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Abstract

All models in Law and Economics use punishment functions (PF) that incorpo-

rates a trade-off between probability of detection, p, and punishment, F . Suppose

society wishes to minimize the total costs of enforcement and damages from crime,

T (p, F ). For a given p, an optimal punishment function (OPF) determines an F

that minimizes T (p, F ). A popular and tractable PF is the hyperbolic punishment

function (HPF). We show that the HPF is an OPF for a large class of total cost

functions. Furthermore, the HPF is an upper (lower) bound for an even larger class

of punishment functions. If the HPF cannot (can) deter crime then none (all) of the

PF’s for which the HPF is an upper (lower) bound can deter crime. Thus, if one can

demonstrate that a particular policy is ineffective (effective) under the HPF, there

is no need to even compute the OPF. Our results should underpin an even greater

use of the HPF. We give illustrations from mainstream and behavioral economics.
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1. Introduction

The modern economic approach to crime identifies two main instruments of deterrence.
The first instrument is the probability of detection and conviction, p. Hiring more police
offi cers, training and equipping them better, installing CCTV cameras and formalizing
accounting or legal rules in a manner that facilitates catching offenders; all these, among
others, can potentially increase p. The second instrument is the severity of the punishment.
This includes monetary fines as well as non-monetary punishments such as imprisonment
or barring offenders from certain activities. We use, F , not just for fines, but also to denote
all possible punishments, evaluated in monetary terms.1

Let C (p, F ) be the cost to society of law enforcement. In general, C (p, F ) will be
increasing in each of p and F . We define an ideal fine to be a punishment, F , for which
C (p, F ) is independent of F . LetD (p, F ) be the damage to society from crime. In general,
D (p, F ) will be decreasing in each of p and F . However, in some cases, for example if F
is severe, D could be increasing in F . Let T (p, F ) = C (p, F ) +D (p, F ) be the total cost
to society from crime and from crime prevention. We assume that society aims to choose
those values of p and F that minimize T (p, F ).
One can minimize T (p, F ) in two steps. First, for each p, find the F that minimizes

T (p, F ). Let F = ϕ(p) be the resulting function and call it a punishment function. Second,
given F = ϕ(p), choose the p that minimizes T (p, ϕ(p)).
A popular and tractable punishment function is the hyperbolic punishment function

(HPF). This is given by
F = ϕ(p) =

c

p
, c > 0,

where c is some constant. The following quote from Polinsky and Shavell (2007) testifies
to the importance of the HPF: “[The HPF] or its equivalent, was put forward by Bentham
(1789, p.173), was emphasized by Becker (1968), and has been noted by many others since
then.”2

Consider an individual who (if not caught) would derive a monetary benefit, b > 0,
from an illegal activity. Assume that this individual is an expected utility maximizer with
a strictly increasing and concave utility function, u (so that this individual is risk neutral
or risk averse). Becker (1968) proved that the HPF, ϕ (p) = b

p
, will completely deter this

individual from crime. It follows that given any probability of detection and conviction,
p > 0, no matter how small, crime can be deterred by a suffi ciently large punishment. Kolm
(1973) memorably paraphrased the Becker proposition as hang offenders with probability

1Typically, p and F are taken to be substitutes. However, under certain conditions these instruments
might become complements; see, for instance, Garoupa (2001). Our model is consistent with both.

2Polinsky and Shavell (2007, footnote 16).
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zero. However, note that the HPF, ϕ (p) = b
p
, need not be the optimal punishment function

for Becker’s model.3

In the main model of the wide ranging survey by Polinsky and Shavell (2007), decision
makers are risk neutral, punishments are ideal fines and the payoff from crime is regarded
as a positive contribution to total social welfare, to be balanced at the margin with the
harm done to society by crime. They state, correctly, that the optimal punishment function
for their model is the HPF.
We formulate a model of crime that generalizes that of Polinsky and Shavell (Section

4, below). Our model allows for the presence of risk neutrality or it’s absence, presence or
absence of ideal fines and for the proceeds of crime to enter or not enter the social welfare
function.
The main proposition of our paper is Proposition 2, which derives the general form of

the optimal punishment function for our model.
Corollary 2 gives the conditions under which our optimal punishment function is the

HPF. We use this, in subsection 4.1, to prove that the HPF is the optimal punishment
function for the Polinsky and Shavell model (Proposition 3). We also apply this, in sub-
section 4.2, to prove that the HPF is the optimal punishment function for a very different
model of crime where punishments are not ideal fines and the payoff from crime is not
regarded a positive contribution to total social welfare (Proposition 4).
In many cases of interest, however, the optimal punishment function may be quite

intractable and the researcher might not be interested in deriving an optimal punishment
function but rather in using a sensible and tractable punishment function. The tractability
of the HPF is not in doubt.4 Suppose we have a model for which the HPF is an upper
bound for the optimal punishment function. In other words, for any feasible level of p,
the punishment recommended by the HPF is at least as high as the optimal punishment
function. Then, if the HPF cannot deter crime for that model, then neither can the op-
timal punishment function. And, conversely, if the HPF is a lower bound to the optimal
punishment function, and if the HPF can deter crime, then so can the optimal punish-
ment function. These considerations reduce the need to compute an optimal punishment
function (a non-trivial exercise) in many cases.
Corollary 3 gives conditions under which our optimal punishment function (Proposition

2) is bounded above by the HPF. Subsection 4.3 gives a model similar to that of Polinsky
and Shavell, except that individuals are risk averse. There we use Corollary 3 show that
the HPF is an upper bound for the optimal punishment function of that model.

3The formal definition of an optimal punishment function is given in Definition 3 below. We use this
term in the usual sense as a punishment function that for any feasible values of p, F minimizes the total
cost of crime, T (p, F ).

4Indeed it would seem to be the simplest punishment function other than ϕ (p) = constant.
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Subsections 5.2 and 5.4 illustrate two different points. First, these two subsections
illustrate the applicability of Corollary 3. Second, they serve as introductions to two
models of crime based on the popular alternative non-expected utility (non-EU) theories,
namely, rank dependent expected utility theory (RDU) and the more radical cumulative
prospect theory (CP). We introduce the elements of RDU and CP in the paper below.
RDU and CP explain the evidence in decision theoretic contexts far better than EU.5. We
are, therefore, of the opinion that RDU and, even more so, CP, provide better approaches
to modelling in law and economics.
However, whatever position one takes on the issue of an appropriate decision theory

(EU or non-EU), our results illustrate the utility of the HPF.

