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Abstract

In this paper we model an oligopoly where �rms invest in abatement technologies
and emissions are taxed by the government. We show that a stricter environmental
policy does not necessarily lead to an increase in �rms�R&D investment into cleaner
production methods. In fact, the emission-to-output ratio may be a U-shaped func-
tion of the environmental damage parameter. This result holds both when the
government can commit and in the social optimum. When the government cannot
commit, this relationship is ambiguous except in markets with few �rms. Our re-
sults further suggest that if the emission-to-output ratio is decreasing throughout,
output is a U-shaped function of the environmental damage.
Keywords: Environmental innovation, environmental taxation, commitment,

oligopoly.
JEL classi�cation: L12, Q55, Q58
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1 Introduction

Environmental policy gives polluting �rms an incentive to do R&D and invest in cleaner

ways of producing, to reduce their compliance costs. There is a large literature on the

e¤ect of environmental policy on innovation (see e.g. Requate (2005) for an overview)

starting from Kneese and Schultze (1978). One question that has received relatively little

attention is: When the environmental policy becomes stricter and stricter, will �rms invest

more and more in environmental R&D? Our immediate intution might suggest that this

should be the case, and indeed it is in models where a �rm�s marginal abatement costs only

depend on its emissions (Downing and White (1986), Milliman and Prince (1989), Jung

et al. (1996) and Requate and Unold (2003).) However, taking the output market into

account, another element comes into play. Firms responds in two ways to an increase in the

tax rate on emissions: by investing more in environmental R&D and by reducing output.

The latter response, in turn, reduces �rms�incentives to conduct environmental R&D. In

other words, the pro�tability of investing in a reduction of the emissions-to-output ratio

depends on the eventual level of output. If the �rm will produce very little because of

a very strict environmental policy, it also has little incentive to invest in environmental

R&D. This suggests that while output is decreasing in the strictness of environmental

policy, the emissions-to-output ratio might be U-shaped. However, the e¤ects might

conceivably also be reversed: When an ever stricter environmental policy prompts a �rm

to invest more and more in environmental R&D, production might eventually become so

clean that it starts to increase again.

The e¤ects of a stricter environmental policy on emission intensity and output, and the

interactions between these variables, are therefore far from clear. However, this subject

has hardly been researched so far.

Ulph (1997) is the most important contribution related to the topic of our paper. The

author sets up a free-entry Cournot oligopoly model with very general functional forms,

treating the environmental tax rate t as an exogenous variable. In stage one, �rms decide

whether to enter the market. Then in stage two of the �simultaneous entry�game, the

�rms in the market simultaneously spend R&D money F on reducing their emission-to-
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output ratio " and set their output levels q.1 In the �sequential entry�game, the �rms

�rst set F (in stage two) and then q (in stage three). Ulph (1997) �nds that in both

games, an increase in t reduces q if and only if:2

"(F )"00(F )� ["(F )]2 > 0 (1)

The e¤ect of t on R&D spending is ambiguous, however when t is low, an increase in

t raises R&D spending in both models.

Katsoulacos and Xepapadeas (1996) set up a Cournot oligopoly with technology

spillovers, where the government taxes emissions and subsidizes R&D. They assume, as

we will do, a linear demand function and a quadratic R&D cost function. Their �nding

that the e¤ect of t on q is ambiguous is in accordance with Ulph (1997), because the

sign of the LHS of (1) is ambiguous for a quadratic R&D cost function. Katsoulacos and

Xepapadeas (1996) further �nd that R&D spending is increasing in the tax rate.

A separate research strand has been dealing with the issue of R&D investment into

cleaner technologies in the context of cross-border competition. In an international

Cournot duopoly, Ulph (1994) �nds that the e¤ect of an increase in the domestic tax

rate on domestic R&D is ambiguous, both when foreign output is given and when it is

endogenous (but foreign R&D is given). An increase in the domestic tax rate reduces

domestic full marginal cost (marginal production cost plus implicit tax t" on output) and

increases foreign production if and only if (1) holds. Ulph and Ulph (1996) show that

the same result holds if �rms can choose how much to spend on reducing marginal pro-

duction costs as well as on emission intensity. Simpson and Bradford (1993) also set up

an international Cournot duopoly, with investment that simultaneously reduces marginal

production costs and emission intensity. In spite of this complication, it seems that their

results are still driven by the "(F ) function, since with an exponential "(F ) function, the

LHS of (1) is zero and the domestic tax rate has no e¤ect on domestic full production

costs or foreign output, as Ulph (1994) has shown. However, with a logarithmic "(F )

function, Simpson and Bradford (1993) show that the e¤ect is ambiguous.

