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Abstract

We study linear quadratic games played on a network where strategies are com-

plements between neighbors and substitutes between agents at distance-two. We

provide micro-founded problems where this pattern of interaction is due to a lo-

cal congestion e↵ect. Equilibrium behavior systematically di↵ers from a model of

peer e↵ects only. First, the ranking of equilibrium actions may not follow that

of network centralities, with large behavior prevailing at the periphery of the net-

work. Second, network density a↵ects aggregate behavior in a non-monotonic way.

Third, segregating agents according to their preferences has a non-monotonic e↵ect

on the polarization of behavior. We relate these patterns to evidence from smoking

networks, industrial districts and ethnically fragmented societies. We conclude by

discussing the implications for the identification of peer e↵ects.
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1 Introduction

Socio-economic decisions are typically taken in relational networks, reflecting interper-

sonal, institutional and technological ties. Within the network, neighbors jointly consume

and produce goods, discuss political opinions, share information. As a consequence, they

tend to display correlation in behavior. Positive correlation (peer e↵ects) has commanded

substantial attention in economics, partly because of its pervasiveness in social interac-

tion, and because it amplifies individual shocks acting as a “social multiplier” (Glaeser

et al., 2003). Peer e↵ects may stem from emulation, shared identity, and conformity, as

in risky behavior (such as smoking, drinking, and drug use),1 or in technological comple-

mentarities in production.2

In this paper we consider problems where the actions that generate peer e↵ects be-

tween neighbors are also responsible for local congestion. More precisely, we assume that

aggregate behavior in the neighborhood of a given agent negatively a↵ects her neighbors’

incentives to act. Thus, alongside with strategic complementarities with neighbors, agents

also experience strategic substitution with agents who are at distance-two in the network

(i.e. agents with whom they share a common neighbor).

There are various instances of social and economic problems where this particular

pattern of interaction has relevance. Congestion at the neighborhood level may be due,

for instance, to the accumulation of stocks of negative externalities. As an illustration,

consider smoking behavior, characterized by both strong peer e↵ects between neighbors

(Christakis and Fowler, 2008) and negative externalities in the form of passive smoke.

Local congestion occurs when an agent’s incentive to smoke is a↵ected by the passive

smoke experienced by her neighbors (friends and relatives). This may due to the agent’s

concern for her friends’ health; alternatively, the health condition experienced by neigh-

bors may a↵ect an agent’s awareness of her own health risk, increasing the perceived

damage from smoking. A similar mechanism is found in problems when the stocks of pol-

lutant accumulated in a given site leaks into neighboring locations (e.g., trans-boundary

pollution).

Market based mechanisms, such as negative pecuniary externalities, can also result in

similar interaction patterns. Consider, for instance, a network of firms linked by relations

1Evans et al. (1992); Gaviria and Raphael (2001); Kirke (2004); Christakis and Fowler (2007); Clark
and Loheac (2007); Christakis and Fowler (2008); Poutvara and Siemers (2008); Fowler and Christakis
(2008); Calvó-Armengol et al. (2009); Fletcher (2010).

2Krugman (1991); Porter (2001); Wheeler (2001).
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of mutual input supply. Neighbor firms’ output decisions are strategic complements,

since a higher output by one results in a higher demand for the other. In addition, firms

are subject to strategic substitution through common neighbors: when a firm’s output

increases, its neighbors’ prices increase, and so does the marginal cost of its neighbours’

neighbors, whose incentives to produce decrease as a result.

Local congestion may also result from pure competition e↵ects. In the co-author

model by Fafchamps et al. (2006), agents compete for the time and e↵ort of a common

co-author, and the incentives to collaborate with a given agent decrease in the number

of projects this agent is engaged in. Similar considerations apply to job market networks

(Calvó-Armengol and Jackson, 2004), where agents compete for information about job

vacancies passed on by common (employed) neighbors. In the short run, agents face

stronger incentives to stay on the labor market the more connected they are, and the

less connected their neighbors are. Thus, labor market participation has distance-one

complementarity and distance-two substitution.

Finally, local congestion is found in military and international alliances, where allies

play a deterrence game (characterized by complementarities) against a common enemy,

and free ride on each other’s deterrence e↵ort - in all respects a public good for the alliance

(Olson, 1965; Olson and Zeckhauser, 1966; Hartley and Sandler, 2001). As in the previous

examples, sharing a common neighbor generates strategic substitution.

The co-presence of local congestion (with the associated indirect substitutability) and

peer e↵ects poses a series of theoretical and policy relevant questions. How, and how

systematically, do equilibrium predictions di↵er from a case of peer e↵ects only? And

can we invoke this di↵erence to help account for empirical evidence which is inconsistent

with a model of peer e↵ects only, despite the presence of strong complementarities? To

address these questions, we study the equilibrium relation between agents’ behavior and

the topology of the relational network from which both complementarities (via direct

links) and substitutabilities (via distance-two relations) originate.

We adopt the framework with linear best replies used in Ballester et al. (2006) and in

Bramoullé et al. (2014), adding the assumption that the strategic interdependence of any

two agents is the sum of an element of complementarity - if they are linked in the network

- and an element of substitutability - if they share one or more common neighbors. Being

primarily interested in how this model predictions di↵er from a model of peer e↵ects only,

we focus on positive and interior equilibria, by assuming, as in Ballester et al. (2006), that

substitution e↵ects are of small magnitude. A general analysis of indirect substitution

3



e↵ects of arbitrary magnitude (as studied in Bramoullé et al., 2014) in this framework is

certainly of great relevance and it is left for future research.

We first provide su�cient conditions on the topology of the relational network for the

existence of a positive equilibrium. We find that, while in a model with peer e↵ect alone

an internal equilibrium exists only if the network is not too densely connected (relative to

the strength of peer e↵ects), the presence of indirect substitution e↵ects allows for positive

equilibria also in densely connected networks. On the contrary, equilibria may fail to exist

in networks with average connectedness. We trace this property to the di↵erent rate at

which complementarity and substitution channels increase as we add links to a given

network. We then show that the unique interior equilibrium is proportional to a weighted

version of Bonacich centralities for the relational network, with weights being themselves

centrality measures for the same network.

Next, we find that the presence of small substitution e↵ects has important implications

for how both individual and aggregate behavior relate to the network topology. First,

while in a model with peer e↵ects alone more connected networks always generate larger

aggregate behavior, in the presence of indirect substitution the relation between network

density and aggregate behavior is non-monotonic. In particular, this relation is positive

in sparse networks and negative in dense networks. The inverted bell pattern is consistent

with some evidence of diseconomies of aggregation in firms’ districts with su�ciently large

size (Shaver and Flyer, 2000; Folta et al., 2006).

Second, as the magnitude of the substitution e↵ects increases, behavior tends to move

towards the periphery of the relational network. More precisely, while in a model of peer

e↵ects alone central agents display larger behaviors, the ranking of agents’ behaviors is

a↵ected by the introduction of indirect substitution e↵ects, and a reversal of the order

occurs for su�ciently large magnitudes of the substitution e↵ects. This result seems con-

sistent with the fact, recorded by Christakis and Fowler (2008) in their study of smoking

in social networks, that smoking behavior progressively turns stronger (weaker) at the

periphery (center) of the network.

Third, when preferences are heterogeneous, the presence of indirect substitution a↵ects

the relation between network segregation and polarization of behavior. In particular, while

peer e↵ects alone would imply that segregating agents according to their propensity to act

generates a stronger polarization of behavior, here the e↵ect is non monotonic. Increased

segregation sharpens the polarization of behavior when segregation is low, and weakens

it when segregation is high. The peak in polarization is reached at moderate levels of
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segregation, well before the complete homogenization of neighborhoods. We discuss this

finding and relate it to some recent theoretical and empirical evidence on the adoption

of identity enhancing behavior in segregated social networks (Fryer Jr. and Torelli, 2010;

Bisin et al., 2010, 2011).

In the final part of the paper, we derive some implications for the empirical estimation

of peer e↵ects. We find that neglecting the presence of congestion and indirect substitution

causes a systematic underestimation of the peer e↵ects. We then derive conditions for

the identification of peer e↵ects both when these are defined as the sum (Liu and Lee,

2010) and as the average (Bramoullé et al., 2009) of peers’ actions. Finally, we discuss

the choice of the instruments needed to estimate both the endogenous peer e↵ect (defined

as in Manski, 1993) and the endogenous indirect substitution e↵ect.

The paper is organized as follows. Section 2 describes the model and its applications.

Section 3 characterizes equilibrium, and relates equilibrium predictions to empirical evi-

dence from networks of smokers and industrial districts. Section 4 presents implications

for empirical estimation of peer e↵ects and section 5 concludes.