2. The model

Let p ∈ [0, 1] be the probability of detection (and conviction) and let F ≥ 0 be the mone-
tary equivalent of all punishments. These are the only two instruments of law enforcement
in our model.
Consider an individual who can engage in either a legal activity that generates the

income, y0, or an illegal activity that generates the income, y1. Hence, the benefit, b, to
the individual from the illegal activity is

b = y1 − y0. (2.1)

If engaged in the illegal activity, the individual is caught with probability p, 0 ≤ p ≤ 1.
If caught, a punishment is imposed on the individual whose monetary equivalent to that
individual is F ∈ [0,∞]. Given the enforcement parameters p and F , the individual makes
only one choice: To commit the crime or not.

2.1. Cost and damages functions

Let C (p, F ) be the cost to society of law enforcement. Also, let D (p, F ) be the damage
to society caused by crime. We assume that C and D are continuous functions of p and F
with continuous first and second partial derivatives6, i.e., C,D ∈ C2. We denote partial
derivatives with subscripts, e.g., Cp = ∂C

∂p
and CpF = ∂2C

∂p∂F
. We also assume

Cp > 0, CF ≥ 0. (2.2)

Thus, the cost of law enforcement can be reduced by reducing the probability of detection
and conviction, p. In general, an increase in the punishment, F , will increase the cost

5See, for instance, Kahneman and Tversky (2000), Starmer (2000) and Wakker (2010).
6Cn is the class of continuous functions with continuous partial derivatives up to order n.
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of law enforcement (for example, increasing the length of prison sentences). We note, for
future reference, the special case below.

Definition 1 (Ideal fine): The case CF = 0 can be thought of as that of an ideal fine,
which has a fixed administrative cost and involves a transfer from the offender to the victim
or society (so there is no aggregate loss to society other than the fixed administrative cost).7

2.2. Society’s objective

Let
T (p, F ) = C (p, F ) +D (p, F ) , (2.3)

be the total cost to society of crime. Society aims to choose p and F so as to minimize
T (p, F ). We assume that

[TF ]F=0 < 0. (2.4)

Lemma 1 : If F = Fopt minimizes T (p, F ) with respect to F , given p, then Fopt > 0.

Proof : (2.4) ensures that total costs can be reduced by raising the punishment to just
above zero, hence F = 0 is not optimal. Hence, Fopt > 0. �.

3. Punishment functions

Society aims to choose p and F so as to minimize the total cost, T (p, F ), of crime and
of law enforcement. We carry out this optimization problem in two steps. First, we
ask whether, for each given p, there is a level of punishment, F = ϕ (p), that minimizes
T (p, ϕ (p)). If the existence of such an ‘optimal punishment function’is assured, then we
could ask whether there exists a probability, p, that minimizes T (p, ϕ (p)). Below, we give
formal definitions. First, we define a punishment function (optimal or otherwise), then we
define an optimal punishment function.

Definition 2 (Punishment function): By a punishment function we mean a function
ϕ (p) : [0, 1]→ [0,∞] that assigns to each probability of detection and conviction, p ∈ [0, 1],
a punishment ϕ (p) ∈ [0,∞].

Note that we allow for the possibility of infinite punishments.

Definition 3 (Optimal punishment function): Let ϕ : [0, 1] → [0,∞] be a punishment
function. We call ϕ an optimal punishment function if, for all p ∈ [0, 1] such that ϕ (p) <∞,
and for all F ∈ [0,∞), T (p, ϕ (p)) ≤ T (p, F ).

7An example is the payment in some societies of blood money, where money is paid by the guilty party
directly to the victim’s family, and no further punishment is carried out.

5



Thus, an optimal punishment function ensures that the total costs to society (of en-
forcement and damages) are the lowest possible.

Proposition 1 (Existence): (a) An optimal punishment function, ϕ (p) : [0, 1] → [0,∞],
exists.
(b) If ϕ (p) <∞ then [TF (p, F )]F=ϕ(p) = 0 and [TFF (p, F )]F=ϕ(p) ≥ 0.

Proof : (a) Let p ∈ [0, 1]. The following two cases, (ai) and (aii), are mutually exclusive
and exhaustive.
(ai) Suppose that there exists an Fmax ∈ [0,∞) such that,

for all F ≥ Fmax, T (p, F ) ≥ T (p, Fmax) . (3.1)

In this case we can restrict our search for an optimal F to the non-empty compact
set [0, Fmax]. Since T (p, F ) is a continuous function of F on the non-empty compact set,
[0, Fmax], it attains a minimum at some Fopt ∈ [0, Fmax]. Set ϕ (p) = Fopt.8

(aii) Suppose that for each F ∈ [0,∞), there exists a G > F such that T (p,G) <

T (p, F ). In this case set ϕ (p) =∞.
(b) From Lemma 1 we get that ϕ (p) > 0. Hence, ϕ (p) ∈ (0,∞). It follows that,

necessarily,[TF (p, F )]F=ϕ(p) = 0 and [TFF (p, F )]F=ϕ(p) ≥ 0. �.

3.1. The hyperbolic punishment function (HPF)

A useful punishment function, with a long history in the law and economics literature, and
is extremely tractable is the hyperbolic punishment function (HPF).

Definition 4 (Hyperbolic punishment function, HPF): The hyperbolic punishment func-
tion, H (p), is defined by

H (p) =
c

p
, c > 0. (3.2)

The name derives from the fact that in p, F space, the HPF plots as a rectangular
hyperbola. Note that, for (3.2), H (0) =∞.

4. The hyperbolic punishment function as a bound for the optimal
punishment function.

We start this section with the main proposition of our paper (Proposition 2, below).
All the following results of this paper are consequences of this proposition. Proposition
2 establishes the general form of the optimal punishment function for a broad class of

8We have here made an implicit use of the axiom of choice here.
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models. Corollaries 2, 3 and 4, that follow, establish conditions under which the HPF is,
respectively, the optimal punishment function, an upper bound for the optimal punishment
function or a lower bound for the optimal punishment function. Subsections 4.1, 4.2 and 4.3
then give applications. Section 5 gives two further applications; the latter to non-expected
utility models.

