∑

s∈S vi(ai, s)φs(β), where vi(ai, s) is the decision-outcome

payoff in state s.

4 Implementation of First Best Allocations

In this section we provide the main result of the paper. It is shown that if preferences

satisfy the single-crossing condition and the first-best allocation is anonymous (i.e.

individual allocations depend on agents’ type and not on their identity), then there

exists a mechanism which implements the first-best allocation as a unique equilibrium.

In order to prove this result we proceed as follows. First, we define anonymity in

our setting (Definition 1 and Assumption 1) and we assume that types’ preferences

satisfy the single-crossing condition (Definition 2 and Assumption 2). We then show

that Pareto efficiency implies a ranking of types according to envy (Lemma 1) which is

exploited in the design of the out-of-equilibrium path allocations. The combination of

the single-crossing condition with the result of Lemma 1 allows one to construct incen-

tive compatible individual allocations, according to the notion of incentive compatibility

provided by Definition 3, for any first-best individual allocation (Lemma 2). Finally,

Lemma 1 and 2 are combined for the main result (Theorem 1), in which it is shown
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that there exists a mechanism which fully implements any first-best allocation.

Formally, let a∗ be a Pareto efficient (first-best) allocation and let a∗ϑ be the indi-

vidual allocation, which an agent with type ϑ receives in a∗. In other words, a∗ϑ is the

individual allocation which a mechanism designer would like to offer to an agent with

type ϑ, if a∗ were to be implemented. Then, we have the following definition:

Definition 1: A Social Choice Rule satisfies Anonymity if, for any two agents i and j,

a∗i = a∗j = a∗ϑ whenever ϑi = ϑj = ϑ.

Assumption 1: The Social Choice Rule satisfies Anonymity.

Under Anonymity, agents who have identical types receive identical individual alloca-

tions. Therefore, an agent’s identity per-se has no impact on the agent’s final individual

allocation. Anonymity is a desirable property for a social choice rule. In most cases

of interest, economists are concerned with the economic characteristics of agents and

not with their identity. Therefore, it is reasonable to assume that, if the distribution of

these characteristics remains unchanged, so does the distribution of the economically

desirable outcomes. It is also a property satisfied by many commonly used social choice

rules, like the Walrasian correspondence and the utilitarian social welfare function.

Definition 2 (Single-Crossing Condition) For any two types ϑ and η, {ϑ, η} ∈ Θ,

there exists at least one pair of commodities k, l ∈ L such that − ∂uϑ/∂l
∂uϑ/∂k

< − ∂uη/∂l

∂uη/∂k
.

Assumption 2: Preferences for all types satisfy the single-crossing condition.

We now show that any Pareto efficient allocation a∗ implies a ranking of types according

to envy.

Lemma 1: If a∗ is a Pareto efficient allocation which satisfies Anonymity, then there

exists at least one type ϑ, who does not envy the individual allocation of any other

agent: Uϑ(a∗ϑ) ≥ Uϑ(a∗η), ∀η ∈ Θ.

Proof: Consider a Pareto efficient allocation a∗, which satisfies Anonymity with type-

dependent individual allocations a∗ϑ and suppose that Lemma 1 does not hold. Then,

all types envy at least one other type: ∀ a∗ϑ, ∃ η ∈ Θ, η 6= ϑ : Uϑ(a∗η) > Uϑ(a∗ϑ). But,
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since this holds for all types, then there exists at least one reassignment of individual

allocations among the I individuals such that some of them are made strictly better-off

and the rest remain as well-off as under a∗.

In order to find one such reassignment, use the following algorithm. Pick an arbitrary

ϑ ∈ Θ and let ϑ = {η ∈ Θ : Uϑ(a∗η) > Uϑ(a∗ϑ)}, be the set of types whom ϑ-types envy.

Reassign one individual allocation a∗η, for some η ∈ ϑ, to one agent of type ϑ. If ϑ ∈ η,

then reassign a∗ϑ (from the ϑ-type individual who received a∗η) to η (to the specific agent

whose a∗η individual allocation was reassigned) and stop the reassignment.

If ϑ /∈ η, then reassign some individual allocation a∗ζ , ζ ∈ η to η and then proceed

to the individual whose individual allocation a∗ζ was reassigned. Iterate the procedure

until you reach some agent of type λ, such that there exists some type κ ∈ λ, whose

individual allocation a∗κ has already being reassigned. In this case, ignore all reassign-

ments preceding the individual of type κ (these agents retain their original individual

allocations), reassign to λ the individual allocation a∗κ and stop the reassignments (all

reassignments between κ and λ are not modified).