Finally, similar results have been found in di¤erent but related settings. In an interna-

1To assist with comparisons, we will use the notation of our own model when discussing other papers.
2Ulph (1997, p. 47) mistakenly writes "00(F ) < 0: This should be "00(F ) > 0:

3



tional Cournot duopoly where the two �rms buy an environmental input from an eco-�rm,

Feess and Muehlheusser (2002) show that in general, the e¤ect of the domestic tax rate

on a �rm�s demand for the environmental input is ambiguous. In a model of perfect

competition where �rms can switch to a clean technology at a certain cost, Bréchet and

Meunier (2011) show that the number of clean �rms is inverse U-shaped in the emission

tax rate.

In this paper we aim at disentangling the interplay of the two e¤ects of the environ-

mental policy mentioned above and shed some light on the circumstances that will make

the emissions-to-output ratio be U-shaped or strictly decreasing in the strictness of the

policy. To this aim, we build on and extend the framework in Ulph (1997). We depart

from Ulph in that we endogenize the choice of the emissions tax rate. In particular, the

government chooses this tax rate given the (perceived) environmental damage. We con-

templace the cases where the government can and cannot commit to the emissions tax

rate. The latter case is interesting because the government might be tempted to adjust its

environmental policy once �rms have chosen their emission intensity. Ulph (1997), along

with the other papers discussed so far, assumes that the government will not give in to

this temptation.3 We also di¤er from Ulph (1997) in that we assume that the R&D cost

function is quadratic. This assumption is widely used in the context of R&D investment

as it implies the existence of diminishing returns to R&D investments. As a benchmark,

we also solve the social optimum.

Our results show that the emission-to-output ratio may be a U-shaped function of the

(perceived) environmental damage. This result holds both when the government is able

to commit to the tax rate as well as when it is not. The same may also apply in the social

optimum. Our results further suggest that if the emission-to-output ratio is decreasing

throughout, output is a U-shaped function of the environmental damage. The U-shaped

function of the emissions-to-output ratio will tend to arise in situations where the R&D

costs and number of �rms are relatively large and the size of the market is relatively small.

3There is a literature that compares the outcomes of games where the government can and cannot
commit to its environmental policy, the latter is also called time consistency (Amacher and Malik, 2001,
and Petrakis and Xepapadeas, 2001). However, the comparison of the two games is not the main focus
of our paper.
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The rest of this paper is organized as follows. In Section 2, we introduce our model.

We derive the welfare optimum in Section 3. In Sections 4 and 5, we analyze the game

where the government can and cannot commit, respectively. Section 6 concludes the

paper.

2 The model

There are m �rms producing a homogeneous good. Firm i; i = 1; � � � ;m; producing qi
faces the inverse demand function

P = a�Q (2)

with P the product price, Q �
Pm

i=1 qi and a > 0: Production is polluting. Firm i�s total

emissions Ei are a linear function of production qi and are given by

Ei = "iqi (3)

where "i 2 [0; 1] is the emissions-to-output ratio, which depends on the abatement tech-

nology that the �rm installs.4 There is a �xed cost F of installing the technology, which

is decreasing in the emissions-to-output ratio (i.e. increasing in the e¤ectiveness of the

technology):

F ("i) =



2
(1� "i)2 (4)

with 
 > 0: The (perceived) environmental damage produced by pollution is given by:

D =
�

2
E2 (5)

where E �
Pm

i=1Ei and the environmental damage parameter � measures the severity

of the environmental problem or the strength of the policy maker�s preference for the

environment.

The policy maker imposes a tax t on emissions. We will assume throughout that

all �rms respond symmetrically to environmental regulation. We assume that � is high

enough to guarantee a positive tax rate (t > 0).5 Marginal costs of production are constant

4Alternatively we can interpret "i as a coe¢ cient that identi�es the type of manufacturing technology
the �rm uses where the alternative technologies di¤er in terms of their emissions per unit of output (see
Asproudis and Gil-Molto, 2009).