Proposition 2 : Consider the following class of total cost functions:

T (p, F ) = Π (p) + π (p) Φ (α (p) + β (p) Ψ (F )) , (4.1)

where
Π, π,Φ, α, β,Ψ are C2, (4.2)

π (p) > 0, β (p) ≥ 0,Ψ′ (F ) > 0, (4.3)

Φ′ (α (p) + β (p) Ψ (0)) < 0, (4.4)

Φ′ (c) = 0,Φ′′ (c) ≥ 0 for, at most, one c ∈ R. (4.5)

Let ϕ be the optimal punishment function (Definition 3 and Proposition 1). Then, either

ϕ (p) =∞, (4.6)

or

ϕ (p) = Ψ−1
(
c− α (p)

β (p)

)
, c ∈ R, Φ′ (c) = 0,Φ′′ (c) ≥ 0. (4.7)

Proof : From (4.1) and (4.2) we get

TF (p, F ) = π (p) β (p) Ψ′ (F ) Φ′ (α (p) + β (p) Ψ (F )) , (4.8)

TFF (p, F ) = π (p) β (p) Ψ′′ (F ) Φ′ (α (p) + β (p) Ψ (F ))

+ π (p) [β (p) Ψ′ (F )]
2

Φ′′ (α (p) + β (p) Ψ (F )) . (4.9)

From (4.3), (4.4) and (4.8) we get that (2.4) is satisfied. Hence, by Proposition 1, an
optimal punishment function, ϕ : [0, 1]→ [0,∞], exists. If ϕ (p) =∞, then this establishes
(4.6). Suppose now that ϕ (p) < ∞. Then from Proposition 1, [TF (p, F )]F=ϕ(p) = 0 and
[TFF (p, F )]F=ϕ(p) ≥ 0. Hence, from (4.3) and (4.8), Φ′ (α (p) + β (p) Ψ (ϕ (p))) = 0 and
Φ′′ (α (p) + β (p) Ψ (ϕ (p))) ≥ 0. But, by (4.5), Φ′ (c) = 0,Φ′′ (c) ≥ 0 hold for at most,
hence exactly one, c ∈ R. Hence α (p) + β (p) Ψ (ϕ (p)) = c. Hence, ϕ (p) = Ψ−1

(
c−α(p)
β(p)

)
.

�.
The following four corollaries are immediate consequences of Proposition 2.
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Corollary 1 : Suppose Φ′ (x) 6= 0 for any x ∈ R. Then, for all p ∈ [0, 1], ϕ (p) = ∞.
Thus, in this case and for any given probability of detection, p ∈ [0, 1], the optimal
punishment function specifies an infinite punishment.

Corollary 2 : Suppose that, in Proposition 2, α (p) = 0, β (p) = p and Ψ (F ) = F . Then
ϕ (p) = c

p
, i.e., the optimal punishment function is the hyperbolic punishment function.

Corollary 3 : Suppose that, in Proposition 2, c−α(p)
β(p)

≤ Ψ
(
c
p

)
. Then ϕ (p) ≤ c

p
. Thus, in

this case, the hyperbolic punishment function is an upper bound for the optimal punish-
ment function.

Corollary 4 : Suppose that, in Proposition 2, c−α(p)
β(p)

≥ Ψ
(
c
p

)
. Then ϕ (p) ≥ c

p
. Thus, in

this case, the hyperbolic punishment function is a lower bound for the optimal punishment
function.

4.1. The Polinsky and Shavell model of crime.

In their wide ranging survey, Polinsky and Shavell (2007, p.413) considered the model of
crime described immediately below. We will see that it is a special case of our framework.
Applying Corollary 2, we will see that the optimal punishment function for this model is
the hyperbolic punishment function.
We now outline the Polinsky and Shavell model. An individual earns income, y0, from

a legal activity or income, y1, from an illegal activity. Hence, the benefit to the individual
from the illegal activity, if not caught, is b = y1 − y0. If caught, a fine, F , is levied on
the individual. Individuals are expected value maximizers. With these assumptions an
individual engages in crime if, and only if,

(1− p) y1 + p (y1 − F ) ≥ y0, (4.10)

which simplifies to
b ≥ pF . (4.11)

Thus, an individual will commit a crime if, and only if, the benefit exceeds the expected
cost of crime, pF , to the individual.
Punishments in the Polinsky-Shavell model are ideal fines. Hence, the cost of enforce-

ment, C (p), is a function of the probability of detection, p, only, so CF = 0. It is also
assumed that Cp > 0. There is a distribution of the benefits from crime, b, given by the
density function z(b) > 0.9 The harm to society from an act of crime by any individual is
h > 0, the same for all individuals. Damage to society from crime is given by

D (p, F ) =
∫∞
pF

(h− b) z (b) db. (4.12)

9In Polinsky and Shavell, z has finite support. Changing to an infinite support actually simplifies the
exposition without altering any of the conclusions.
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We can view D (p, F ), in (4.12), as the sum of three terms:

D (p, F ) = h
∫∞
pF
z (b) db−

∫∞
pF

(b− pF ) z (b) db− pF
∫∞
pF
z (b) db. (4.13)

The first term on the right hand side of (4.13) is the total harm to society from crime.
The second term is the total benefit to individuals who commit crime net of the expected
punishment. The third term is the total tax revenue from punishments (which are ideal
fines).
Society desires to minimize the following total cost function

T (p, F ) = C (p) +
∫∞
pF

(h− b) z (b) db. (4.14)

The Polinsky and Shavell model can be recast in the form of Proposition 2 with the
following choices:

Π (p) = C (p) , π (p) = 1, α (p) = 0, β (p) = p, Ψ (F ) = F , (4.15)

Φ (pF ) =
∫∞
pF

(h− b) z (b) db. (4.16)

Proposition 3 (Polinsky and Shavell, 2007): The optimal punishment function for the
Polinsky and Shavell model of crime is the hyperbolic punishment function.

Proof : From (4.16) we get

Φ′ (pF ) = − (h− pF ) z (pF ) , (4.17)

Φ′ (0) = −hz (0) < 0, (4.18)

Φ′′ (pF ) = z (pF )− (h− pF ) z′ (pF ) . (4.19)

From (4.15) and (4.18) we see that Φ′ (α (p)) = Φ′ (0) < 0. Hence (4.4) holds. From
(4.17), we see that Φ′ (pF ) = 0 ⇔ pF = h. Moreover, from (4.19), we see that Φ′′ (h) =

z (h) > 0. So, (4.5) holds. Thus, all the conditions of Corollary 2 hold. Hence, the optimal
punishment function is the hyperbolic punishment function, ϕ (p) = h

p
. �.

4.2. A model where punishments are not ideal fines and where the proceeds of
crime do not enter the social welfare function.

In this subsection, we model the behaviour of individuals exactly as in Polinsky and Shavell
(2007); see subsection 4.1, above. In particular, an individual will engage in crime if, and
only, the benefit from crime, b, exceeds the expected monetary equivalent of the cost of
punishment, i.e., if, and only if, (4.11) holds. However, we modify the Polinsky and Shavell
(2007) in the following respects.
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1. In the Polinsky-Shavell model, punishment, F , takes the form of monetary fines.
On the other hand, here we assume that no monetary fines can be collected and
punishment takes the form of imprisonment.

2. We generalize the enforcement cost, C (p, F ), beyond ideal punishments. Specifically,

C (p, F ) = C0 (p) + kpF , k ≥ 0, C ′0 (p) > 0. (4.20)

In (4.20), C0 (p) is the component of law enforcement that depends only on the
probability of detection and conviction, p. Increasing p by, say, increasing the number
of police offi cers, increases C0 (p). If k = 0, then we have the case of ideal fines, as in
subsection 4.1 in the Polinsky and Shavell model. We allow for the possibility that
k > 0 and so the cost of crime prevention increases proportionally with an increase
in expected punishment.