Since the set of agents is finite and all types envy at least one individual allocation,

after at most I reassignments, the algorithm above will end up in some agent, whose

individual allocation has already been reassigned. In this case, a reassignment of indi-

vidual allocations has been found, which makes some agents in I better-off (from agent

of type κ until agent λ) while the rest remain equally well-off. This constitutes a Pareto

improvement and violates the initial assumption that a∗ is Pareto efficient. �

Corollary 1: If a∗ is a Pareto efficient allocation which satisfies Anonymity, then

Lemma 1 holds for any subset of Θ. Namely, let Θ̌ ⊆ Θ and let Ǎ = {a∗ϑ : ϑ ∈ Θ̌}.
Then, Lemma 1 holds for Θ̌ with regard to Ǎ as well.

Proof: Take any subset of agents Θ̌ of the set Θ. Suppose that Lemma 1 does not hold

over the set Ǎ, which is the set of individual allocations of the agents with types in Θ̌.

But if Lemma 1 does not hold, then it is possible to find a reassignment of allocations

between the agents in Θ̌, such that some of them will be made better-off while the rest

remain as well-off. This is a Pareto-improvement for some agents in I, which contradicts

the assumption that a∗ is Pareto efficient. �

Lemma 1 and Corollary 1 allows us to construct a complete ranking of types according
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to envy. To see this, let K = {ϑ ∈ Θ : Uϑ(a∗ϑ) ≥ Uη(a
∗
η),∀η ∈ Θ} be the set of types

who do not envy the individual allocation of any other type. By Lemma 1, we know

that this set is non-empty. Then, by removing this set of types from the set Θ and

applying Corollary 1, we can define K − 1 = {ϑ ∈ Θ : Uϑ(a∗ϑ) ≥ Uη(a
∗
η),∀η ∈ Θ−K}.

By iteration, we can define K envy groups, 1 ≤ K ≤ Θ, such that the types in each one

of them (say envy group k) do not envy any of the types in their own group or lower

groups (any l < k), but they envy some type(s) in higher groups (some type in an envy

group h > k).3

The K envy groups defined above could in principle be used to construct a mecha-

nism which induces all types to reveal their type truthfully, however, such a mechanism

would involve tedious case distinctions across possible groups. In order to make the

workings of the mechanism more transparent we are going to rank types within each

envy group that contains multiple types so that the mechanism is implemented over

a full ranking of types. Since the way these envy groups are constructed ensures that

there is no envy between types which belong to the same group, one can rank types

within envy groups to get a complete ranking of types. In what follows we assume that

the mechanism designer ranks types according to the following simple rules:

1. Types who belong to a higher envy group are ranked above types who belong to

a lower envy group.

2. If two types, ϑ and η, belong to the same envy group and uϑ(a∗ϑ) > uϑ(a∗η),

uη(a
∗
η) = uη(a

∗
ϑ), then type ϑ receives higher ranking than type η.

3. If two types, ϑ and η, belong to the same envy group and uϑ(a∗ϑ) > uϑ(a∗η),

uη(a
∗
η) > uη(a

∗
ϑ), then the ranking between the two types is arbitrarily determined

as long as it is compatible with rules 1. and 2. above whenever comparing the

rank of types ϑ and η with the rest of the types.

Note that, in principle the case where ϑ and η belong to the same envy group

and uϑ(a∗ϑ) = uϑ(a∗η), uη(a
∗
η) = uη(a

∗
ϑ) should be examined. However, this case is

incompatible with Assumption 2 on single crossing and so it is omitted from the above

list. Overall, by following the above rules, the mechanism designer ranks all types

3One extreme case is when an allocation exhibits no-envy, in which case K contains the whole set
of types (egalitarian allocations: K = 1) The other extreme case is when each envy group contains a
single type, in which case the types form a complete hierarchy, from the one who is envied by all the
other types to the one who is not envied by anyone (K = Θ).
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according to envy from the lowest one, type 1, to the highest, type Θ. From this point

forward we use ϑ to denote the rank of a type, so that 1 ≤ ϑ ≤ Θ. By construction

of this ranking, type Θ does not envy the first-best individual allocation of any other

type. A generic type ϑ may envy the first-best individual allocation of a higher type

(κ > ϑ), but does not envy the first-best individual allocation of any type with lower

rank (η < ϑ). For the rest of the paper, we refer to type Θ as the type with the highest

rank and type 1 as the type with the lowest rank.4

In Lemma 2 below we exploit the ranking of types and the single crossing property

to show that it is possible to contract incentive compatible individual allocations for

a subset of types given an arbitrary first-best individual allocation as reference point.