2 The Model

We consider a set N of n agents, organized in a relational network g defined by a n⇥ n

matrix G whose generic element gij 2 {0, 1} measures the presence of a social tie between

agents i and j. We limit our analysis to symmetric networks, where gij = gji for all

i, j 2 N . Agents i and j are “neighbors”in g whenever gij = 1, and the degree di of agent

i in the network g denotes the number of neighbors of i in g. We use the convention

gii = 0, 8i. We define a walk between i and j in g, as a series of agents i1, i2, ...., im

such that i1 = i, im = j and gipip�1 = 1 for all p = 2, 3, ...,m. Let g[2]ij denote the generic

term of the squared matrix G

2, counting the number of walks of length two from node i

to node j in G. Agent i derives the following utility from the vector x̄ 2 Rn
+ of actions

chosen in the network:

Ui = ↵ixi �
�

2
x2
i + �

X

j2N

gijxixj � �
X

k

g
[2]
ik xixk (1)

The first two terms of the function Ui capture the private benefits from one’s own action.

These benefits are the sum of a linear increasing part and a quadratic decreasing part,

with intensity measured respectively by parameters ↵i and �. The third term captures
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the peer e↵ect: the marginal incentive to act increases with the aggregate of the actions

taken by neighbours. The intensity of such complementarity is measured by the parameter

� > 0. The fourth term describes the indirect substitution e↵ects: if � > 0, the marginal

incentives to act are decreasing in the aggregate level of the actions taken by neighbors’

neighbors.

In the introductory section we have mentioned various economic problems where the

above strategic pattern applies. Here we present two applications in detail.

Complementarities in production. Let the network g represent mutual supply

relations between firms in a district. Each node of the network is a monopolistic firm,

whose product is both demanded by consumers and used as input by its neighbors.3

An increase in firm i’s output increases the demand for the products of i’s neighbors’

and, therefore, their output (strategic complementarities). Substitution at distance-two

arises since an increase in firm i’s output increases the prices of i’s neighbors’ products,

therefore rising the marginal cost of firms at distance two from i’s (see McCann and Folta,

2008, 2009). Higher marginal costs decrease the incentives of these firms to produce, thus

creating an indirect substitution e↵ect.

Formally, let firm i’s production technology be Leontief with constant returns to scale,

transforming the set of employed inputs {yj : gij = 1} into i’s production level xi:

fi({yj : gij = 1}) =
1

k
min{yj : gij = 1} (2)

Denoting by pj the price for commodity j for j = 1, 2, ..., n, the marginal cost of each firm

i is constant and equal to:

ci = k
X

j

gijpj (3)

Demand for commodity i is given by the following function:

xi = Ai +Di � pi (4)

where Ai is the size of i’s consumers’ market and where Di is the demand for input i

3Since we are assuming that links are undirected, when a firm provides an input to another firm, also
the latter provides an input to the former.
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coming from i’s neighbors. From the Leontief technology specification, it follows that:

Di = k
X

j

gijxj. (5)

Each firm maximizes its profit as a monopolist:

⇡i = (Ai +Di � xi � ci) xi = (Ai � xi + k
X

j

gijxj � k
X

j

gijpj)xi (6)

Substituting the expression of each price pj from the appropriate demand function pj =

Aj � xj +
P

k gjkxk, we obtain:

⇡i = (Ai � k
X

j

gijAj � xi + 2k
X

j

gijxj � k2
X

j

gij
X

k

gjkxk)xi (7)

which can be written as (1) once we set ↵i = (Ai�k
P

j gijAj), � = 1, � = 2k and � = k2.

Note how firm i’s production is increasing in i’s neighbors’ production (strategic comple-

mentarities) and linearly decreasing in the production of firms that share a common input

provider with i (substitution at distance-two in the network).

Local negative externalities. Consider a set of agents whose actions produce local

negative externalities (at the neighborhood level) that accumulate in stocks. In particular,

each agent’s stock is given by the sum of her neighbors’ actions. Assume also that the

utility of each agent depends both on her stock and on her neighbors’ stocks. This

assumption is appropriate in problems where stocks of pollutant leak into neighbors’

locations or, alternatively, in problems where agents care about the damage caused by

their neighbors’ accumulated stocks. As an illustration of such problems, consider the

decision of how intensively to smoke within a network of friends and family members.

Assume that agents enjoy smoking, but su↵er a quadratic health damage from the stock

of active and passive smoke they are exposed to. Assume also that each agent cares about

her own health and about her neighbors’ health. Define the stock

Qi ⌘

 
X

k2N

gikxk + xi

!

as the sum of all actions taken by agent i and by her neighbors. The utility function takes
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the following form:

Ui = ↵ixi � �0
x2
i

2
+ ✓

X

j2N

gijxixj � �1�
Q2

i

2
� (1� �1)

X

j2N

gij�
Q2

j

2
(8)

The parameter � can be interpreted as one’s awareness of the health risks coming from

smoke. The parameter �1 is the weight each agent assigns to her own health, so that the

term 1� �1 can be interpreted as a measure of altruism. The case �1 = 1 is the limit case

when agents do not care about their neighbors, and the substitution e↵ect at distance-two

disappears. Expanding the squared terms, we obtain the following expression:

↵ixi �
�0 + ��1

2
x2
i + (✓ � �)

X

j2N

gijxixj � (1� �1)�
X

k

g
[2]
ik xixk + h�i (9)

that can be rewritten as (1) by setting � = �0 + ��1, � = ✓ � � and � = (1 � �1)�, and

where h�i is a term independent of xi.

3 Behavior on the Network

In this section we study equilibrium behavior and its properties. The adjacency matrix ˜

G

involved in the first order conditions for an internal equilibrium (see (11) below) describes

the pattern of strategic interaction among players. This matrix keeps track of both the

direct complementarities that are active on the links of G and of the indirect substitution

e↵ects at distance-two in G. We will address both the existence of an internal equilibrium

and its characterization in terms of the topological properties ofG. We will then study the

role of the parameter �, measuring the strengths of indirect substitution e↵ects, for three

structural properties of equilibrium: (i) the ranking of agents’ behavior; (ii) the relation

between network density and aggregate behavior; (iii) the e↵ect of network segregation

on the polarization of behavior.

3.1 Existence and Characterization of a Positive Interior Equi-

librium

We study the game with set of players N , strategy set R+ for each player, and payo↵

functions given by (1). To simplify the analysis we assume that the parameter ↵ is homo-
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geneous across agents; the role of heterogeneity is studied in section 3.4. The first order

conditions characterizing an interior equilibrium x̄ are written in the following matrix

form, each row referring to a specific agent:

↵ · 1̄ =
h
�I� �˜G

i
x̄, (10)

where the adjacency matrix of strategic interaction is defined as follows:

˜

G ⌘ G�

�

�
G

2. (11)

In the symmetric matrix G

2, the generic element g[2]ij , counting the walks of lenght two,

also counts the number of common neighbors between i and j when i 6= j; g[2]ii is simply

the degree of i in G. The generic element of ˜

G is given by:

g̃ij =

8
>>>><

>>>>:

0 if gij = 0 and g
[2]
ij = 0

1 if gij = 1 and g
[2]
ij = 0

�

�
�
g
[2]
ij if gij = 0 and g

[2]
ij > 0

1� �
�
g
[2]
ij if gij = 1 and g

[2]
ij > 0

Note that ˜

G always contains negative elements, since g̃ii = �

�
�
di for all i. Note finally

that the network ˜

G is symmetric being the sum of symmetric matrices, and that G and
˜

G coincide for � = 0. As in Ballester et al. (2006), we impose a bound on the magnitude

of substitution e↵ects:

� ·max
ij

{g
[2]
ij } < �. (12)

A key notion for the characterization of equilibrium behavior is Bonacich centrality.

Definition 1 (Bonacich Centrality) Let A be an adjacency matrix, and let a 2 R+ be

a discount parameter. i) The Bonacich centrality matrix is given by M(A, a) ⌘ (I�aA)�1;

ii) The vector of Bonacich centralities is given by b̄(A, a) ⌘ M(A, a) · 1̄; iii) The vector of

weighted Bonacich centralities with weights vector w̄ is given by b̄w̄(A, a) = M(A, a) · w̄.

The matrix M(A, a) is well defined if and only if µ1(A) < 1
a
, where µ1(A) is the largest

eigenvalue associated with the matrix A.