3. The damages function takes the form

D (p, F ) = h
∫∞
pF
z (b) db, h > 0. (4.21)

Comparing (4.21) with (4.13) note the absence from (4.21) of the second and third
terms on the right hand side of (4.13). The last term on the right hand side of
(4.13), pF

∫∞
pF
z (b) db, is the total tax revenue collected from punishments. Its absence

from the right hand side of (4.21) signifies that we are assuming that prisoners do
not generate any revenue for the government (see assumption 1 above). However,
imprisonment does deter crime, which is reflected in the lower limit of integration in
(4.21). The second term on the right hand side of (4.13),

∫∞
pF

(b− pF ) z (b) db, is the
total of all benefits to individuals committing crime net of the expected monetary
equivalent of the punishment. Its absence from the right hand side of (4.21) signifies
that we are assuming that the personal benefit that individuals derive from crime
should not be counted as part of total social welfare. To take an extreme case, the
pleasure that sadists derive from torturing their victims should not be counted as
part of social welfare.

Thus total social costs from crime is now

T (p, F ) = C0 (p) + kpF + h
∫∞
pF
z (b) db, k ≥ 0. (4.22)

We need two further assumptions, absent from the Polinsky and Shavell model. The first
of them is

k < hz (0) . (4.23)

If the marginal cost of punishment, k, is too high, then it might be optimal not to punish
crime at all. Condition (4.23) guarantees that this is not the case. The second of our two
extra assumptions (Axiom 1) immediately follows the next definition.

10



Definition 5 (Single peakedness): A probability density function, z (b), is single peaked
if any horizontal line cuts the graph of z (b) in, at most, two points: (b1, z (b1)), (b2, z (b2)),
b1 ≤ b2. If b1 = b2 = b, then z′ (b) = 0. If b1 < b2, then z′ (b1) > 0 and z′ (b2) < 0.

Axiom 1 (Single peakedness): The probability density function, z (b), in (4.22) is single
peaked (Definition 5).

Most probability density functions in common use do satisfy Axiom 1; the leading
example being the density function of the normal distribution. Axiom 1, along with
the other assumptions, will guarantee that condition (4.5), of Proposition 2, holds. In
particular, they will guarantee that the conditions of Corollary 2 hold. Consequently, the
optimal punishment function for the model of this subsection will be, again, the hyperbolic
punishment function.
The model of this subsection can be recast in the form of Proposition 2 with the

following choices:

Π (p) = C0 (p) , π (p) = 1, α (p) = 0, β (p) = p, Ψ (F ) = F , (4.24)

Φ (pF ) = kpF + h
∫∞
pF
z (b) db. (4.25)

Proposition 4 : For the alternative model of crime formulated in this subsection, the
optimal punishment function is the hyperbolic punishment function.

Proof : From (4.25) we get

Φ′ (pF ) = k − hz (pF ) , (4.26)

Φ′ (0) = k − hz (0) < 0, from (4.23), (4.27)

Φ′′ (pF ) = −hz′ (pF ) . (4.28)

From (4.24) and (4.27) we see that Φ′ (α (p)) = Φ′ (0) < 0. Hence (4.4) holds. From (4.26),
we see that Φ′ (pF ) = 0 ⇔ z (pF ) = k

h
. From Axiom 1, it follows that z−1

(
k
h

)
contains

no more than two points:
(
b1,

k
h

)
,
(
b2,

k
h

)
, b1 ≤ b2. If b1 = b2 = b, then z′ (b) = 0. In this

case (4.5) holds. If b1 < b2, then z′ (b1) > 0 and z′ (b2) < 0. In this case (4.5) again holds,
with c = b2. Thus, all the conditions of Corollary 2 hold. Hence, the optimal punishment
function is the hyperbolic punishment function, ϕ (p) = c

p
, where c = b2. �.
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4.3. A model with risk averse individuals

Here we formulate a model that is similar to the Polinsky and Shavell model except that
individuals are expected utility maximizers rather than expected revenue maximizers. As-
sume that all individuals have the same utility function, u. Then an individual will commit
a crime if, and only if,

pu (y0 + b− F ) + (1− p)u (y0 + b) ≥ u (y0) , (4.29)

where b is the benefit an individual derives from crime if not caught.
In particular, let each individual have the constant absolute risk aversion utility func-

tion
u (x) = −e−x, (4.30)

then (4.29) becomes

−pe−(y0+b−F ) − (1− p) e−(y0+b) ≥ −e−y0 , (4.31)

which simplifies to
b ≥ ln

(
1− p+ peF

)
. (4.32)

As in the Polinsky and Shavell model, let the benefits from crime (if not caught) be
distributed with density z (b) > 0. And as in Polinsky and Shavell, let an individual act of
crime inflict the harm, h, on society. The total damage to society from crime is given by

D (p, F ) =

∫ ∞
b=ln(1−p+peF )

(h− b) z (b) db. (4.33)

As in Polinsky and Shavell, assume punishments are ideal fines, with cost to society of law
enforcement given by C (p), which is independent of the punishment, F . Hence, the total
cost to society of crime and law enforcement is

T (p, F ) = C (p) +

∫ ∞
b=ln(1−p+peF )

(h− b) z (b) db. (4.34)

This model can be recast in the form of Proposition 2 with the following choices

Π (p) = C (p) , π (p) = 1, α (p) = 1− p, β (p) = p, Ψ (F ) = eF . (4.35)

Φ
(
1− p+ peF

)
=

∫ ∞
b=ln(1−p+peF )

(h− b) z (b) db. (4.36)

Proposition 5 : The hyperbolic punishment function is an upper bound for the optimal
punishment function of this subsection.

12



Proof : From (4.36) we get

Φ′
(
1− p+ peF

)
= −

[
h− ln

(
1− p+ peF

)] z (ln (1− p+ peF
))

1− p+ peF
, (4.37)

Φ′′
(
1− p+ peF

)
=
z
(
ln
(
1− p+ peF

))
(1− p+ peF )2

−
[
h− ln

(
1− p+ peF

)] [z (ln (1− p+ peF
))

1− p+ peF

]′
. (4.38)

From (4.35) we get
α (p) + β (p) Ψ (0) = 1 (4.39)

From (4.37) and (4.39) we get

Φ′ (1) = −hz (0) < 0. (4.40)

From (4.40) we see that (2.4) is satisfied. From (4.37) we get

Φ′
(
1− p+ peF

)
= 0⇔ h− ln

(
1− p+ peF

)
= 0, (4.41)

from which we get
Φ′
(
1− p+ peF

)
= 0⇔ 1− p+ peF = eh. (4.42)

From (4.38) and (4.42) we get

Φ′′
(
eh
)

=
z (h)

e2h
> 0. (4.43)

From (4.42) and (4.43) we see that (4.5) is satisfied with c = eh. Hence, Proposition 2
applies.
Since

eh + p− 1

p
≤ eh

p
≤ e

eh

p , (4.44)

we get, from Corollary 3, that the HPF is an upper bound for the optimal punishment
function for this model. �.