Before providing this result, however, we need to clarify the notion of incentive com-

patibility used in this paper, which is done by Definition 3.

Definition 3: Given a type η and his respective first-best individual allocation a∗η

as a reference point, the set Â(a∗η) of individual allocations is incentive compatible if

a∗η ∈ Â(a∗η) and for any type ϑ, η < ϑ ≤ Θ, there exists an individual allocation

âϑ(a∗η) ∈ Â(a∗η) such that uϑ(âϑ(a∗η)) > uϑ(âκ(a
∗
η)), ∀ âκ(a

∗
η) ∈ Â(a∗η), κ 6= ϑ.

In words, given a subset of types in which η is the lowest rank, definition 3 requires

that a set of individual allocations is incentive compatible if for each type with rank

higher than η there is an individual allocation which he prefers over all other individual

allocations in the set. Lemma 2 below shows that it is always possible to construct a

set Â(a∗η) which satisfies the definition above.

Lemma 2: If Assumptions 1 and 2 hold then for any type η ∈ Θ, with η < Θ, there

exists a set Â(a∗η), which is incentive compatible.

Proof: Take a∗ as given and consider an arbitrary type η (η < Θ) with corresponding

first-best individual allocation a∗η. Also recall that, by Lemma 1 and Corollary 1, there

is a complete ranking of types from 1 to Θ. We use this ranking and definition 2

to construct a sequence of individual allocations âη(a
∗
η) to âΘ(a∗η) which satisfy the

definition of incentive compatibility in definition 3.

4Note that the ranking of types depends implicitly on the implementable allocation a∗. Different
allocations will lead to different rankings. But since a∗ is common knowledge, the ranking of types is
common knowledge as well.
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To prove this result, we consider the following algorithm for picking a sequence

of such individual allocations. Take a∗η as a starting point (âη(a
∗
η) ≡ a∗η) and pass

the indifference curves of types η and η + 1 from this point. By Definition 2, the set

Vη+1(a∗η)∩Lη(a∗η) is non-empty. Pick an individual allocation in the set Vη+1(a∗η)∩Lη(a∗η)
as âη+1(a∗η) (possibly arbitrarily close to a∗η). Note that, by construction, η strictly

prefers âη(a
∗
η) to âη+1(a∗η), while η + 1 strictly prefers âη+1(a∗η) to âη(a

∗
η).

With âη+1(a∗η) as a new starting point, reiterate the above procedure for types η+ 1

and η + 2 to pick âη+2(a∗η) in the intersection of the lower contour sets of types η and

η + 1 with the upper contour sets of types η + 1 and η + 2:
[
Vη+1(a∗η) ∩ Lη(a∗η)

]
∩[

Vη+2(âη+1(a∗η)) ∩ Lη+1(âη+1(a∗η))
]
. The intersection Vη+1(a∗η)∩Lη(a∗η) ∩ Vη+2(âη+1(a∗η))

∩ Lη+1(âη+1(a∗η)) is non-empty because âη+1(a∗η) can be picked arbitrarily close to a∗η and

type η + 2 is of higher rank than type η. Note that because âη+2(a∗η) ∈ Lη+1(âη+1(a∗η))

and âη+1(a∗η) ∈ Lη(âη(a∗η)), then âη+2(a∗η) ∈ Lη(âη(a∗η)), so η strictly prefers âη(a
∗
η) to

âη+2(a∗η). Similarly, âη+2(a∗η) ∈ Vη+2(âη(a
∗
η)), so η+2 strictly prefers âη+2(a∗η) to âη(a

∗
η).

Finally, η+1 strictly prefers âη+1(a∗η) to âη(a
∗
η) by the previous step in selecting âη+1(a∗η),

and strictly prefers âη+1(a∗η) to âη+2(a∗η) by the current step in selecting âη+2(a∗η). Thus

the sequence {âη(a∗η), âη+1(a∗η), âη+2(a∗η)} is incentive compatible for types η, η + 1 and

η + 2.