An internal equilibrium x̄, solving equation (10), can be characterized by direct appli-

cation of Ballester et al. (2006). Start by denoting by ✓ the absolute value of the maximal

substitutability in ˜

G, by � the maximal complementarity in ˜

G, and let � = � + ✓ be the

9



range between the maximal and minimal elements in ˜

G. It is straightforward, from the

definition of ˜

G that ✓ = �
�
max{di|i 2 N}. Define then the normalized matrix C, where

cij =
g̃ij+✓

�
2 [0, 1]. Ballester et al. (2006) have shown that if µ1(C) < �

��
, then the unique

internal equilibrium behavior is proportional to Bonacich centralities in C (see Appendix

B for details):

x̄ =
↵b̄(C, ��

�
)

� + �✓b(C, ��
�
)
, (13)

where b(C, ��
�
) denotes the sum of all agents’ centralities in C.

Form the above characterization, however, it is di�cult to track the role of the rela-

tional network G in shaping equilibrium behaviour. In particular, the above analysis in

terms of C (that normalizes ˜

G) does not allow for explicit comparative statics in terms

of the relational network G. In Proposition 1 we identify a su�cient condition for the

existence of an internal equilibrium that bears on the eigenvalues of the network G. We

then provide in Proposition 2 a new equilibrium characterization that relates behavior to

a weighted version of Bonacich centralities for G. In the following analysis we will refer

to µi(G) as the i-th eigenvalue of the matrix G.

Proposition 1 Let either i) �  �2�✓+2
p

� (�✓2 + �) or ii) � > �2�✓+2
p

� (�✓2 + �)

and for each i 2 N either µi(G) <
��
p

4�✓�+�2�4��

2� or µi(G) >
�+
p

4�✓�+�2�4��

2� . Then the

unique interior Nash equilibrium of the game is given by (13).

Let us examine the main insights behind proposition 1. Condition i) defines a relation

between � and � under which existence of an internal equilibrium is guaranteed. Larger

values of � (indicating stronger substitution e↵ects) allow for larger values of � (more

intense peer e↵ects). This happens because indirect substitution weakens the positive

(and possibly explosive) feedbacks due to peer e↵ects. When peer e↵ects are too strong

compared to � - and condition i) is violated - an interior equilibrium still exists when all

eigenvalues lie either in a low or in a high region of values, defined by the root expressions

in ii). Note that the bound we imposed in (12) on the magnitude of strategic substitution

implies that �✓ < �, so that the upper bound
��
p

4�✓�+�2�4��

2� , defining the lower region

in ii), is strictly positive.

The positiveness of the upper bound provides an intuitive interpretation of point ii):

an internal equilibrium exists when the network G is either sparse (low largest eigenvalue)

or dense (high largest eigenvalue). In the case of � = 0, existence simply requires that the
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network is not too dense relative to the strength of complementarities (see the proof in

Appendix A). On the contrary, when � > 0 equilibrium is possible in densely connected

networks because the large number of complementarity channels is paralleled by the large

number of substitution channels (the paths of length two). The reason why equilibrium

may fail to exist for intermediate density levels has to do with the di↵erent paces at which

paths of lengths one and two expand as the density of G increases. To fix ideas, consider

the class of regular networks, where the maximal eigenvalue coincides with the average

degree. As the latter increases, distance-two substitution channels increase at the square

of the degree, dominating distance-one relations when the average degree is large enough.

Having discussed the existence of an internal equilibrium, let us now turn to the

problem of characterizing it in terms of agents’ centrality in the network G. We start by

defining the following two scalars:

a1 =
�±

p
�2

� 4��

2�
, a2 =

�⌥

p
�2

� 4��

2�
. (14)

Proposition 2 Let � > 2
p

�� and µ1(G) < 2�

�+
p

�2�4��
. Then the unique interior Nash

equilibrium of the game is given by:

x̄ =
↵

�
b̄b̄(G,a2)(G, a1) (15)

Proposition 2 shows that, in order to express equilibrium behavior as a function of

centralities in G, we need to look at the family of weighted centrality measures. In partic-

ular, weights are themselves Bonacich centrality measures for the networkG, computed at

a discount factor that crucially depends on �. The condition on the maximal Eigenvalue

µ1(G), under which this characterization is valid, rules out very dense networks because

Bonacich centralities of G enter the characterization of equilibrium, calling for a positive

inverse for both the matrices [I� a1A] and [I� a2A]. We refer to the proof in Appendix

A for details.4

3.2 Centrality and Marginalization of behaviour

Let us now turn to the e↵ect of small positive values of � on various features of equilibrium.

In this section we examine the e↵ect of � on the ranking of equilibrium actions. If � = 0,

4See also Appendix C for a comparison of the thresholds in propositions 1 and 2.
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direct application of Ballester et al. (2006) implies that agents’ behavior is proportional

to their Bonacich centrality in G. We will show that positive values of � can reverse this

relation.

Empirically, the failure of behaviour to reflect agents’ centralities in the relational

network has been recorded by Christakis and Fowler (2008) in their analysis of smoking

behaviour in the Framingham Heart Study. Despite the robust evidence of a positive

correlation of smoking between family members and close friends, Christakis and Fowler

(2008) observe an inverse relationship between eigenvalue centrality and smoking, contrary

to what would result from the peer e↵ects alone (see Figure 1).

Figure 1: Centralities of Smokers and Nonsmokers in Christakis and Fowler (2008).

In what follows we argue that such reversal in the ranking of actions can be obtained

in equilibrium from to the presence of indirect substitution e↵ects. Let us first rewrite

the system of FOCs (10) as follows (see Appendix D for derivations):

x̄ =
↵

�
b̄

✓
G,

�

�

◆
�

�

�
M(G,

�

�
) ·G2x̄ (16)

The first term on the right hand side of (16) is the equilibrium vector of actions when

� = 0, and it is proportional to agents’ centralities in G. This serves as a benchmark

to analyze what happens when � > 0. The second term measures the correction of

equilibrium behavior due to �. This correction is proportional to the Bonacich matrix

M(G, �
�
) multiplied by the vector z̄ ⌘ G

2x̄, whose generic element zi =
P

j g
[2]
ij xj measures

the aggregate equilibrium actions at distance-two from i. This correction has important

implications for the ranking of equilibrium actions. First, although � > 0 reduces the
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actions of all agents, the reduction is not uniform across agents. It is in fact stronger for

those agents who are connected through numerous and short paths with agents in whose

neighborhood behavior is large. This is the case for very central agents in G, typically

linked to other central agents in whose neighborhoods actions are large.

To obtain an explicit measure of the equilibrium correction due to �, we look at small

increases from � = 0.

Proposition 3 The marginal e↵ect of the introduction of � on equilibrium behavior is

given by:
@x̄⇤

@�
|�=0= �

@

@�
b̄d̄(G,

�

�
), (17)

Proposition 3 considers equilibrium actions when � = 0, and provides an explicit

measure of the reduction due to small indirect substitution e↵ects. Equation (17) provides

two important insights.

First, central agents tend to display larger decrease on equilibrium behaviour than non

central ones. In particular, the reduction due to � is larger for those agents who would

su↵er (as a result of a decrease in �) larger decreases in the value of their discounted

paths towards agents with a large degree in G. Since this decrease is larger for short

paths, sharp reductions in equilibrium behavior will occur for agents who have short

paths towards agents with a large degree. These agents will be typically central in G,

and may well end up choosing smaller actions compared to less central agents in G, for

whom the reduction is milder.

Second, the introduction of small substitution e↵ects may change the ranking of actions

even when a marginal decrease of � would not. Indeed, we note that the right hand side of

(17) generally fails to be proportional to the reduction in equilibrium actions that would

follow a marginal reduction of the complementarity parameter �, due to the weighting

vector d̄.

A general analysis (for arbitrary values of �) of the topological conditions under which

an inversion of the ordering would occur seems complex due to the strong non linearities

of centrality measures. However, the inversion can be observed by means of simulations

in the context of simple network architectures where central and peripheral players in

G are clearly identified (see figure 2 and Table 1). The comparison between equilibrium

behavior for strictly positive values of � and with � = 0 show how equilibrium actions are

reduced for all players. Moreover, although the impact of � is non uniform across agents,

13



an inversion in the ranking occurs only in the connected star, where the central agent is

connected to agents with su�ciently large degree.

1

2 3 4 5

1

2

34

5

1

2

3 4

5

Figure 2: Star, Papillon and Connected Star Networks

Table 1: E↵ect of � on equilibrium actions

Network Players � = 0 � = 0.8 |x0 � x0.8| |x0 � x0.8|/x0

Star 1 Center 0.0439 0.0403 0.0036 0.0820
2-5 Periphery 0.0401 0.0371 0.0030 0.0748

Papillon 1 Center 0.0440 0.0367 0.0073 0.1659
2-5 Periphery 0.0415 0.0363 0.0052 0.1253

Connected Star 1 Center 0.0442 0.0334 0.0108 0.2443
2-5 Periphery 0.0429 0.0341 0.0088 0.2000

Parametrization: �0 = 15, ↵ = 0.6, � = 0.5, ✓ = 1 in equation (8)

We also observe the inversion in the inter-linked cliques architecture used in Ballester

et al. (2006) reported in Figure 3. There are basically three types of agents in this

network, types 1, 2 and 3, from the names of the corresponding representative nodes.