5For small �; the policy maker will want to set t < 0; to induce the monopolist to produce more.
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and normalized to zero. Thus �rms do not incur other costs than the technology costs

(Fi) and the tax payments (tEi). Thus, using (2) to (4), �rm i�s pro�ts can be written as

�i = Pqi � tEi � F ("i) = (a�Q)qi � t"iqi �



2
(1� "i)2 (6)

The policy maker�s objective function is the aggregation of consumer and producer

surplus (CS and PS respectively) minus the environmental damage plus the revenues from

taxing emissions (tE), ie

W = PS + CS �D + tE (7)

where producer surplus is given by the sum of the �rms�pro�ts and consumer surplus is

de�ned in the standard way. Substituting (2) to (6) into (7), welfare is given by:

W =

�
a� 1

2
Q

�
Q� 1
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mX
i=1

(1� "i)2 �
1

2
�

"
mX
i=1

"iqi

#2
(8)

We want to determine how "i responds to the strictness of environmental policy as

measured by the environmental damage parameter �. In order to do this, we will study

two cases:

1. Commitment c: The regulator moves �rst and sets the tax rate t in stage one. Each

�rm i chooses its technology level "i in stage two and its output level qi in stage

three.

2. No commitment n: The �rms move �rst, each �rm i choosing its technology level

"i in stage one. The government responds by setting the tax rate t in stage two.

Finally, each �rm i sets its output level qi in stage three.

We also solve the welfare optimum w (where both "i and qi are chosen to maximize

welfare). As usual we solve the di¤erent games by means of backwards induction to �nd

their respective subgame perfect Nash equilibria.

3 Welfare optimum

In the welfare optimum w; the regulator chooses "i and qi; i = 1; � � � ;m; to maximize

welfare. As �rms are symmetric, we focus on the symmetric equilibrium of the game; that
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is, where qi = q and "i = " for all i = 1; � � � ;m: In symmetry, welfare (8) can be written

as W = mw with:

w =

�
a� 1

2
mq

�
q � 1

2

(1� ")2 � 1

2
�m ("q)2 (9)

The �rst order conditions are:

@w

@q
= a�mq � �m"2q = 0 (10)

@w

@e
= 
(1� ")� �m"q2 = 0 (11)

We cannot solve explicitly for the optimal levels of q and ": However, we can analyze

the e¤ect of the environmental cost parameter � on the optimal output and emission

intensity levels. Totally di¤erentiating (10) and (11) with respect to � yields:

(1 + �"2)
dq

d�
+ 2�"q

d"

d�
+ "2q = 0 (12)�


 + �mq2
� d"
d�
+ 2�"2q

dq

d�
+m"q2 = 0 (13)

Solving for dq=d� and d"=d� and using (11):

dqw
d�

=
(mq2� � 
) q"2


 + �
"2 +mq2� � 3mq2�2"2
=

[1� 2"] 
q"

 + �
"2 +mq2� � 3mq2�2"2

(14)

d"w
d�

=
(�"2 � 1)mq2"


 + �
"2 +mq2� � 3mq2�2"2
=

[�"2 � 1] 
(1� ")
�
�

 + �
"2 +mq2� � 3mq2�2"2

� (15)

The denominator on the RHS of both expressions is positive, because this is a second

order condition for welfare maximization (the Hessian must be negative de�nite):


 + �
"2 +mq2� � 3mq2�2"2 = 


"

�
4�"3 � 3�"2 + 1

�
> 0 (16)

The equality follows from (11). The signs of (14) and (15) thus depend on the respec-

tive terms in square brackets on the RHS.

An increase in the cost of pollution leads to a decrease in the welfare-maximizing level

of pollution:

dEw
d�

= m"
dqw
d�

+mq
d"w
d�

=
�q
 (3�"3 � 2�"2 � "+ 1)

�
�

 + �
"2 +mq2� � 3mq2�2"2

� < 0 (17)
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The second equality follows from (14) and (15). The denominator on the RHS is

positive by (16). The sign of the RHS then follows from:

3�"3 � 2�"2 � "+ 1 = (1� ")
�
4�"3 � 3�"2 + 1

�
+ �"2 (1� 2")2 > 0

The �rst equality follows from (11). The inequality follows from (16).