Remark 1 : The optimal punishment function for the model of this subsection is ϕ (p) =

ln eh+p−1
p

, which is clearly less tractable than the HPF, H (p) = eh

p
.
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5. Non-expected utility models of crime.

Both the Polinsky and Shavell (2007) model of crime (subsection 4.1, above) and the al-
ternative model of crime (subsection 4.2, above) assume that decision makers are expected
value maximizers. This is equivalent to assuming that decision makers are risk neutral.
Since, at least, Bernoulli (1738) the assumption of expected revenue maximization has
been known to be very restrictive. For example, under this assumption, no person will
gamble or insure.
Suppose we have n states of the world, state i occurring with probability pi > 0,

i = 1, 2, ..., n,
∑n

i=1pi = 1. Consider the lottery, L, that pays the monetary value, yi, if
state i occurs. We shall call, yi, an outcome. It could be, for example, income, wealth or
the value of an asset. The expected value of this lottery is

E (L) =
∑n

i=1piyi. (5.1)

An expected value maximizer will choose that action that maximizes (5.1). Note that
(5.1) is a bilinear form, i.e., it is linear in pi given yi and it is also linear in yi given pi.
It is this bilinearity that makes an expected value maximizer risk neutral. To incorporate
more general attitudes to risk, such as risk aversion or risk seeking, we have to allow
non-linearity in pi or non-linearity in yi (or both).
Expected utility theory (EU) allows non-linearity in yi but retains linearity in pi (recall

the example of subsection 4.3, above). Specifically, it is assumed that a decision maker
has a utility function, u. The expected utility of the lottery, L, is then

EU (L) =
∑n

i=1piu (yi) . (5.2)

Because of the linearity of (5.2) in pi, the attitude to risk of an expected utility maximizer
is entirely captured by the shape of his utility function, u. For example, he is risk averse
if, and only if, u is strictly concave (as in the example of subsection 4.3, above). He is risk
seeking if, and only if, u is strictly convex.
However, it has been well known, at least since Allais (1953), that EU is not a satisfac-

tory theory of decision making under risk. The utility function, u, can either be strictly
concave or strictly convex but not both. However, risk aversion and risk seeking behaviour
are often seen together in the same individual. Kunreuther et al. (1978) show that EU is
unable to explain the poor take up of insurance against earthquakes, floods and hurricanes.
Rabin (2000) shows that a reasonable degree of risk aversion for low stake gambles implies
an absurdly high degree of risk aversion for high stake gambles. For example, it follows
from his “calibration theorem”that an individual who (quite reasonably) would reject the
gamble lose 9c with probability half or win 10c with probability half, at all levels of wealth,
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would also, necessarily, reject the following gamble: Lose $1 with probability half or win
an infinite amount of wealth with probability half; which is absurd.
In the context of criminal activity, specifically tax evasion, Dhami and al-Nowaihi

(2007) show that the predictions of EU are both quantitatively incorrect (by factors of up
to 100) and qualitatively incorrect.10 They also show that, by contrast, the evidence on
tax evasion is easily explained by prospect theory (PT).
These are just some examples from the large literature that has documented the system-

atic and robust failure of EU. As long ago as 1957, Luce and Raiffa (two of the founders)
described the then available evidence against EU as “bolstered by a staggering amount
of empirical data”.11 More recently, Camerer and Loewenstein (2004) wrote “... the sta-
tistical evidence against EU is so overwhelming that it is pointless to run more studies
testing EU against alternative theories ... ”.12 Comprehensive reviews of the violation of
EU can be found in Kahneman and Tversky (2000), Starmer (2000) and Wakker (2010).
It is surprising, therefore, that the bulk of the research in economics in general and law
and economics in particular, is still conducted in an EU framework.
The most successful of the alternatives to EU are rank dependent expected utility

(RDU) and cumulative prospect theory (CPT). Both employ non-linear transformation of
probability by the device of a probability weighting function, which we turn to next.

5.1. Probability weighting functions.

Definition 6 (probability weighting functions): A probability weighting function is a
strictly increasing map from [0, 1] onto [0, 1].

Remark 2 : It follows from Definition 6 that a probability weighting function, w, is
continuous with a continuous inverse, w−1, and w (0) = 0 and w (1) = 1.

Definition 7 (Inverse-S shaped probability weighting functions): A probability weighting
function, w : [0, 1]→ [0, 1] is inverse-S shaped if there exists p̃ ∈ (0, 1) such that w (p) > p

for p < p̃ and w (p) < p for p > p̃.

An inverse-S shaped probability weighting function overweights low probabilities but
underweights high probabilities, in agreement with the evidence; see, for instance, Starmer
(2000) and Wakker (2010).

10The qualitative incorrectness in this case refers to the Yitzhaki puzzle. Under plausible attitudes to
risk, EU predicts that when the tax rate increases, taxpayers will evade less. In the limit when the tax
rate is a 100%, all income is declared. This contradicts the bulk of evidence; see Dhami and al-Nowaihi
(2007) for the details.
11See Luce and Raiffa (1957), p. 37, lines 14,15.
12See Camerer and Loewenstein, 2004, p20, second paragraph.
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Example 1 : A popular example of a probability weighting function is that of Prelec
(1998):

w (p) = e−β(− ln p)
α

, α > 0, β > 0. (5.3)

The Prelec probability weighting function is inverse-S shaped if, and only if, α < 1. A
sketch of the Prelec function for α = 0.65 and β = 1, as estimated by Prelec (1998), is
given below.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.5

1.0

p

w(p)

Figure 5.1: The Prelec (1998) function, w (p) = e−(− ln p)
0.65

.

Remark 3 : The Prelec probability weighting function, w (p) = e−(− ln p)
α

, α > 0, has the
fixed point, p̃ = e−1 ' 0.37, in broad agreement with the evidence. For most illegal activi-
ties, probabilities of detection and conviction are well below this value. Other probability
weighting functions, when estimated, give similar results.

Lemma 2 : Let w : [0, 1]→ [0, 1] be an inverse-S shaped probability weighting function.
Let w (p̃) = p̃ ∈ (0, 1), w (p) ≥ p for p ∈ [0, p̃] and w (p) ≤ p for p ∈ [p̃, 1]. Let λ ≥ 1.
Then λw(p)

λw(p)+w(1−p) ≥ p for all p ∈ [0, p̃].