Table 2 records the equilibrium actions in this network. The most central agent for low

1
2

3

4

5

67
8

9

10
11

Figure 3: Inter-linked Cliques (Ballester et al. (2006)).

levels of � is type 2, and switches to type 3 for higher levels of �.5

5Appendix E also shows how similar results hold for the analysis of the key player.
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Table 2: E↵ect of � on equilibrium actions.

Network Players � = 0 � = 0.7 |x0 � x0.8| |x0 � x0.8|/x0

Inter-linked Cliques 1 Middle 1.1531 0.0294 1.1236 0.9745
2 Center 1.1868 0.0299 1.1561 0.9748
3 Periphery 1.1508 0.0309 1.1191 0.9731

Parametrization: �0 = 15, ↵ = 0.6, � = 0.5, ✓ = 1 in equation (8)

3.3 Network Density and behavior

In a model with peer e↵ects only, the creation of additional connections always results

in larger equilibrium actions, due to the more intense positive equilibrium feedbacks.

When � > 0, things become more complex, as the new connections channel both strategic

complementarities and, through the creation of new paths of length two, strategic substi-

tutabilities. Indeed, the simple centralized architectures of Figure 2 suggest that adding

links to the network G may decrease aggregate behavior (see Table 1). To allow for a

more systematic analysis, we focus on the class of regular networks, where the common

degree d acts as a measure of network density. Let d⇤ ⌘

�
2� . The following proposition

characterizes the relation between network density and aggregate equilibrium actions.

Proposition 4 Let g be a regular network and � � �d + �d2 > 0. The symmetric equi-

librium is given by

x⇤ =
↵

� � �d+ �d2
. (18)

This is a non-monotonic function of the degree, increasing for low degrees (d < d⇤) and

decreasing for high degrees (d > d⇤). The threshold d⇤ is decreasing with �, and d⇤ ! 1

when � ! 0.

The non-monotonic relation between density and behavior has an intuitive explanation.

As the common degree d increases, direct connections grow with d, while distance-two

connections grow with d2. The e↵ect of indirect substitution takes over for d large enough,

causing a decrease in overall behavior.6

6The logic behind the results of this section seems to extend to the framework of ”network games”,
studied in Galeotti et al. (2010), where agents have an incomplete knowledge of the network, and share
a common prior in terms of the degree distribution (we are thankful to Andrea Galeotti for pointing this
out to us). An increase in the density of the network would take the form of a FOSD shift in the degree
distribution. If neighbors’ degrees come from independent draws from the same distribution, the FOSD
shift would replicates the same e↵ects on behavior described in this section where we study increases in
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The possibility that network density may a↵ect behavior according to a non linear

trend has been recently recognized in the industrial organization literature. Industrial

districts are motivated by economies of agglomeration, that is, increasing returns that

generate complementarities between firms. As Folta et al. (2006) and McCann and Folta

(2008) observe, however, diseconomies of agglomeration are likely to play a key role after

some critical district size, mainly due to increased marginal costs of production. Such

increased cost may arise because of increased competition for - and increased prices of -

valuable inputs (Venables, 1996; Ottaviano and Puga, 1998). Pouder and StJohn (1996),

Folta et al. (2006) and McCann and Folta (2008) theorize a non-monotonic relation be-

tween firms’ performance and district size, with an inverted U-shape consistent with the

one in figure 4.

ga

gb

gc

0 1 2 3 4 5 6
d

0.5

1.0

1.5

2.0

x*

Figure 4: Non monotonic relation between density and behaviour (�a = 0.1, �b = 0.2,
�c = 0.5, ↵ = 1, � = 3, � = 1)

Our network model, and in particular its specific application to technological com-

plementarities presented in (7), allows us to identify the source of the non-monotonic

pattern presented in figure 4. In our stylized model, diseconomies come from increased

input prices in the cluster, but similar arguments would apply if congestion e↵ects origi-

nated from longer queuing times, shortages of inputs and production delays etc. . .

the degree of a regular network. In details, calling the prior on neighbors’ degree, the equilibrium is
given by

x

⇤

i =
↵

� � �di + �d̄

2
. (19)
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Outside the class of regular networks it is very di�cult to relate behavior to a measure

of network density. Here, we address a simpler problem, that is identifying what changes

in the topology of the network would unambiguously increase, or decrease, aggregate

behavior.

Proposition 5 Consider the network G

0 obtained from G by fully connecting an inde-

pendent set of Z nodes in G. If �  (z � 2)�, then x̄( ˜G0) < x̄(˜G).

We see that a su�cient condition to reduce aggregate behavior is the presence of sets

of agents who are not connected in G; the number of such agents is inversely related to

the intensity of indirect substitution �. Aggregate behavior is thus reduced by creating

very dense relations among these sparse agents, so that new direct ties come with enough

new indirect connections.

3.4 Network Segregation and Polarization of Behaviour

In this section we allow agents to be heterogeneous in their private benefit ↵ from their

own action. We are primarily interested in how polarization of behavior between agents

of di↵erent types depends on the degree of segregation of agents in G. By polarization

of behavior we mean the amplification, due to social e↵ects, of di↵erences in behavior

associated with di↵erences in preferences.

In a model of peer e↵ects alone, network segregation increases the polarization of

behavior, by sharpening the di↵erential e↵ect of equilibrium feedbacks. This e↵ect in

turn widens the gap between agents with high and low willingness to act. The e↵ect of

societal segregation on types of social behaviors that exacerbate cultural di↵erences has

been studied, both theoretically and empirically, by a vast literature (Bisin et al., 2004,

2010, 2011; Fryer Jr. and Torelli, 2010). Despite the robust evidence of the presence

of peer e↵ects, however, these papers show that the relation between segregation and

polarization is complex and possibly non monotonic, and may depend on various aspects

of the socialization technology.

The e↵ective design of policies that target segregation as a way to a↵ect behavior

(e.g., favoring contact across ethnic groups in schools or clustering agents with similar

habits) would benefit from a thorough understanding of these issues. In the context

of our model, we find that when substitution e↵ects are strong enough, polarization of

behavior decreases with segregation of social contacts, and that a non-monotonic pattern

may arise for large degrees.
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To keep the problem tractable, and to focus on segregation only, we consider regular

networks. We assume that agents come in two types: high marginal benefits ↵h and low

marginal benefit ↵l. Populations of the two types are assumed of equal sizes. The level

of segregation in a given regular network with degree d is captured by the parameter

q, common to all agents and measuring the fraction of neighbors of the same type that

each agent has.7 Figure 5 provides the examples of three networks composed by the same

number of agents and with the same degree, but with di↵erent degrees of segregation q.

(a)

1

2

3

4

5

6

7

8

(b)

1

2

3

4

5

6

7

8

(c)

12

34

56

78

Figure 5: Three networks with increasing degrees of segregation (q = 1/3, 2/3, 1).

The type-symmetric equilibrium levels for high and low types are (see proof of propo-

sition 6 for derivations):

(
xh = 1

2 [
↵h+↵l

���d+�d2
+ ↵h�↵l

�+�(1�2q)d+�(1�2q)2d2 ]

xl = 1
2 [

↵h+↵l
���d+�d2

+ ↵l�↵h
�+�(1�2q)d+�(1�2q)2d2 ]

(20)

In this two-type case, a su�cient condition for a positive solution in regular networks

is � < 1/d. The equilibrium behavior of each type is the sum of two terms. The first

common term coincides with the equilibrium behavior if ↵ = ↵h+↵l
2 for all agents. The

second term measures how types’ actions are spread around this mean, and captures the

extent of polarization. Symmetry of this spread implies that a change in segregation q

does not a↵ect the average behavior. Note first that if � = 0, polarization always increases

with q, as an e↵ect of pure complementarities. When � > 0, we obtain the following result,

where d⇤ ⌘ �
2� and q̄ ⌘ �+2�d

4�d > 1
2 :

7This measure is common in the literature on homophily in social networks, where the share of similar
“friends” is compared to the relative weight of that type in the whole population (see Currarini et al.,
2009). This is also a specific case of a more general measure of segregation used in Vorsatz and Ballester
(2010), when agents are assumed not to move along the links of the network.
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Proposition 6 When d < d⇤, the spread between xh and xl is monotonically increasing in

q. When d > d⇤, the spread is non monotonic in q, reaching its maximum at q̄ 2 (1/2, 1].

Moreover, the maximal spread is independent of the degree.