We can now state:6

Proposition 1 De�ne 
w � a2=m: Then in the welfare optimum:

1. If 
 < 
w; then d"w=d� < 0 for all � > 0 and

dqw=d�
<
=
>
0 for �

<
=
>




2m
�
a+

p
a2 �m


�2
2. If 
 > 
w; then dqw=d� < 0 for all � > 0 and

d"w=d�
<
=
>
0 for �

<
=
>

2
p
m
 +

p
m
 � a2

3. If 
 = 
w; then for � < 1
4
; both dqw=d� < 0 and d"w=d� < 0: For � = 1

4
; dqw=d� =

d"w=d� = 0. For � > 1
4
; either qw = a=(2m) and d"w=d� < 0 or "w = 1

2
and

dqw=d� < 0:

Initially, as � starts to increase from zero, both output qw and emission intensity "w are

decreasing in �: However, there comes a point when either qw or "w starts increasing in �:

When 
 > a2=m; at this point output has decreased by so much that it is not worthwhile

investing any further in reducing emissions per unit of output. Indeed, it becomes optimal

to increase emission intensity. When 
 > a2=m on the other hand, production has become

so clean at the turning point that it becomes optimal to increase production again.

The signi�cance of the comparison between a2 and m
 can be explained as follows.

When a is high, demand is high, so that the regulator does not want to reduce output

by too much and is anxious to increase it again if possible. When m
 is high, the cost

of reducing emission intensity per �rm 
 and for all �rms m is high. Then the regulator

6All proofs are in the Appendix.
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does not want to spend too much on reducing emission intensity and is happy to increase

emission intensity again if possible.

All in all, the U-shape function of "w is more likely to appear for large 
 andm relative

to a. That is, when the market size is small relative to the R&D costs and the number of

�rms. In other words, when the pro�tability of investing on environmental R&D is lower

(therefore making the option of reducing output a more e¢ cient way to reduce emissions).

4 Regulator moves �rst (commitment)

In the commitment scenario c; the regulator sets the tax rate t in stage one. Subsequently,

each �rm i chooses abatement technology "i in the second stage and output qi in the third

and last stage. Thus the regulator can commit to a tax rate and is not going to adjust it

after the �rms have chosen their abatement technologies.

In the last stage, each �rm i chooses qi to maximise its pro�t (6), taking all qj; j =

1; � � � ;m; j 6= i as given. The FOC can be written as:

qi = a�Q� t"i (18)

Summing over i and solving for Q yields:7

�Q =
ma� t

Pm
i=1 "i

m+ 1
(19)

Substituting (19) back into (18), we can solve for qi:

�qi =
a�mt"i + t

P
j 6=i "j

m+ 1
(20)

In stage two of the game, each �rm i chooses "i to maximize its pro�t, taking all

"j; j = 1; � � � ;m; j 6= i; as given and anticipating the e¤ect of "i on qi and Q as given by

(20) and (19) respectively. Substituting (19), (20) and (4) into (6), �rm i�s pro�ts can be

written as:

��i = �q
2
i �




2
(1� "i)2 (21)

Maximizing with respect to "i yields, from (20):

@�i;c
@"i

= � 2mtqi
m+ 1

+ 
(1� "i) = 0 (22)

7Expressions for Q; qi and �i that still contain "j are denoted with a bar.
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The second order condition is, from (20):

@2�i;c
@"2i

=
2m2t2

(m+ 1)2
� 
 < 0 (23)

By simple comparative statics, it is easy to see that the second order condition is more

likely to be satis�ed the higher 
 is and the lower m and t are.

In a symmetric solution, "i = " so that qi = q for all i = 1; � � � ;m: Then (20) becomes:

qcj"i=" =
a� t"
m+ 1

(24)

Note that qc > 0 only if a � "t > 0. To guarantee that there is positive production

for any ", we impose that a > t. Also note that qc is decreasing in t and in ". That is,

for a given ", the higher the tax rate is, the less each �rm produces. Likewise, for a given

t, the higher " is (the higher the emissions per unit are), the less �rms produce. The

reason for these results is that �rms�s marginal cost is determined by both " and t. Pro�t

maximisation implies that a higher marginal cost will lead to lower output.

Solving for " and q from (22) and (24) yields:

"c =

(1 +m)2 � 2amt

(1 +m)2 � 2mt2 (25)

qc =
(a� t)
(1 +m)

(1 +m)2 � 2mt2 (26)

The denominator in (25) and (26) is positive by (23). This also implies that "c > 0,

if 
 > 2amt
(m+1)2

: In other words, 
 has to be large relative to a so that " > 0. In addition,

"c < 1 given that a > t.