Proof : Suppose that for some p ∈ [0, p̃], λw(p)
λw(p)+w(1−p) < p (hence, p 6= 0). It follows that

λp
λw(p)+w(1−p) < p and, hence, λw(p)+w(1−p)

λ
> 1. Hence λ(1−p)

λw(p)+w(1−p) < 1−p. But 1−p ∈ [p̃, 1]

and, hence, w (1− p) ≤ 1 − p. Hence, λw(1−p)
λw(p)+w(1−p) < 1 − p. Hence, w(1−p)

λw(p)+w(1−p) < 1 − p,
since λ ≥ 1. Hence, λw(p)

λw(p)+w(1−p) + w(1−p)
λw(p)+w(1−p) < p + 1 − p, i.e., 1 < 1, which cannot be.

Hence, for all p ∈ [0, p̃], λw(p)
λw(p)+w(1−p) ≥ p. �.

5.2. Rank dependent expected utility (RDU).

Here we give a brief introduction to rank dependent expected utility (RDU) as a prelude to
reformulating the Polinsky and Shavell model (subsection 4.1) under RDU, below. RDU
was first developed by Quiggin (1982, 1993). Mark Machina (2008) described RDU as the
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most notable13 non-expected utility theory of decision making. It is a generalization of EU.
So all phenomena that can be explained by EU can also be explained by RDU. However,
the converse is not true. A large number of phenomena that can be easily explained by
RDU cannot be explained by EU. The Allais paradoxes are, maybe, the most famous
examples.
Suppose that the possible outcomes of the lottery, L, are ordered from lowest to highest:

y1 ≤ y2 ≤ ... ≤ yn. (5.4)

As before, let the probability of yi be pi ≥ 0, i = 1, 2, ..., n,
∑n

i=1 pi = 1. Let w be a
probability weighting function. We define decision weights, π1, π2, ..., πn, as follows.

Definition 8 (Decision weights under RDU): Consider ranked outcomes, y1 ≤ y2 ≤ ... ≤
yn. Let the probability of outcome yi be pi ≥ 0, i = 1, 2, ..., n,

∑n
i=1 pi = 1. Let w be

a probability weighting function (Definition 6). The decision weights, π1, π2, ..., πn, are
defined by14 πi = w

(∑n
j=i pj

)
− w

(∑n
j=i+1 pj

)
, i = n, n− 1, ..., 2, 1.

Remark 4 : The decision weights in Definition 8 might look computationally complex
but they have an intuitive explanation based on the shape of the underlying probability
weighting function. For instance, if the weighting function is convex (respectively concave)
throughout then the decision maker is pessimistic (respectively optimistic) in the sense that
he/she places relatively higher (respectively lower) decision weight on smaller outcomes.
These results hold even if the utility function is linear (which in the case of EU would have
implied that the decision maker is risk neutral.15

Example 2 (Decision weights under RDU, n = 2): Consider ranked outcomes, y1 ≤ y2.
Let the probability of outcome yi be pi ≥ 0, i = 1, 2, p1 + p2 = 1. Let w be a probability
weighting function (Definition 6). The decision weights, π1, π2, are then π2 = w (p2),
π1 = w (p1 + p2)− w (p2) = 1− w (p2).

Definition 9 (Rank dependent expected utility): Consider a decision maker with utility
function, u, over outcomes (such as income or wealth levels). Consider the ranked out-
comes, y1 ≤ y2 ≤ ... ≤ yn. Let the probability of outcome yi be pi ≥ 0, i = 1, 2, ..., n,∑n

i=1 pi = 1. Let w be a probability weighting function (Definition 6). Let π1, π2, ..., πn,
be the decision weights as in Definition 8. Then his/her rank dependent expected utility
function is ∑n

i=1πiu (yi) . (5.5)

13At the end of the fourth paragraph, p519.
14In what follows, it might be useful to recall the mathematical convention that ifN > n then

∑n
j=N pj =

0 and, hence, w
(∑n

j=N pj

)
= 0.

15For a textbook treatment of these topics, the reader can consult Wakker (2010).
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Axiom 2 : The objective of a decision maker under RDU is to maximize his/her rank
dependent expected utility (Definition 9), given the constraints he/she faces.

Remark 5 : EU is a special case of RDU. To see this, take the probability weighting
function in Definition 8 to be w (p) = p, then πi = pi and (5.5) reduces to (5.2).

5.3. Crime under rank dependent expected utility (RDU).

We reformulate the Polinsky and Shavell model of crime under RDU, then use Corollary 3
to show that the hyperbolic punishment function is an upper bound for the optimal pun-
ishment function for the reformulated Polinsky and Shavell model. A similar construction
and a similar result can be derived for the alternative model of subsection 4.2.
As before, we consider an individual who can earn either y0 from a legal activity or y1

from an illegal activity. Hence, the benefit from crime is b = y1 − y0. If the individual
engages in the illegal activity he is caught with probability, p, and bears punishment whose
monetary value is F ≥ 0. Clearly, the ranking of the two outcomes of the illegal activity
is y1 − F ≤ y1. Let w be the probability weighting function of the decision maker. From
Example 2, it follows that the decision weights are π2 = w (1− p) and π1 = 1−w (1− p).
As in the Polinsky and Shavell model, let the utility of the individual be u (y) = y.
Hence, the decision maker’s rank dependent expected utility from the illegal activity is
[1− w (1− p)] (y1 − F ) + [w (1− p)] y1. It follows that the decision maker will engage
in the illegal activity if, and only if, [1− w (1− p)] (y1 − F ) + [w (1− p)] y1 ≥ y0, which
simplifies to

b ≥ [1− w (1− p)]F . (5.6)

Remark 6 : 1. From the assumption that u (y) = y, it does not follow that the decision
maker is risk neutral (unlike the case of EU). The reason is that non-linear weighting of
probabilities can introduce risk aversion (or risk seeking) despite a linear utility function
(see Remark 4 above).
2. For the special case, w (1− p) = 1 − p, (5.6) reduces to (4.11), as is to be expected.
Comparing (5.6) and (4.11) the reader may conjecture, correctly as it will turn out, that
the following development will exactly mirror that of the Polinsky and Shavell model but
with p replaced by 1− w (1− p).

As in the Polinsky and Shavell model, punishments are ideal fines, so the cost of
detection and punishment, C (p), is independent of F . Damage to society from crime is
slightly more general and is given by16

D (p, F ) =
∫∞
[1−w(1−p)]F (h− b) z (b) db. (5.7)

16For the special case, w (1− p) = 1− p, (5.7) reduces to (4.12), as is to be expected.
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This model can be recast in the form of Proposition 2 with the following choices:

Π (p) = C (p) , π (p) = 1, α (p) = 0, β (p) = 1− w (1− p) ,Ψ (F ) = F , (5.8)

Φ ([1− w (1− p)]F ) =
∫∞
[1−w(1−p)]F (h− b) z (b) db. (5.9)

Proposition 6 : Assume that the decision maker has an inverse-S shaped probability
weighting function (Definition 7) with p ∈ (0, p̃]. Then the hyperbolic punishment function
is an upper bound for the optimal punishment function.