The first part of Proposition 6 states that if the network density is low (d < d⇤) segregation

has a monotonic e↵ect on behavioural polarization; this non monotonicity arises because of

the low number of distance-two relations. On the contrary, in dense networks an increase

in segregation is first followed by an increase in polarization and, as segregation increases

further, by a progressive re-homogenization of behaviour. Figure 6 provides a numerical

example of this non-monotonic relation.

The crucial role of indirect substitutes becomes clear once we consider the forces at

xh

xl

q

Average Action

0.0 0.2 0.4 0.6 0.8 1.0
q

0.01

0.02

0.03

0.04

0.05

0.06

0.07
xh xl

Figure 6: Segregation and Polarization (� = 8,� = 1, � = 0.5, ↵H = 1.5, ↵L = 1, d = 10).

work as q increases. At low levels of q, high types are mainly surrounded by low types

and viceversa. Thus, given that high types always choose higher actions than low types,

the aggregate action is larger in the neighborhood of high types than of low types. To

appreciate the e↵ect of a change in q, let us now focus on high types only. An increase in q

replaces low types with high types in the neighborhood of high types. This naturally tends

to drive high types’ actions up via the peer e↵ects; moreover, at low q, an increase in q has

the e↵ect of replacing distance-two neighbors of high type with distance-two neighbors of

low type, driving the high action further up through a weaker strategic substitution e↵ect.

This explains the initial steep increase of the curve. As q increases further, high types

tend to have more and more high type neighbors; for large enough q, replacing low type
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neighbors with high type neighbors increases the indirect substitution e↵ects for low types

(this occurring the sooner, the larger �). Eventually, when this substitution outweighs the

peer e↵ect, high types’ actions start decreasing. Key to the above argument is the fact

that, while peer e↵ects apply to flows of individual actions, distance-two substitutability

comes from the stocks of actions in each agent’s neighborhood. While high types always

play a larger action than low types, the stock of actions in high types’ neighborhoods is

smaller (larger) than the stock in low types’ neighborhoods, for small (large) values of the

parameter q . Hence the non-monotonic pattern.

Our findings can be read as the deterrence e↵ect of congestion in clustered and homoge-

neous groups with strong propensity to take actions. There exists a number of empirical

studies that record a similar non monotonic pattern for behavior that are relevant for

group identity and that are likely to generate local negative externalities and congestion.

We think, for instance, of “oppositional identities” in ethnically fragmented societies, doc-

umented in Bisin et al. (2010, 2011), and Fryer Jr. and Torelli (2010). Behaviors relevant

for group identity are particularly intense in more fragmented societies, where the ethnic

group composition is quite balanced (an intermediate q in our model). Our mechanism

provides a key of interpretation based on the congestion that results from the negative

external e↵ects coming from such behaviors, and on how these behaviors a↵ect agents’

incentives as the ethnic composition varies.

For the sake of illustration, let us consider the act of skipping school assuming that

and agents from di↵erent ethnic groups face di↵erent costs from doing it (di↵erent values

of the parameter ↵). Assume also that skipping school generates peer e↵ects and leads to

bad school performance. In addition, agents’ performance benefits from the contact with

agents that perform well. In very segregated societies, agents from the disadvantaged

group face neighborhoods with di↵used poor school performance. This may weaken their

incentives to skip school by increasing their awareness of the negative e↵ects of school

skipping (here measured by the parameter �). This pattern would be consistent with the

observed reduction of polarization at high levels of segregation.

4 Implications for Empirical Work on Peer E↵ects

In this final section we discuss how the introduction of indirect substitution modifies the

procedure for the estimation of peer e↵ects in social networks (see Bramoullé et al., 2009;
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Lee et al., 2010; Liu and Lee, 2010; Liu et al., 2012).8 We start by considering the FOC

derived by (1), allowing for a possibly heterogeneity in ↵i:9

↵i � �xi + �
X

j2N

gijxj � �
X

k2N

g
[2]
ik xk = 0, (21)

where ↵i accounts for a set of observable personal characteristics (zi),10 average friends’

characteristics ( 1
di

P
gijzi) and a random error term ✏. The FOC to be estimated can now

be written as:

xi =
⇠

�
zi +



�

1

di

X

j2N

gijzi +
�

�

X

j2N

gijxj �
�

�

X

k2N

g
[2]
ik xk + ✏. (22)

Note that the parameters are identified up to a normalization, since every coe�cient is

divided by a factor � measuring the concavity of agent’s utility function. Which param-

eters of the utility function we are able to identify will depend on the model we want to

estimate.11

Define G⇤ as the row normalized matrix G, with g⇤ij =
1
di
gij. As previously, G2 is the

matrix counting the number of distance-two walks between agents, with diagonal terms di.

Calling �1 =
�
�
, �2 = �

�
�
, ⇢ = ⇠

�
, ⇣ = 

�
we obtain the following matrix form specification.

x = �1Gx+ �2G
2x+ ⇢z + ⇣G⇤z + ✏ (23)

The actions’ vector x is determined by the sum of the actions chosen by peers (Gx), the

actions chosen by distance-two neighbors (G2x), own demographics (z), own neighbors’

demographics (G⇤z) and a random error term ✏.

In section 4.1 we characterize the bias that arises in the estimation of peer e↵ects;

in section 4.2 we derive new conditions for identification of the model with indirect sub-

stitutes and the optimal set of instruments we need to solve the reflection problem (see

Manski, 1993).

8To keep the model simple and to make it comparable to the previous literature we do not include in
the specification neither a constant term nor a network fixed e↵ect

9Calvó-Armengol et al. (2009) provide conditions for the existence of an unique and interior equilibrium
for this case.

10Without loss of generality, we include in the model just one demographic characteristic.
11In the framework of smoking behavior presented in section 2, if � = 1, we have � = �0+�1, � = ✓�1,

� = 1� �1. Under the appropriate identification conditions, to be discussed in section 4.2, when �0 = 0,
the model identifies both ✓ and �1, capturing the pure net peer e↵ects and the e↵ect of externalities.
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4.1 Bias in the Estimation of Peer E↵ects

Suppose that � > 0, but the variable G

2x is not included in (23) (as in Bramoullé et al.,

2009; Lee et al., 2010; Liu and Lee, 2010):

x = �1Gx+ ⇢z + ⇣G⇤z + ✏ (24)

Using the usual omitted variable bias formula, the coe�cient of the peer e↵ect �̂1 can be

written as the sum of the real e↵ect �1 and a bias derived from the correlation between

the omitted variable G

2x and the included explanatory one Gx:

Cov(x,Gx)

V ar(Gx)
= �1 + �2⇡G2x,Gx (25)

where ⇡G2x,Gx is the coe�cient from a regression of G2x on Gx. The theoretical model

suggests the patterns of substitutability and complementarity between the actions of the

agents in the network. In particular, we expect �2 to be negative due to second order

substitutabilities. However, the actions chosen by friends and by second order neighbors

are, between them, strategic complements and ⇡G2x,Gx is positive. Thus, the omitted

variable bias �2⇡G2x,Gx is always negative and the peer e↵ects in (24) systematically

underestimated. Moreover, the larger the complementarities between first and second

order neighbors’ choices, the larger the bias. This result could help explaining why in

some cases peer e↵ects are positive, but not statistically di↵erent from zero (see Fletcher,

2010).

4.2 Identification

As shown by Manski (1993), identification in a model with peer e↵ects is di�cult due to

the reflection problem. However, when networks are not complete so that people do not

interact in groups and data on the network interaction is available, identification can be

achieved under some conditions. In existing literature adjacency matrices associated with

neighbors’ actions or neighbors’ demographics have been modeled either as row normalized

or not. We consider two relevant cases. Case 1: both matrices are row normalized and

equal to G

⇤ (Bramoullé et al., 2009; Lee et al., 2010), or both matrices are not row

normalized and equal to G (Liu and Lee, 2010); Case 2: one is row normalized and one

is not. In what follows we consider the identification conditions for these two cases, when
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� = 0 and � > 0.

Case 1.

Proposition 7 (Bramoullé et al. (2009)) Let � = 0. If ⇣ + �1⇢ 6= 0 and I,G and G

2

are linearly independent then �1 in (24) is identified.

This su�cient condition states that, when demographics have some explanatory value

(⇣ + �1⇢ 6= 0), the peer e↵ect cannot be identified in fully connected networks.

Proposition 8 Let � > 0. If I,G,G2,G3 are linearly independent, the net peer e↵ect

�1 and �2 in (23) are identified if �1⇣ +
⇣2

⇢
+ �2⇢ 6= 0 and ⇢ 6= 0.12

Notice that, with respect to the previous case with � = 0, when �2 6= 0 more restrictive

conditions are required in order to identify parameters �1 and �2.

Case 2.