With âη+2(a∗η) as a new starting point and by iterating the above procedure Θ−η−2

additional times, one picks a sequence of individual allocations {âη(a∗η), âη+1(a∗η), ..., âΘ(a∗η)}
which satisfy the definition of incentive compatibility in Definition 3 (see figure 3 for

the case where there are two commodities in the economy). �

Corollary 2: Given an arbitrary type η and the first-best individual allocation a∗η,

there exists an incentive compatible set Â(a∗η) such that uϑ(a∗ϑ) > uϑ(âϑ(a∗η)) for all

ϑ > η.

Proof: The result follows immediately from the fact that types are ranked so that

uϑ(a∗ϑ) > uϑ(a∗η) whenever ϑ > η and the fact that, by following the algorithm of

Lemma 2, the individual allocations in the set Â(a∗η) can be constructed arbitrarily

close to a∗η. �

Corollary 2 states that it is possible to design the out-of-equilibrium path individual

allocations so that higher rank types strictly prefer their own first-best individual al-
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Figure 2: Incentive Compatible Individual Allocations for Two Goods and Three Types

locations to the former. The results in Lemmas 1, 2 and Corollaries 1,2 are useful in

designing a sequential mechanism which implements the first-best allocation as a unique

Perfect Bayesian Equilibrium. The mechanism consists of Θ − 1 stages. Each stage is

designed so as to incentivize the agents of a particular type to report truthfully and

exit the mechanism, starting with the lowest rank type at stage one and rising to higher

ranks in successive stages. At each stage the remaining agents are asked to report their

type. If the number of reports for the type whose rank matches the number of the

stage equals the interim number of agents with this type then these agents receive their

respective first-best allocations and exit the mechanism while the rest of agents move to

the next stage. Otherwise, they all receive incentive compatible individual allocations

according to the type they reported and the mechanism ends. We show that designing

off-the-equilibrium path individual allocations according to Lemma 2 and Corollary 2 is

sufficient to induce higher rank agents to report truthfully irrespectively of the reports

of lower ranks and this, in turn, forces the lower rank types to report truthfully as well.

We thus obtain the result. The formal proof is provided below.

Theorem 1: If the realized distribution of types is common knowledge and prefer-

ences satisfy the single-crossing condition of Definition 2 then there exists a mechanism

which implements any Pareto efficient allocation a∗ which satisfies Anonymity as the
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unique Perfect Bayesian Equilibrium. In this equilibrium agents report their private

information truthfully.

Proof: Let a∗ be a Pareto efficient allocation which satisfies Anonymity. Let a∗ϑ be

the individual first-best allocation, i.e. the individual allocation which the mechanism

designer wishes to provide to an agent with type ϑ. Applying Lemma 2 on an individual

allocation a∗ϑ in a∗, let Â(a∗ϑ) be a set of incentive compatible individual allocations

(according to notion incentive compatibility in definition 3 in page 12) for all types

with rank higher or equal to ϑ with a∗ϑ as the starting point (also recall that Lemma

1 allows one to rank types according to envy from the highest, Θ, to the lowest, 1).

Moreover, let Â(a∗ϑ) satisfy Corollary 2.

Given the above consider the following sequential mechanism with Θ − 1 possible

stages. Each stage is designed to aggregate the number of people who report a specific

type (the ‘stage-type’), starting with stage one, which is designed for type 1 and as-

cending up to stage Θ− 1 which is designed for types Θ− 1 and Θ. At each stage, the

agents participating in it report their type. If the number of reports for the stage-type,

µ(ϑ)I, matches the number of agents with this type, β(ϑ)I, then agents who report

it receive a∗(ϑ), and exit the mechanism. The remaining agents proceed to the next

stage. If, however µ(ϑ) 6= β(ϑ), then all agents participating in the stage receive an

individual allocation from the set Â(a∗ϑ) according to the type they reported and the

mechanism ends. In this case, agents who report a type with rank lower than ϑ receive

a∗ϑ. At the last stage, if µ(Θ − 1) = β(Θ − 1), then the agents who reported Θ − 1

receive a∗(Θ− 1) and the remaining agents receive a∗(Θ) and the mechanism ends. If

µ(Θ− 1) 6= β(Θ− 1), then agents receive individual allocations from the set Â(a∗Θ−1),

according to the type that they reported (agents who report a lower rank type than

Θ− 1 receive a∗Θ−1).