For the �rm�s choice of " as a function of t, we �nd:

Lemma 1 De�ne 
c � 2ma2

(1+m)2
: Let the regulator set the environmental tax rate t in stage

one. Then if 
 � 
c, "c is strictly decreasing in t: If 
 > 
c, "c is �rst decreasing and

then increasing in t:

Several interesting aspects can be highlighted from Lemma 1. First, the relevance of

the size of the market (a), number of �rms (m) and the technology costs (
): If a is large

enough and/or m low enough relative to 
 (
 < 
c), it is very pro�table to invest in the

abatement technology and therefore, increases in t can only lead to higher investments in
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abatement and consequently lower ". However, if a is not so large or m not so low relative

to 
 (
 > 
c), increases in the tax rate do not have such an unequivocal e¤ect in the level

of investment in abatement. This leads us to the discussion of the second relevant aspect

in Lemma 1. As t increases, �rms initially increase their investment in abatement (they

lower ") but after a critical value of t, they actually reduce their investment in abatement.

The intuition is that a higher t generates incentives to invest in abatement (because a �rm

can save more on the tax payment), but also increases the marginal cost of production,

making �rms produce less (recall that qc is decreasing in t for a given "). The lower the

output is, the less pro�table it is to invest in abatement. If t is large enough, this second

e¤ect will outweigh the �rst e¤ect, implying that higher t might actually lead to higher

". Finally, note that as m increases 
 > 
c is more likely to hold as the RHS of the

inequality is decreasing in m. In other words, the higher m is, the more likely it is that

the emissions to output ratio in equilibrium is U-shaped in the emissions tax rate.

Lemma 1 is in accordance with, but more speci�c than, Ulph (1997) who shows that

with a quadratic R&D function, the e¤ect of t on " is ambiguous. In our model, depending

on the parameter values, " is either decreasing throughout or U-shaped as a function of

t: Our result is in contrast with Katsoulacos and Xepapadeas (1996) who �nd that " is

decreasing throughout in t: However, Katsoulacos and Xepapadeas (1996) assume that

the government is also subsidizing R&D investment, whereas in our model it is only taxing

emissions.

We are now in a position to explore the total e¤ect of a change in t on qc. This e¤ect

can be decomposed into two separate e¤ects:

dqc
dt
=
@qc
@t
+
@qc
@"

d"c
dt

It is easy to see from (24) that the direct e¤ect of t on output is negative (@qc
@t
< 0), as

discussed above (a higher t implies a higher marginal cost and therefore a lower output

in equilibrium). The same applies to @qc
@"
< 0. On the other hand, d"c

dt
turns from negative

to positive as t increases for 
 > 
c as shown in Lemma 1. Thus, for 
 > 
c, the total

e¤ect of t on qc could potentially be positive for low values of t. The next lemma states

that this does not occur and and that, in fact, the output level is strictly decreasing in t

for any t for 
 > 
c. From Lemma 1 we also know that "c is strictly decreasing in t for

11
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Figure 1: Emission intensity " and output q as a function of the tax rate t for 
 < 2ma2

(1+m)2

( a = 1, 
 = 4=25; m = 4).


 < 2ma2

(1+m)2
(that is, @"

@t
< 0). This could potentially lead to the total e¤ect of t on output

to be positive. Our next lemma also shows that this may actually happen for high enough

values of t.

Lemma 2 Let the regulator set the environmental tax rate in stage one. If 
 < 
c; then

q�c is �rst decreasing and then increasing in t. If 
 > 
c � 2ma2

(1+m)2
; then q�c is decreasing

in t:

To sum up, increases in the tax rate may lead to higher investments in abatement

both if 
 � 
c and if 
 > 
c. However, only in the �rst case (when a is high and m is

low relative to 
) a higher tax rate could lead to a subsequent increase in output. This

requires that the tax rate is su¢ ciently high (where the equilibrium emission-to-output

ratio will be very low).

Lemma 2 is in accordance with, but more speci�c than, previous results in the lit-

erature. Katsoulacos and Xepapadeas (1996) and Ulph (1997) have shown that with a

quadratic R&D cost function, the e¤ect of t on q is ambiguous. In our model, depending

on the parameters values, q is either decreasing throughout or U-shaped as a function of

t: Combining Lemmas 1 and 2, we also show that q is decreasing in t when " is U-shaped

in t and vice versa.