Adapting to our framework the results from Bramoullé et al. (2009), the following holds:

Proposition 9 Let � = 0. If I,G,G⇤,GG

⇤ are linearly independent and if ⇢ 6= 0 or

⇣ 6= 0, the net peer e↵ect �1 in (24) is identified .

It is now important to identify which classes of networks are ruled out by the above

su�cient conditions for identification. Note first that I is linearly dependent with G and

also with G

⇤ only in the empty network. Note then that G and G

⇤ are linearly dependent

only in regular networks, where d is the common degree and G = 1
d
G

⇤. Finally, let us

consider when GG

⇤ is linearly independent from both G and G

⇤. Since GG

⇤ keeps track

of weighted distance-two paths, while G and G

⇤ just consider distance-one neighbors, a

necessary condition for linear dependence is that all triangles in G close, leading to the

complete network. However, a complete network is a special case of regular network. It

follows that, in order to identify the peer e↵ect in model (24), all regular networks must

be excluded.

Proposition 10 Let � > 0. If I,G,G2,G⇤,GG

⇤,G2
G

⇤ are linearly independent and if

⇢ 6= 0 or ⇣ 6= 0, the peer e↵ect �1 and the coe�cient �2 in (23) are identified.

12Note that this condition can be written as ⇣ + �1⇢+
�2⇢

2

⇣ , which is a modification of the one found

by Bramoullé et al. (2009)
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The introduction of second order interactions restricts the set of networks that enable the

identification of both �1 and �2. In fact, together with regular networks, other classes of

networks must be excluded. These include the star, where G

2
G

⇤ = (n � 1)G⇤, and the

papillon network in Figure 2, in which GG

⇤ = 1
2G

2.

The case covered in proposition 10 needs also a new set of instruments. Let us write

the complete model to be estimated as follows:

xr = �1Grxr + �2G
2
rxr + Zr

⇤� + ✏r (26)

where r is the number of networks in the dataset, nr the number of individuals in the

network, xr = (x1,r, ......, xnr,r)0, zr = (z1,r, ......, znr,r)0, ✏r=(✏1,r ,......, ✏nr,r), Z⇤
r = (zr,G⇤zr)

and � = (⇣, ⇢)0, �1 captures the peer e↵ect, �2 the e↵ect of indirect substitution.

It is easy to see that the variables Grxr and G

2
rxr are both endogenous because they

are the result of the same maximization process. Following Liu et al. (2012), we derive

the explicit expression for the two endogenous variables and the corresponding sets of

instruments (see Appendix F for the choice of the instruments and the discussion about

their relevance and exogeneity). We can instrument Gxr with Gzr,G
2zr,GG

⇤zr and

their higher terms (see also Liu et al., 2012), and G

2xr with G

2zr,G
3zr,G

2
G

⇤zr and

their higher terms.

5 Conclusions

When social contact generates both peer e↵ects and local congestion, the network of

strategic interaction may di↵er from the relational one. We have studied a model where

congestion at the neighborhood level creates strategic interdependence of the substitute

type at distance-two. We have shown that equilibrium is a↵ected by distance-two substitu-

tion in a systematic way. First, individual behavior tends to move towards the periphery

of the network. Second, aggregate behavior tends to decrease with network density in

very dense networks. Third, social segregation a↵ects polarization of behavior according

to a non monotonic pattern. Given the widespread relevance of local congestion in social

networks, our results provide valuable insights on the relation between social position and

behavior, that should be taken into account in designing network based policies.
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A Proofs

Proof of Proposition 1.

Let us start by proving that µi(G) <
��
p

4�✓�+�2�4��

2� or µi(G) >
�+
p

4�✓�+�2�4��

2�

Recall first that given a square matrix A and an associated polynomial q(A), the

eigenvectors µ(q(A)) = q(µ). In addition

C =
1

�
˜

G+
�

�
G

0 =
1

�
G�

�

��
G

2 +
✓

�
G

0

so that any eigenvalue of C can be rewritten as:

µi(C) =
1

�
µi(G)�

�

��
µ2
i (G) +

✓

�
µ0
i (G)

Now, the condition for the existence of an internal equilibrium is ��
�
µi(C) < 1, 8i. In

terms of µi(G) this becomes

��

�
µi(C) =

1

�
(�µi(G)� �µ2

i (G) + �✓) < 1

satisfied exactly for the cases reported in the proposition.

Proof of Proposition 2.

To prove the proposition, we report here the FOC in the following complete form:

↵

�
· 1̄ =


I�

�

�

✓
G�

�

�
G

2

◆�
x̄. (A.1)

And rewrite them as
↵

�
· 1̄ =


I�

�

�
G+

�

�
G

2

�
x̄. (A.2)
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Consider the matrix 
I�

�

�
G+

�

�
G

2

�
(A.3)

This can be written as:

[I� (a1 + a2)G+ a1a2G] = [I� a1G] · [I� a2G] (A.4)

where

a1 + a2 =
�

�
(A.5)

and

a1a2 =
�

�
(A.6)

Solving the constraints in (A.5) and (A.6) we get only two couples (a1, a2):

a1 =
�±

p
�2

� 4��

2�
(A.7)

a2 =
�⌥

p
�2

� 4��

2�
(A.8)

that exist if and only if � > 2
p

��. The FOC now reads:

↵

�
· 1̄ = [I� a1G] · [I� a2G] x̄. (A.9)

so that, if µ1(G) < 1
max{a1,a2} = 2�

�+
p

�2�4��
, then

x̄ =
↵

�
[I� a1G]�1

· [I� a2G]�1
· 1̄ (A.10)

Now

[I� a2G]�1
· 1̄ = b̄(G, a2) (A.11)

and

[I� a1G]�1
· [I� a2G]�1

· 1̄ = [I� a1G]�1 b̄(G, a2) (A.12)

That can be rewritten as

[I� a1G]�1
· [I� a2G]�1

· 1̄ = b̄b̄(G,a2)(G, a1) (A.13)
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so that

x̄ =
↵

�
b̄b̄(G,a2)(G, a1) (A.14)

Notice that, since solutions are symmetric, then

x̄ =
↵

�
b̄b̄(G,a2)[G, a1] =

↵

�
b̄b̄(G,a1)(G, a2) (A.15)

Proof of Proposition 3. We start by considering the matrix:

M

✓
G�

�

�
G

2,
�

�

◆
⌘ [I�

�

�
(G�

�

�
G

2)]�1 (A.16)

which by (10) determines equilibrium behaviour up to a proportionality factor.

This can be rewritten as:

1X

k=0

G

k[
�

�
I�

�

�
G]k =

1X

k=0

1

�k
G

k[�I� �G]k (A.17)

Applying the binomial expansion to the second term we get:

1X

k=0

1

�k
G

k

kX

i=0

✓
k

i

◆
�i(��k�i)Gk�i (A.18)

from which
1X

k=0

1

�k

kX

i=0

✓
k

i

◆
�i(��k�i)G2k�i (A.19)

The derivative of this with respect to � evaluated at the point � = 0 is:

lim
�!0

P1
k=0

1
�k

Pk
i=0

�
k
i

�
�i(��k�i)G2k�i

�

P1
k=0

1
�k�

k
G

k

�
(A.20)

lim
�!0

P1
k=0

1
�k [(

Pk
i=0

�
k
i

�
�i(��)k�i

G

2k�i)� �k
G

k]

�
(A.21)

Note now that: for k = i we have
�
k
i

�
= 1, �k�i = 1 and G

2k�i = G

k, so that
�
k
i

�
�i(��)k�i

G

2k�i = �k
G

k; for k � i � 2 we have lim�!0
�k�i

�
= 0; for k � i = 1 we
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have
�
k
i

�
= k, (��k�i) = �� and G

2k�i = G

k+1. Summing up (A.21) now reads:

(A.22)

�

1X

k =0

1

�k
k�k�1

G

k+1 = �G

1X

k=0

[
@

@�
�k]

1

�k
G
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= �G

@

@�

1X

k=0

1

�k
�k

G

k

= �G

@M(G, �
�
)

@�
.

Summing up we obtain:

@

@�
M

✓
˜

G,
�

�

◆
|�=0= �G

@M(G, �
�
)

@�
= �

@M(G, �
�
)

@�
G (A.23)

where the last equality comes from symmetry of all involved matrices. Post multiplying

the first and last term in the above equalities by 1̄ we finally get:

@

@�
M

✓
˜

G,
�

�

◆
|�=0·1̄ = �

@

@�
b̄d̄(G,

�

�
), (A.24)

which proves the proposition.