By backward induction, let us consider the last possible stage of the game, stage

Θ− 1. On any possible equilibrium path along the mechanism, stage Θ− 1 is reached

when only two types, Θ − 1 and Θ, participate in it. To see that it is not possible

to reach this stage with agents from other types participating, suppose the contrary,

that is suppose that there is at least one agent of at least one type who participates

in it. Because reaching stage Θ − 1 requires that µ(ϑ) = β(ϑ) for all types with rank

ϑ < Θ − 1, this means that there must be at least one agent of type Θ or Θ − 1 who

reported some other type κ in some previous stage (stage κ) of the mechanism, received

individual allocation a∗κ and exited the mechanism. However, such a strategy is not a
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best-response for an agent of types Θ and Θ − 1, because by reporting truthfully at

stage κ he can improve his payoff. Specifically, if an agent of type Θ (Θ − 1) reports

truthfully in stage κ, instead of reporting κ, then µ(κ) = β(κ) − 1/I and he receives

â∗Θ(a∗κ) (â∗Θ−1(a∗κ)), which, by construction, he prefers to a∗κ. Therefore, on equilibrium,

only types Θ − 1 and Θ participate in stage Θ − 1. This reasoning also demonstrates

that the number of agents participating in the last stage is exactly equal to the number

of the two highest ranked types in the population, which is [β(Θ) + β(Θ− 1)]I. That

is, all agents with type Θ and Θ−1 and only agents with these types participate in the

last stage. Otherwise this stage would never be reached on the equilibrium path of the

mechanism.

At stage Θ− 1, reporting truthfully is a strictly dominant strategy for type Θ. To

see this consider an agent of type Θ and suppose that all other agents report truthfully.

Then, by reporting truthfully he receives a∗Θ. If, instead, he misreports, then µ(Θ−1) >

β(Θ− 1) and he receives âΘ−1(a∗Θ−1) ≡ a∗Θ−1. Since Θ prefers a∗Θ to a∗Θ−1, he prefers to

report truthfully.

Another possibility is when a single agent of type Θ− 1 misreports and the rest of

agents report truthfully. If Θ reports truthfully in this case, then µ(Θ− 1) < β(Θ− 1)

and Θ receives âΘ(a∗Θ−1). If, on the other hand, he misreports, then he covers for the

misreporting of Θ − 1 and µ(Θ − 1) = β(Θ − 1), in which case he receives a∗Θ−1. By

construction, he prefers âΘ(a∗Θ−1) to a∗Θ−1 and therefore he prefers to report truthfully.

The same reasoning applies to any case where there are multiple misreportings from

both types, such that all but one cancel out and the report by a single Θ type determines

whether µ(Θ − 1) = β(Θ − 1) (when he misreports) or whether µ(Θ − 1) < β(Θ − 1)

(when he reports truthfully).

The final possible case to consider is when there are multiple misreports from (pos-

sibly) both types so that µ(Θ − 1) < β(Θ − 1) − 1/I so that a single Θ type’s report

can not cover the misreportings by the other agents. In this case agents receive indi-

vidual allocations from the set Â(a∗Θ−1). By construction, an agent of type Θ strictly

prefers to report truthfully and receive âΘ(a∗Θ−1) instead of misreporting and receiving

âΘ−1(a∗Θ−1). From the above three cases we conclude that reporting truthfully is a

strictly dominant strategy for type Θ.

Conditional on this result, agents of type Θ− 1 anticipate that all agents of type Θ

report truthfully and their best response is to report truthfully as well. This is because

if a single Θ−1 deviates then µ(Θ−1) < β(Θ−1) and he receives âΘ(a∗Θ−1), while if he

reports truthfully he receives a∗Θ−1 which he prefers to âΘ(a∗Θ−1). And in the case where
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there are multiple misreportings by other Θ − 1 agents, still a Θ − 1 agent prefers to

report truthfully since, by construction, he prefers âΘ−1(a∗Θ−1) to âΘ(a∗Θ−1). Therefore,

the unique Bayesian equilibrium of the last stage is for all agents to report truthfully.