Proof : Since p ∈ (0, p̃] it follows, from Definition 7, that w (1− p) ≤ 1−p and, hence,
1− w (1− p) ≥ 1− (1− p). From (5.8) it then follows that

β (p) ≥ p (5.10)

To simplify the algebraic formulae we will write β for β (p). From (5.9) we get

Φ′ (βF ) = − (h− βF ) z (βF ) , (5.11)

Φ′ (0) = −hz (0) < 0, (5.12)

Φ′′ (βF ) = z (βF )− (h− βF ) z′ (βF ) . (5.13)

From (5.8) and (5.12) we see that Φ′ (α (p)) = Φ′ (0) < 0. Hence (4.4) holds. From (5.11),
we see that Φ′ (βF ) = 0⇔ βF = h. Moreover, from (5.13), we see that Φ′′ (βF ) = z (h) >

0. So, (4.5) holds. Thus, all the conditions of Corollary 3 hold. Hence, the hyperbolic
punishment function is an upper bound for the optimal punishment function. �.

Remark 7 : Recall, from Remark 3, that (0, p̃] is the empirically relevant range.

Proposition 6 demonstrates the usefulness of the HPF. For a decision maker who uses
RDU, under the relevant assumptions, if a HPF cannot deter the decision maker from
crime nor can the optimal punishment function.

5.4. Cumulative prospect theory (CP).

Cumulative prospect theory (Tversky and Kahneman, 1992), henceforth, CP, is a more
radical departure from EU than is RDU. RDU is a special case of CP. All phenomena that
can be explained by RDU (e.g., the Allais paradoxes) can also be explained by CP. But
the converse is not the case. There are many important economic phenomena that can be
explained by CP but cannot be explained by EU or RDU. The reason for this is that CP
captures a number of robust psychological findings that are absent from EU and RDU.
These are:
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1. Reference dependence.

2. Loss aversion.

3. Declining sensitivity.

4. Cumulative transformation of probability.

Reference dependence states that people are sensitive not to final levels of wealth,
income, assets or bundles of goods but to the deviations of these from a reference point.17

In other words, people are sensitive to gains and losses relative to a reference point, rather
than absolute levels. By convention, the reference point is taken to be at the origin and the
utility at the reference point is taken to be zero. Tversky and Kahneman (1992) proposed
the following utility function, to capture reference dependence:

v (x) =

{
xγ if x ≥ 0 (domain of gains)

−λ (−x)θ if x < 0 (domain of losses)
, (5.14)

where γ, θ, λ are constants. The parameters satisfy 0 < γ ≤ 1, 0 < θ ≤ 1. λ > 1 is
known as the coeffi cient of loss aversion. Tversky and Kahneman (1992) estimated that
γ ' θ ' 0.88 and λ ' 2.25. These parameter values are used to plot (5.14) in figure 5.2,
below.

­100 ­80 ­60 ­40 ­20 20 40 60 80 100

­100

100

x

v(x)

Figure 5.2: The utility function under CP

Figure 5.2 also illustrates loss aversion: A loss of, say, $100 is more painful than a gain
of $100 is pleasurable. In addition the utility function is concave for gains but convex for
losses; however, this barely perceptible (because γ ' θ ' 0.88).

Remark 8 : That estimated utility functions under CP are almost piecewise linear is
important. It means that attitudes to risk are almost entirely captured by loss aversion

17The following simple experiment illustrates the point. Fill three bowls with water: Fill the one on the
left with hot water, the one in the middle with lukewarm water and the one on the right with cold water.
Put your left hand in the hot water and your right hand in the cold water. After a few minutes put both
hands in the lukewarm water. The left hand will feel the lukewarm water to be cold while the right hand
will feel the lukewarm water to be hot.
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and non-linear transformation of probability, rather than the shape of the value function.
This is diametrically opposite to EU, where attitudes to risk are entirely captured by the
shape of the utility function.

Reference dependence, loss aversion and declining sensitivity are all absent from EU
and RDU. Cumulative transformation of probability is absent from EU but is, of course,
present in RDU (recall subsection 5.2). However, it is applied differently in CP, as will be
apparent from the following definition and example.

Definition 10 (Decision weights under CP): Consider ranked outcomes, y−m ≤ y−m+1 ≤
... ≤ y−1 ≤ y0 = 0 ≤ y1 ≤ y2 ≤ ... ≤ yn. Let the probability of outcome yi be
pi ≥ 0, i = −m,−m + 1, ..., n,

∑n
i=−m pi = 1. Let w+, w− be a probability weight-

ing functions (Definition 6) for gains and losses, respectively. The decision weights,
π−m, π−m+1, ..., π−1, π0, π1, π2, ..., πn, are defines as follows.18

πi = w+
(∑n

j=i pj

)
− w+

(∑n
j=i+1 pj

)
, i = n, n− 1, ..., 2, 1 (domain of gains),

π−i = w−
(∑−i

j=−m pj

)
− w−

(∑−i−1
j=−m pj

)
, i = m,m− 1, ..., 2, 1 (domain of losses).

Example 3 (Decision weights under CP, n = m = 1): Consider ranked outcomes, y−1 ≤
0 ≤ y1. Let the probability of outcome yi be pi ≥ 0, i = −1, 1, p−1 + p1 = 1. Let w+, w−1

be a probability weighting functions (Definition 6) for gains and losses, respectively. The
decision weights, π−1, π1, are then: π1 = w+ (p1), π−1 = w− (p−1).

Remark 9 : In general, Definition 10 does not yield a cumulative transformation of
probabilities (this is most obvious from Example 3). For that to be the case, we would
need w− (p) = 1− w+ (1− p). However, the empirical evidence suggests w− (p) = w+ (p);
see Prelec (1998). In fact, for the case of exactly one outcome in each of the domain of
gains and losses, CP reduces to the original prospect theory of Kahneman and Tversky
(1979).

Definition 11 (The value function under CP): Consider a decision maker with a strictly
increasing utility function, v, over outcomes relative to a reference point and satisfying
v (0) = 0. Consider ranked outcomes, y−m ≤ y−m+1 ≤ ... ≤ y−1 ≤ y0 = 0 ≤ y1 ≤
y2 ≤ ... ≤ yn. Let the probability of outcome yi be pi ≥ 0, i = −m,−m + 1, ..., n,∑n

i=−m pi = 1. Let w+, w−1 be a probability weighting functions (Definition 6) for gains
and losses, respectively. Let π−m, π−m+1, ..., πn, be the decision weights as in Definition
10. Then his/her value function, V , is

V =
∑n

i=−mπiv (yi) . (5.15)

18π0 is not defined. This will be explained in Remark 4, below.
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Example 4 : Note that π0 is not defined. This does not matter, since v (0) = 0, we can
choose to give π0 any convenient value.