Figures 1 and 2 illustrate Lemmas 1 and 2. In Figure 1, 
 < 
c; so that emission

intensity is monotonically decreasing in t; but output is U-shaped in t: For low levels of

12
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Figure 2: Emission intensity " and output q as a function of the tax rate t for 
 > 2ma2

(1+m)2

( a = 1; 
 = 1=2; m = 4).

t; it is pro�table for the �rms to reduce emission intensity and output as environmental

policy becomes stricter. However, an increasingly strict environmental policy leads to

lower and lower emission intensity, so that eventually the e¤ective tax rate "t on output

decreases and output rises again. For completely clean production (" = 0), output is back

at the level without environmental policy.

In Figure 2, 
 > 
c; so that output is monotonically decreasing in t; but emission

intensity is U-shaped in t: For low levels of t; it is pro�table for the �rm to reduce emission

intensity and output as environmental policy becomes stricter. However, an increasingly

strict environmental policy leads to lower and lower output levels, which makes it less

worthwhile to reduce the emission intensity. For q = 0; there is no point investing in

emission reduction at all and " is back to one.

In the �rst stage, the government chooses t to maximise its objective function. Finding

an explicit solution is di¢ cult. However, it is possible to characterise tc as a function of

�. The following lemma presents this characterisation:

Lemma 3 Let the government set the environmental tax rate t in stage one. Then the

tax rate t�c is strictly increasing in �.

As � increases, the relative weight in the government�s obejctive function of the damage

made by the emissions increases. This leads the government to increase the tax per unit
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of emissions. To �nish this section, we wish to characterize the equilibrium emissions-

to-output ratio as a function of �. We present this characterization in the following

proposition:

Proposition 2 Let the government set the environmental tax rate t in stage one. Then

if 
 < 
c, "c is strictly decreasing in �; whereas qc is �rst decreasing and then increasing

in �: If 
 > 
c � 2ma2

(1+m)2
, "c is �rst decreasing and then increasing in �; whereas qc is

strictly decreasing in �:

Interestingly, as � increases, the government raises the tax per unit of emissions with

the objective of reducing the environmental damage. As reaction to this, �rms will reduce

their emissions levels via investments in abatement and via reduction of output. As �rms

reduce their output levels, they have a lower incentive to invest in abatement. When

this second e¤ect dominates, a higher � will lead to a higher emissions-to-output ratio in

equilibrium. Therefore, even when the tax rate is chosen endogenously by the government,

a stricter environmental technology can lead to more emissions per unit of output.

Comparing the critical levels 
w for the welfare optimum and 
c for the commitment

case, from Propositions 1 and 2 respectively, we see that 
c < 
w for m � 2 and 
c > 
w

form � 3: This means that a U-shaped relation between strictness of environmental policy

and emission intensity is more prevalent with commitment than in the welfare optimum

for m � 2; but less prevalent with commitment for m � 3: When m � 2; there is very

little competition between �rms (none at all for m = 1); so that the regulator sets a low

tax rate in order to increase output, but output will still be below the optimal level. With

output and the emission tax rate being very low, �rms have little incentive to invest in

cleaner technology, and there is more likely to be a turning point from where emission

intensity starts increasing with the regulator�s environmental preference. When m � 3;

output and the tax rate are relatively higher, so that it becomes more pro�table to invest

in cleaner technology, and emission intensity is more likely to be decreasing monotonically

in the regulator�s environmental preference.
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5 Firms move �rst (no commitment)

In the no-commitment scenario n; each �rm i chooses its abatement technology "i in stage

one. The government then sets its environmental tax rate t in stage two. Finally, each

�rm i sets its output level qi in the third stage. Thus the government cannot commit to

a tax rate ahead of the �rm�s choice of technology.

The third stage, where each �rm i sets qi for given t and "j; j = 1; � � � ;m; is the same

as in the commitment game. Thus, the equilibrium output level and pro�ts are �qi in (20)

and ��i in (21) respectively.

In the second stage the government chooses t to maximize welfare, given the "i chosen

by the �rms in stage one. From (8), the regulator�s �rst order condition in stage two is:

@W

@t
= (a�Q)dQ

dt
� �

hX
"iqi

i �X
"i
dqi
dt

�
= 0

Using (19) and (20) and setting "1 = � � � = "m = ", we can solve for t:

tnj"i=" =
a (�m"2 � 1)
m"(1 + �"2)

(27)

Note that tn > 0 requires �m"2 � 1 > 0. In other words, � has to be su¢ ciently high

for the government to tax the �rms�emissions.8

In general, we can state:

Lemma 4 If the �rms set "1 = � � � = "m = " in stage one, then in stage two

dt

d"i
=
dt

d"j
=
1

m

dt

d"
8i; j = m

Using straightforward comparative statics we can state the following:

Lemma 5 Let each �rm i set its emissions-to-output ratio "i in stage one. Then we �nd

for the emission tax rate t�n in the symmetric equilibrium with "1 = � � � = "m = ":

dtn
d�

=
a" (m+ 1)

m (�"2 + 1)2
> 0;

dtn
dm

=
a

m2" (�"2 + 1)
> 0

dtn
d"

=
a
�
(3 +m)�"2 �m�2"4 + 1

�
m"2 (�"2 + 1)2

;
dtn
d"i

=
a
�
(3 +m)�"2 �m�2"4 + 1

�
m2"2 (�"2 + 1)2

(28)

8The SOC for a maximum is ful�lled for any � > 0 and " > 0. Moreover, we require � < (2 +m)=m
so that to guarantee that in equilibrium W > 0 for any " 2 [0; 1]. The proof of this is available from the
authors upon request.
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The lemma is intuitive. The higher the (perceived) environmental damage of emissions,

the higher the tax on emissions is. The tax rate is increasing in the number of �rms,

because increasing competition between �rms means they will be less successful in driving

the product price up by limiting their output. Therefore the regulator is more worried

about the pollution from production than about output being below the optimal level.

In the �rst stage of the game, each �rm i chooses its emission intensity "i to maximise

pro�ts. The FOC is, from (21):

d�i;n
d"i

= 2qi;n

�
@qi
@"i

+
@qi
@t

dt

d"i

�
+ 
(1� "i) = 0 (29)

From (20) we �nd:

@qi;n
@t

=
�m"i +

P
j "j

m+ 1

@qi;n
@"i

=
�mt
m+ 1

Substituting this along with (20) and (28) into (29), we �nd:

�2aY
m3" (�"2 + 1)3 (m+ 1)

+ 
(1� ") = 0 (30)

with

Y � m3"
�
1 + �"2

�2 � am�2"4 + (3 +m)a�"2 + a > 0 (31)

Given that �nding the explicit solution to the above equation is very intricate, we

resort to the implicit function theorem to characterise the relationship between � and "n.

We can establish the following result:

Proposition 3 Let each �rm i set its emissions-to-output ratio "i in stage one. Then for

m � 3 �rms, "n is increasing throughout in �: For m � 4 �rms, the relation between �

and "n is ambiguous.

In this case we can see again that the relationship between environmental damage and

emissions per unit of output may non be monotonic, particularly for a relatively large

number of �rms. An increasingly strict environmental policy (higher �) tends to lead to

a higher tax rate, increasing the incentives to invest in abatement technologies on the

one hand but lowering output on the other. This latter e¤ect will be stronger in markets

with more �rms (in particular, in markets with m � 4), where competition in output is
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stronger. The result of the interaction of these two e¤ects will therefore be ambiguous in

those markets.

Finally, we wish to comment on the relationship between the equilibrium output and

�: After substituting tn from (27) and "i = "n into (20), we can write the equilibrium

ouput as:

qn =
a

m(1 + �"2)
(32)

It can be seen that � a¤ects qn both directly and indirectly, though its e¤ect on "n.

The direct e¤ect of � is negative: Higher � leads to higher taxes and as a consequence

of that, to lower output. However, higher taxes can also lead to more investment on

abatement which tends to favour an increase of production. The interplay between these

two e¤ects determines whether the equilibrium level of output in increasing or decreasing

in �. The next lemma formalizes this observation:

Lemma 6 Let the �rm set the emissions-to-output ratio " in stage one: Then qn is:

i. Decreasing in � if d"n
d�
> 0, or if d"n

d�
< 0 and "n > �2� d"nd� :

ii. Increasing in � if d"n
d�
< 0 and "n < �2� d"nd� .

6 Conclusion

Does an increasingly strict environmental policy spur on the polluting industry to invest

more and more in �nding cleaner ways to produce? The answer might seem obvious,

but it is not once we take the output market into account. When stricter environmental

policy leads to a reduction in output, investment in reducing the emissions-to-output ratio

becomes less pro�table.