Applying the same reasoning at stage Θ− 2, the unique equilibrium of the stage is

for agents of type Θ− 2 to report truthfully while agents of types Θ− 1 and Θ do not

report type Θ− 2 and continue to the final stage. To show this note that, as at stage

Θ−1, the only types that participate at stage Θ−2 on the equilibrium path are Θ−2,

Θ− 1 and Θ and all agents with type Θ− 2, Θ− 1 or Θ participate in this stage.

Next, given the above analysis, the continuation value of the mechanism is uΘ(a∗Θ)

for type Θ and uΘ−1(a∗Θ−1) for type Θ − 1. Therefore, reporting type Θ − 2 at stage

Θ − 2 is a strictly dominated strategy for these types. This is due to two arguments.

The first is that if they believe that agents of type Θ − 2 report truthfully, then it is

a best-response for them to report either Θ − 1 or Θ and proceed to the next stage

than report Θ− 2 and receive an individual allocation in the set Â(a∗Θ−2). The second

effect is that if they believe that one or more agents of type Θ− 2 misreport their type,

then types Θ and Θ− 1 prefer to report truthfully and receive the individual allocation

which matches their type in the set Â(a∗Θ−2) than to misreport their type and receive

any other individual allocation in the set ( including a∗Θ−2). Therefore, no agent of type

Θ or Θ− 1 reports Θ− 2 at stage Θ− 2.

Given this, it is a best response for an agent of type Θ − 2 to report truthfully

irrespectively of the strategies of other agents with the same type. That is, suppose

that all other Θ− 2 agents report truthfully. Then an agent of type Θ− 2 also prefers

to report truthfully and receive a∗Θ−2 than to misreport his type and receive either

âΘ(a∗Θ−2) or âΘ−1(a∗Θ−2). Also, if at least one other agent of type Θ − 2 misreports

his type, still it is a best-response for the other Θ − 2 agents to report truthfully and

receive âΘ−2(a∗Θ−2) ≡ a∗Θ−2 than to misreport their type and receive either âΘ(a∗Θ−2) or

âΘ−1(a∗Θ−2). Overall, given that types Θ and Θ − 1 do not report Θ − 2, it is best-

response for Θ− 2 to report truthfully. As a result, the unique equilibrium outcome of

the stage is for type Θ− 2 agents to receive a∗Θ−2 and exit the mechanism, while type

Θ, Θ− 1 agents proceed to the last stage.

The analysis of stages Θ − 2 and Θ − 1 proves that the continuation value of the

mechanism for type Θ−2 at a stage κ < Θ−2 is uΘ−2(a∗Θ−2). Similarly, the continuation

value for type Θ−1 is uΘ−1(a∗Θ−1) and for type Θ is uΘ(a∗Θ). By induction, we conclude

that the continuation value of the mechanism for a generic type ϑ at stage κ < ϑ is

uϑ(a∗ϑ). This means that the unique equilibrium outcome of an arbitrary stage κ of the
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mechanism is for agents of type κ to report truthfully, receive individual allocation a∗κ

and exit the mechanism, while agents of types with higher rank do not report type κ

and proceed to the next stage.

The first result required to prove this is that, on the equilibrium path, types of

lower rank than κ do not participate in stage κ while all of the agents with higher or

equal rank participate. Recall that stage κ is reached only if µ(ϑ) = β(ϑ) at all stages

ϑ < κ, which implies that
∑

ϑ µ(ϑ) =
∑

ϑ β(ϑ) for ϑ < κ. If at least one agent of type

η < κ participates at stage κ (which means that he does not reveal his true type and

he does not exit the mechanism at an earlier stage) then the requirement for stage κ to

be reached (
∑

ϑ µ(ϑ) =
∑

ϑ β(ϑ)) implies that there must be at least one agent of type

λ ≥ κ who reports type η, receives a∗η and exits the mechanism at stage η. But this

strategy is not consistent with equilibrium-path play, for such an agent may switch his

report from η to λ, induce µ(η) < β(η) and receive individual allocation âλ(a
∗
η), which,

by construction, he prefers to a∗η. Therefore, reaching stage κ on the equilibrium is only

possible if no type with lower rank than κ participates in it.