Axiom 3 : The objective of a decision maker under CP is to maximize his/her value
function (Definition 5.15), given the constraints he/she faces.

5.5. Crime under cumulative prospect theory (CP).

We reformulate the Polinsky and Shavell model of crime under CP, then use Corollary
3 to show that the hyperbolic punishment function is an upper bound for the optimal
punishment function for the Polinsky and Shavell model under CP. A similar construction
and a similar result can be derived for the alternative model of subsection 4.2.
As before, we consider an individual who can earn either y0 from a legal activity

or y1 from an illegal activity. Hence, the benefit from crime is b = y1 − y0. If the
individual engages in the illegal activity he is caught with probability, p, and forced to pay
a punishment, F ≥ 0. Clearly, the ranking of the two outcomes of the illegal activity is
y1 − F ≤ y1.
We need to specify the reference point(s). Let ync be the reference point for income if

the individual decides not to engage in the illegal activity. Let yc be the reference point
for income if the individual decides to engage in the illegal activity. There are three cases
that could be considered:

1. y1 − F is in the domain of gains (y1 − F − yc ≥ 0). Hence, y1 is also in the domain
of gains.

2. y1 is in the domain of losses (y1 − yc < 0). Hence, y1 − yc − F is also in the domain
of losses.

3. y1 − F is in the domain of losses (y1 − F − yc < 0) but y1 is in the domain of gains
(y1 − yc ≥ 0).

The analysis in cases 1 and 2 is very similar to that under RDU. So, in what follows, we
will concentrate on the third case only. Let the individual’s utility function be v. Hence,
his utility from not committing the crime is v (y0 − ync). Let his probability weighting
functions for gains and losses be, respectively, w+ and w−. His utility from committing
the crime is w− (p) v [y1 − F − yc] + w+ (1− p) v [y1 − yc]. This individual will engage in
the illegal activity if, and only if,

w− (p) v [y1 − F − yc] + w+ (1− p) v [y1 − yc] ≥ v (y0 − ync) . (5.16)

We make three simplifying assumptions:
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1. w− = w+ = w. This assumption is, in fact, consistent with the evidence.

2. x ≥ 0 ⇒ v (x) = x, x < 0 ⇒ v (x) = λx, where λ > 1 is the coeffi cient of loss
aversion.19

3. yc = ync = y0, i.e., the reference point is not state dependent.20

With the above simplifying assumptions, and recalling that v (0) = 0 and y1 − y0 = b,
(5.16) becomes

λ [b− F ]w (p) + bw (1− p) ≥ 0, (5.17)

which yields

b ≥ λw (p)

λw (p) + w (1− p)F . (5.18)

As in the Polinsky and Shavell model, punishments are ideal fines, so the cost of
detection and punishment, C (p), is independent of F . On account of (5.18), the damage
to society from crime is slightly more general and is given by

D (p, F ) =
∫∞

λw(p)
λw(p)+w(1−p)F

(h− b) z (b) db. (5.19)

This model can be recast in the form of Proposition 2 with the following choices21:

Π (p) = C (p) , π (p) = 1, α (p) = 0, β (p) =
λw (p)

λw (p) + w (1− p) ,Ψ (F ) = F , (5.20)

Φ

(
λw (p)

λw (p) + w (1− p)F
)

=
∫∞

λw(p)
λw(p)+w(1−p)F

(h− b) z (b) db. (5.21)

Proposition 7 : Assume that the decision maker has an inverse-S shaped probability
weighting function (Definition 7) with p ∈ (0, p̃]. Then the hyperbolic punishment function
is an upper bound for the optimal punishment function.

Proof : Since p ∈ (0, p̃] it follows, from (5.20) and Lemma 2, that

β (p) ≥ p (5.22)

To shorten the algebraic formulae, write β for β (p). From (5.21) we get

Φ′ (βF ) = − (h− βF ) z (βF ) , (5.23)

19The piecewise linear approximation to the value function is found to be empirically a good one (recall
Remark 8).

20The assumption yc = ync = y0 is made purely to simplify the exposition. Dropping this assumption
only results in longer formulas.
21More generally, α (p) = y0−ync

λw(p)+w(1−p) − (y0 − yc). Setting yc = ync = y0 gives α = 0.
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Φ′ (0) = −hz (0) < 0, (5.24)

Φ′′ (βF ) = z (βF )− (h− βF ) z′ (βF ) . (5.25)

From (5.20) and (5.24) we see that Φ′ (α (p)) = Φ′ (0) < 0. Hence (4.4) holds. From (5.23),
we see that Φ′ (βF ) = 0⇔ βF = h. Moreover, from (5.25), we see that Φ′′ (h) = z (h) > 0.
So, (4.5) holds. Thus, all the conditions of Corollary 3 hold. Hence, the hyperbolic
punishment function is an upper bound for the optimal punishment function. �.

Remark 10 : Under the conditions of Proposition 7 (but not using the simplification
yc = ync = y0), using the Prelec probability weighting function (5.3) and using Proposition
2, it follows that the optimal punishment function is

ϕ (p) =
{
ync − y0 + (c+ y0 − yc)

[
λe−β(− ln p)

α

+ e−β(− ln(1−p))
α
]}

λ−1eβ(− ln p)
α

.

From the above, we can see how intricate an optimal punishment function can be compared
to the HPF, H (p) = c

p
, thus illustrating the utility of the latter. However, under the

conditions of Proposition 7, ϕ (p) ≤ H (p) and, for many purposes we can work with the
much more tractable, H (p), rather than ϕ (p).

6. Conclusions

The hyperbolic punishment function (HPF) is popular in the law and economics literature.
A typical justification for its usage is that it is very tractable. Under risk-neutrality and
certain classical assumptions about the objective function, the HPF is an optimal punish-
ment function; see, e.g., Polinsky and Shavell (2007). We demonstrate the optimality of
the HPF for a much wider class of models. Furthermore, we show that the HPF is a lower
(upper) bound for the optimal punishment functions for an even wider class of models.
Hence, if the HPF can (cannot) deter crime then all (none) of the optimal punishment
functions in that class can deter crime.
While our contribution is technical in nature it is potentially, as we noted above, of

much practical use. For many problems of interest in Law and Economics, the focus
of the paper need not necessarily be about optimal punishment functions. Rather, the
researcher might wish to use a punishment function that is tractable, in order to address
other important issues. This should justify the existing popularity of the HPF and also
underpin its greater usage.
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