Proof of Proposition 4. Individual and aggregate behaviors are characterized by the

following equilibrium first order conditions derived from (10):

↵� �xi + �
X

j2N

gijxj � �
X

k

g
[2]
ik xk = 0. (A.25)

In a symmetric equilibrium, x⇤
i = x⇤

j for all i, j. Moreover, in a regular graph of degree d

we have
P

k2N g
[2]
ik = d2. We can then rewrite (A.25) as follows:

↵� x⇤[� � �d+ �d2] = 0. (A.26)

When [� � �d+ �d2] < 0, no positive action is consistent with equilibrium. When [� �

�d+ �d2] > 0, the unique positive symmetric equilibrium is given by:

x⇤ =
↵

� � �d+ �d2
. (A.27)

We express the e↵ect of network density on behavior by means of the first derivative of
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(A.27) with respect to d:
@x⇤

@d
=

↵(�� 2�d)

[� � �d+ �d2]
2 . (A.28)

The sign of the term @x⇤

@d
is determined by the following regions:

8
><

>:

d < �
2� )

@x⇤

@d
> 0

d = �
2� )

@x⇤

@d
= 0

d > �
2� )

@x⇤

@d
< 0

Since � > 0, we conclude that equilibrium behavior follows a non-monotonic pattern,

reaching a maximum for d⇤ ⌘ �
2� . This immediately proofs the statement.

Proof of Proposition 5. Our result builds on Theorem 2 in Ballester et al. (2006),

showing that increasing all entries in the network of social interactions unambiguously in-

creases equilibrium behavior of all agents. Consider first a node k 62 Z such that gkz = 0

for all z 2 Z. We have g̃ki = g̃0ki for all i 2 N . Consider then a node k 62 Z such that

gki = 1 for at least one i 2 Z. We have that g̃0ki < g̃ki and g̃kz  g̃kz for all z 2 Z.

Consider now any two nodes i, j 2 Z, for which, by construction, g0ij � gij = 1. We

also have g0
[2]
ij � g

[2]
ij = Z � 2, since all nodes in Z are now linked with each other. Thus

g̃0ij � g̃ij = 1� ⇢�
�
 0 since we have assumed that (�)  (Z � 2)�. Thus, g̃0ij  g̃ij for all

i, j 2 Z with at least one strict inequality.

Proof of Proposition 6. Each agent has dq neighbors of own type and d(1�q) neighbors

of di↵erent type. Moreover, let t 2 L,H and consider an agents of type t. dq(dq � 1)

is the number of agents of type t (other then self) connected with neighbors of type t;

d(1� q)[d(1� q)� 1] is the number of agents of type t connected with neighbors of type

di↵erent from t; dqd(1�q) is the number of agents of type di↵erent from t connected with

neighbors of type t; d(1� q)dq is the number of agents of di↵erent from t connected with

neighbors of di↵erent from t. Consequently, by imposing symmetry on the FOC of each

type, we get

8
>>>><

>>>>:

↵h � �xh + dq�xh + d(1� q)�xl

��{dq[dq � 1] + d(1� q)[d(1� q)� 1]}xh � �{dqd(1� q) + d(1� q)dq}xl = 0

↵l � �xl + dq�xl + d(1� q)�xh

��{dq[dq � 1] + d(1� q)[d(1� q)� 1]}xl � �{dqd(1� q) + d(1� q)dq}xh = 0

(A.29)
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and the equilibrium in (20) is derived.

Consider now the spread. The numerator is fixed, while the denominator depends on q.

The first derivative of the denominator with respect to q is given by �2d[2d(1�2q)���].

Studying the sign we get that if q > q̄ the spread is decreasing, while if q < q̄ the spread

is increasing. By noting that if d < d⇤ then q̄ > 1, so that the spread is always increasing

in q.

In order to prove that the maximal spread in independent from d, simply note that q̄ is

independent from the level of segregation. Thus call the spread S and notice that

S(q =
�� 2�d

4d�
) =

4(↵h � ↵l)�

4�� � �2
(A.30)

Proof of Proposition 8.

The reduced form is:

x = (I� �1G� �2G
2)�1(⇢I+ ⇣G)z + (I� �1G� �2G

2)�1✏ (A.31)

Consider two sets of structural parameters (↵, �1, ⇢, ⇣, �2) and (↵0, �0
1, ⇢

0, ⇣ 0, �0
2). If they

lead to the same reduced form, it means that (I��1G��2G
2)�1(⇢I+ ⇣G) = (I��0

1G�

�0
2G

2)�1(⇢0I+⇣ 0G). Premultiply the second equality by (I��1G��2G
2)(I��0

1G��0
2G

2)

we get

(I� �0
1G� �0

2G
2)(⇢I+ ⇣G) = (I� �1G� �2G

2)(⇢0I+ ⇣ 0G) (A.32)

which can be rewritten as

(A.33)(⇢�⇢0)I+(⇣�⇣ 0+�1⇢
0
��0

1⇢)G+(�1⇣
0
��0

1⇣+�2⇢
0
��0

2⇢)G
2+(�2⇣

0
��0

2⇣)G
3 = 0

if I,G,G2,G3 are linearly independent, then

⇢ = ⇢0 (A.34)

⇣ 0 � �1⇢
0 = ⇣ � �0

1⇢ (A.35)

�1⇣
0
� �2⇢

0 = �0
1⇣ � �0

2⇢ (A.36)

�2⇣
0 = �0

2⇣ (A.37)

Consider now �0
2⇣ 6= 0, thus ⇣ 6= 0. From (A.37) define ⇣ 0 = �⇣ and �0

2 = ��2 so (A.36)
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becomes

�1�⇣ � �2⇢ = �0
1⇣ � ��2⇢ (A.38)

and (A.35) becomes

�⇣ � �1⇢ = ⇣ � �0
1⇢ (A.39)

from (A.39)

�0
1 = �1 �

�⇣

⇢
+

⇣

⇢
(A.40)

substituting in (A.38) we get

�1�⇣ � �2⇢ = (�1 �
�⇣

⇢
+

⇣

⇢
)⇣ � ��2⇢ (A.41)

If �1⇣ +
⇣2

⇢
+ �2⇢ 6= 0 and ⇢ 6= 0,

�(�1⇣ +
⇣2

⇢
+ �2⇢) = �1⇣ +

⇣2

⇢
+ �2⇢ (A.42)

i.e. �=1, so the two sets of parameters are the same.

Consider now �2⇣ = 0. This can be due to either ⇣ = 0, or �2 = 0 (or both).

Consider first the case of ⇣ = 0, then the coe�cients associated to G and G

2 become

�1⇢
0 = �0

1⇢ (A.43)

�2⇢
0 = �0

2⇢ (A.44)

So �1 and �2 are identified if ⇢ 6= 0, and thus identified from (A.34).

If �2 = 0 the problem collapses to the case of Bramoullé et al. (2009) and coe�cients are

identified if ⇣ + �1⇢ 6= 0.

Proof of Proposition 9. We can write (24) as:

x = (I� �1G)�1(⇢I+ ⇣G⇤)z + (I� �1G)�1✏ (A.45)

Consider two sets of parameters (�1, ⇢, ⇣) and (�0
1, ⇢

0, ⇣ 0) that provide the same estimates.

Then

(I� �1G)�1(⇢I+ ⇣G⇤) = (I� �0
1G)�1(⇢0I+ ⇣ 0G⇤) (A.46)
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Multiplying both sides by (I� �1G)(I� �0
1G) we obtain

(I� �0
1G)(⇢I+ ⇣G⇤) = (I� �1G)(⇢0I+ ⇣ 0G⇤) (A.47)

This can be rewritten as

(⇢� ⇢0)I+ (⇣ � ⇣ 0)G⇤
� (⇢�0

1 � ⇢0�1)G� (⇣�0
1 � ⇣ 0�1)GG

⇤ = 0 (A.48)

Suppose I,G,G⇤,GG

⇤ to be linearly independent. Then ⇢ = ⇢0 and ⇣ = ⇣ 0. If ⇢ 6= 0 or

⇣ 6= 0 then it immediately follows that �1 = �0
1.

Proof of Proposition 10. We can write (23) as

x = (I� �1G� �2G
2)�1(⇢I+ ⇣G⇤)z + (I� �1G� �2G

2)�1✏ (A.49)

Consider two sets of parameters (�1, �2, ⇢, ⇣) and (�0
1, �

0
2, ⇢

0, ⇣ 0) that provide the same

estimates. Then

(I� �1G� �2G
2)�1(⇢I+ ⇣G⇤) = (I� �0

1G� �0
2G

2)�1(⇢0I+ ⇣ 0G⇤) (A.50)

Premultiplying both sides by (I� �1G� �2G
2)(I� �0

1G� �0
2G

2) we obtain

(I� �0
1G� �0

2G
2)(⇢I+ ⇣G⇤) = (I� �1G� �2G

2)(⇢0I+ ⇣ 0G⇤) (A.51)

This can be rewritten as

(A.52)(⇢� ⇢0)I+ (⇣ � ⇣ 0)G⇤
� (⇢�0

1 � ⇢0�1)G� (⇣�0
1 � ⇣ 0�1)GG

⇤

� (⇢�0
2 � ⇢0�2)G

2
� (⇣�0

2 � ⇣ 0�2)G
2
G

⇤ = 0

Suppose I,G,G2,G⇤,GG

⇤,G2
G

⇤ to be linearly independent. Then ⇢ = ⇢0 and ⇣ = ⇣ 0.