This result in turn implies that any agent with type of lower rank than κ has exited

the mechanism before stage κ and therefore all agents of types higher or equal to κ

participate in the mechanism at stage κ. This is because the total number of agents who

have exited the mechanism at stage κ is equal to I(
∑

ϑ µ(ϑ)) = I(
∑

ϑ β(ϑ)) for ϑ <

κ, therefore the remaining number of agents who participate at stage κ is equal to

I(1 −
∑

ϑ β(ϑ)) for ϑ < κ, which is exactly equal to the number of agents with rank

equal to or higher than κ. And since no agent of lower rank participates at stage κ

then the number of participants in stage κ is equal to I(1−
∑

ϑ β(ϑ)) only if all agents

with rank equal to or higher than κ participate.

Next, it is a strictly dominant strategy for any type with λ > κ not to report κ.

First, suppose that all participants at stage κ report truthfully apart from agent i of

type λ, who is considering the payoffs from his available strategies. If i reports κ then

µ(κ) > β(κ), i receives a∗κ ≡ âκ(a
∗
κ) and exits the mechanism. By not reporting κ he

continues to the next stages of the mechanism, and, by applying the backward induction

argument from the analysis of stages Θ−1 and Θ−2, he receives the individual allocation

a∗λ. By construction of these two individual allocations, it is a best-response for i not

to report κ (recall that uλ(a
∗
λ) > uλ(âλ(a

∗
κ)) > uλ(a

∗
κ) by Lemma 2 and Corollary 2).

Second, consider the possible case where one or more agents of type κ misreport

their type. If i reports κ then he receives a∗κ regardless of whether µ(κ) = β(κ) or

not. But if he reports truthfully, then µ(κ) < β(κ) and he receives âλ(a
∗
κ), which is the
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most preferable individual allocation in the set Â(a∗κ) for i by construction. Therefore,

reporting κ is a strictly dominated strategy for any agent of type λ > κ. This implies

that whether µ(κ) = β(κ) or not depends only on the reports of κ-type agents. This

leads one to consider the available strategies for some agent, say j, of type κ. If all

other agents of type κ report truthfully then j’s report is pivotal in determining whether

µ(κ) = β(κ) or not. If j reports truthfully, then µ(κ) = β(κ) and j receives a∗κ. If j

reports λ 6= κ then µ(κ) < β(κ) and j receives âλ(a
∗
κ). By construction, j prefers to

report truthfully is this case.

If, on the other hand, at least one other agent of type κ misreports his type, then

µ(κ) < β(κ) irrespectively of j’s report. In this case j’s report determines which

individual allocation in the set Â(a∗κ) he receives. Again, by construction, j prefers to

report truthfully and receive individual allocation a∗κ ≡ âκ(a
∗
κ). Therefore, regardless

of the strategies of other κ-type agents, j prefers to report truthfully. As a result, the

unique equilibrium outcome of the stage is agents of type κ to report truthfully, receive

individual allocation a∗κ and exit the mechanism, while agents of types with higher rank

do not report type κ and proceed to the next stage. The result of theorem 1 follows by

induction. �

Before concluding, we would like to briefly comment on the advantages our mechanism

presents in comparison to the existing literature on implementation (see for example,

Jackson, 1991, Maskin, 1999). First, our mechanism holds even with two agents (or even

in the degenerate case of one agent). Second, the required message space is minimal,

since agents send messages only about their own type. Third, we do not require any ad-

hoc game, which has no equilibrium in pure strategies (like an integer game), in order to

rule out undesirable equilibria. This is achieved by ‘enticing’ some of the misreporting

agents to report truthfully, whenever there are multiple misrepresentations. Finally,

even though the domain of preferences we consider is strictly smaller than in many

other papers, still Assumptions 1 and 2 are relatively weak and there are many cases

of interest that comply with them.

Conclusion

In this paper we consider a general hidden-type economy and, under relatively weak

conditions, we show that it is possible to construct a mechanism which has a unique
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Perfect Bayesian equilibrium, where all agents reveal their type truthfully and they

receive a first-best individual allocation. If the realized frequencies of types are known,

then one can aggregate the messages that all agents are sending out and uncover any

misreport(s), even if the identity of the liar is not known.

Truth-telling, however, requires appropriately designed punishments for lying. If

the punishment from detecting a lie is too severe, then some agents may deliberately

lie about their type in order to force other agents to also do so. The lies cancel out and

the former agents “steal” the allocations of the latter, who are forced to lie under the

fear of extreme punishments. This can lead to coordination failures and multiplicity of

equilibria. Therefore, uniqueness of the equilibrium requires a careful construction of

the allocations when lies are detected. We show that such punishments exist when the

single crossing condition holds.
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