If ⇢ 6= 0 or ⇣ 6= 0 then it immediately follows that �1 = �0
1 and �2 = �0

2.

B Derivation of Equilibrium in terms of C

Let U denote the n⇥ n matrix of ones. We can rewrite the first order conditions (10) as

follows:

↵1̄ = [�I+ �(✓ ·U� �C)] x̄. (B.1)
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Rearranging terms we get:

↵

�
1̄�

�

�
✓Ux̄ =


I�

�

�
�C

�
x̄. (B.2)

By writing Ux̄ = x1̄
↵

�
1̄�

�

�
✓x1̄ =


I�

�

�
�C

�
x̄. (B.3)

A necessary and su�cient condition for the matrix
⇥
I�

�
�
�C
⇤
to admit a positive inverse

is that 1 > ��
�
µ(C), with µ(C) being the largest eigenvalue of the C matrix. Under this

restriction we write: 
I�

�

�
�C

��1

(
↵

�
�

�

�
✓ · x)1̄ = Ix̄. (B.4)

Using the definition of Bonacich centrality vector, we can now write:

↵

�
b̄

✓
C,

��2

�

◆
�

�

�
✓xb̄

✓
C,

��

�

◆
= Ix̄ (B.5)

In order to ease notation, from now on we drop the argument of the centrality vectors.

Premultiplying by 1̄0 we get:
↵

�
b�

�

�
✓bx = x (B.6)

and thus

x =
↵b

� + �✓b
(B.7)

substituting this into (B.5) we get the result of the proposition.

C Comparisons of Thresholds

To understand the relationship between the threshold in propositions 1 and 2, consider fig-

ure 7 that represents the threshold determining the areas in which an interior equilibrium

exists.

Define µA
m and µA

M the thresholds on eigenvalues defined in proposition 1. An interior

equilibrium exists if � < �A or, for any µi, µi > µA
M or µi < µA.

Define then µB the threshold on eigenvalues defined in proposition 2. An interior

equilibrium exists if � > �B and µi < µB.
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Figure 7: Comparison of Su�cient Conditions for Equilibrium Characterization. On the
left conditions for equilibrium for � small, on the right conditions for � big.

Thus the shaded area represents the parameter space in which conditions in propo-

sition 2 ensure an interior equilibrium, while conditions in 1 do not enable to write the

equilibrium in terms of centralities of C.

D Derivation of condition (16)

Let us rewrite the FOC (10) as follows:

↵I1̄� �G2x̄ = (�I� �G)x̄ (D.1)

from which we obtain:

↵I1̄� �G2x̄ = �(I�
�

�
G)x̄ (D.2)

Recalling that (I� �
�
G)�1 is the Bonacich centrality matrix M(G, �

�
), we can write:

↵

�
M(G,

�

�
)1̄�

�

�
M(G,

�

�
)G2x̄ = x̄ (D.3)
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E Change in Key Player

In this appendix we look at the e↵ect of � on the identification of the key-player, that is

the player who, if removed from the network, would trigger a maximal change in aggregate

behavior. Such key-player might be of crucial importance in various health related policies

and in policies that try to reduce crime (see Ballester et al., 2010). Ballester et al. (2006)

show that the key-player is the node with the highest intercentrality in the network,

defined as ci = b2i /mii. As for the notion of Bonacich centrality, the ordering of inter-

centralities is potentially a↵ected by the presence of distance-two strategic substitution.

In particular, the same marginalization of behavior observed in the above examples seems

to characterize the ranking of inter-centralities. Consider, for instance, the case of a “line”

network (Figure 8).

1 2 3 4 5

Figure 8: Line network

We can identify 3 types of agents depending on their position: agents 1 and 5, agents 2

and 4, and agent 3. Table 3 provides the ordering of centralities and inter-centralities for

di↵erent values of � for the specific application to smoking. With � = 0, the key-player

Table 3: E↵ect of � on central and key-player - Line network

� bi ci

0 3 > 2 > 1 3 > 2 > 1
0.8 2 > 1 > 3 2 > 1 > 3

Parametrization: �0 = 15, ↵ = 0.6, � = 0.5, ✓ = 1

is 3. Consider now � > 0. Player 3 is responsible for several distance-two relations, that

keep aggregate behaviour low by generating strategic substitutability. For this reason,

removing player 3 from the network has the e↵ect of removing such indirect substitution

e↵ects, and is therefore little e↵ective in decreasing aggregate behaviour. Player 1, in

contrast, generates fewer distance-two relations, and her removal from the network is

very e↵ective in decreasing aggregate behaviour.
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Similar considerations apply to the interconnected cliques network studied by Ballester

et al. (2006) (see Figure 3 and Table 4). For positive levels of �, type 3 agents have higher

inter-centrality (and centrality) than type 1 agent. In fact, while agent 1 is critical for

several distance-two relations, type 3 agents are not. It follows that removing agent 1

would delete several sources of substitutability, thereby o↵setting the negative e↵ect on

behavior due to the removal of direct connections.

Table 4: E↵ect of � on central and key-player - Ballester et al. (2006)

� bi ci

0 2 > 1 > 3 2 > 1 > 3
0.7 3 > 2 > 1 3 > 2 > 1

Parametrization: �0 = 15, ↵ = 0.6, � = 0.5, ✓ = 1

F Choice of the instruments

E(Gxr) = �2GrM1rG
2
rx+ ⇢Grzr + ⇢�1GrM1rGrzr + ⇣GrM1rG

⇤
rzr (F.1)

and defining M2r = (I� �2M1rG
2
r)

�1, we get

E(Gxr) = ⇢GrM2rzr + ⇢�1GrM2rM1rGrzr + ⇣GrM2rM1rG
⇤
rzr (F.2)

substituting M1r =
P1

j=0(�1Gr)j we get

E(Gxr) = ⇢GrM2rzr + ⇢�1M2r

1X

j=0

(�1Gr)
j
G

2
rz + ⇣M2r

1X

j=0

(�1Gr)
j
GrG

⇤
rz (F.3)

E(G2xr) = ⇢G2
rM2rzr + ⇢�1M2r

1X

j=0

(�1Gr)
j
G

3
rzr + ⇣M2r
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(�1Gr)
j
G

2
rG

⇤
rzr (F.4)

Substituting M2r =
P1

j=0[�2

P1
j=0(�1Gr)jG2

r ]
j into (F.3) and (F.4)
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(F.5)
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E(G2xr) = ⇢G2
r
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The endogenous variable Gxr is still correlated with Gzr,G
2zr,GG

⇤zr (and some higher

terms) used in Liu et al. (2012). In addition, G2xr is correlated with G

2zr,G
3zr,G

2
G

⇤zr

(and some higher terms) but not with Gzr. Given that both Grxr and G

2
rxr are en-

dogenous variables, the rank condition valid for identification is modified with respect to

the case in which just one endogenous variable is present. Call now W the total set of

exogenous variables, i.e. exogenous variables Z included in the model (demographics and

friends characteristics) and instruments Q, and V the set of all explanatory variables, i.e.

W and the endogenous Gxr and G

2xr. Thus, the usual rank condition can be split in

two parts:

1. rank E(W 0W ) = l

2. rank E(W 0V ) = k .

Where l is the number of exogenous variables W and k the total number of the explanatory

variables.

Notice that identification is not achieved if the fitted values of the first stages Ĝxr

and ˆ
G

2xr are perfectly collinear. Write both Ĝxr and ˆ
G

2xr as a linear combination of

two instruments (Q1 = Gzr and Q2 = G

2zr) multiplied by the coe�cients obtained in the

two (di↵erent) first stages, Ĝxr = b1Q1 + b2Q2 and ˆ
G

2xr = c1Q1 + c2Q2. If c1 = 0 after

controlling for Q2, and if b1 and b2 are both di↵erent from zero, then the fitted values of

the two endogenous variables cannot be perfectly collinear and �̂1 and �̂2 are identified

and consistent.13 Note that the condition c1 = 0 is not necessary for identification, but it

just ex ante rules out the presence of multicollinearity in the set of instruments.

13However, if Q2 is not strong enough and Q1 and Q2 are not jointly relevant (i.e they are weak
instruments), the estimation of �̂2 could be severely biased in small samples.
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