We �nd that the emissions-to-output ratio can be a U-shaped function of the environ-

mental damage parameter. This can happen in the welfare optimum, in the game where

the regulator can commit to the emission tax rate before the �rms decide on their envi-

ronmental R&D, and in the game where the regulator cannot commit. In all these games,

if the emissions-to-output ratio is decreasing throughout in environmental damage, it is

output that is U-shaped in environmental damage. Thus, while initially both output and

emission intensity are decreasing in environmental damage, eventually one of them will
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start to increase. Interestingly, the U-shaped function of the emissions-to-output ratio

will tend to arise in situations where the R&D costs and number of �rms are relatively

large and the size of the market is relatively small. Such situations are associated with

lower pro�tability of investing in environmental R&D.

Policy makers may wish to stimulate environmental R&D in order to reduce environ-

mental compliance cost in the future or to strengthen their polluting or eco-industry in

the global market. We show that a strict environmental policy, or a higher weight on

environmental damage in the objective function, does not necessarily lead to more envi-

ronmental R&D. Indeed, games between the government and industry aside, it may not

even be optimal (in a static setting) for environmental R&D to keep increasing with the

strictness of environmental policy.

In future work we intend to generalize the market demand and R&D cost functions.

It is especially interesting to look at cost functions where the sign of the LHS of (1)

is ambiguous, so that the e¤ect of environmental policy on environmental R&D is not

immediately clear.
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A Appendix: Proofs

Proposition 1. From (10) to (17), it is clear that for low values of � > 0; both dq=d� <

0; d"=d� < 0; but for higher values of �; either dq=d� > 0 ord"=d� > 0; but not both.

Let us examine whether " can reach a turning point in � (d"=d� = 0); after which it

will start increasing in �: When 
 < a2=m; then by (10) dq=d� = 0 for " = 1=2 and:

� =



mq2
(33)

Substituting both expressions into (10) yields:

a�mq � 


4q
= 0

Solving for q; we �nd:

q =
a+

p
a2 �m

2m

(34)

(The other solution is a local welfare minimum.) This con�rms that there is only a

solution for q if 
 < a2=m: Substituting (34) into (33), we �nd that dq=d� = 0 for

� =



2m
�
a+

p
a2 �m


�2
This proves point 1 of the Proposition.

From (15), we see that d"=d� = 0 when

�"2 = 1 (35)

Substituting this into (10), we �nd q = a2=(4m2): Substituting this and (35) into (11)

yields:


(1� ")� a2

4m"
= 0

Solving for "; we �nd:

" =
1

2
+
1

2

s
1� a2

m

(36)

(The other solution is a local welfare minimum.) Thus there is only a solution for " if


 > a2=m: Substituting (36) into (35), we �nd that d"=d� = 0 for:

� =
2

p
m
 +

p
m
 � a2
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This proves point 2 of the proposition.

When 
 = a2=m; both dq=d� = 0 and d"=d� = 0 at the same point, namely where

� = 1
4
; " = 1

2
and q = a

2m
: For � > 1

4
; either " remains at 1

2
and dq=d� < 0 or q remains

at a
2m
and d"=d� < 0: This proves point 3 of the Proposition.

Lemma 1. From (25) we �nd:

d"c
dt
=
2m [
(1 +m)2(2t� a)� 2mat2]

[
(1 +m)2 � 2mt2]2
(37)

It is easy to see that d"c
dt
is continuous in t in the relevant parameter space. As the

denominator on the RHS of (37) is positive, the sign of d"c
dt
is the sign of the numerator.

Solving [
(1 +m)2(2t� a)� 2mat2] = 0 , we �nd the critical point (or points) at which
d"c
dt
changes its sign. Two roots can be found, � =


(1+m)2�(1+m)
p

(
(1+m)2�2a2m)

2am
and

� =

(1+m)2+(1+m)

p

(
(1+m)2�2a2m)

2am
. Note that if 
 < 2ma2

(1+m)2
, there are no real roots and

therefore d"c
dt
< 0 globally by continuity from d"c

dt
< 0 at t = 0. Now, we focus on the case

where there are real roots; that is where 
 > 2ma2

(1+m)2
. When this holds, it is easy to see

that � > � and that � > a. Therefore, we can discard � because we require t < a so that

output is positive. We therefore focus on what happens before and after � . It is relatively

easy to check that � > 0. Moreover, if t = 0, d"c
dt
< 0. By continuity, given that � > 0;

if t < � , "c is decreasing in t and if t > � , "c is increasing in t: Finally, we must consider

the case where 
 = 2ma2

(1+m)2
. In such a case � = a. Given that t < a and that if t = 0, d"c

dt

< 0, we know that if 
 = 2ma2

(1+m)2
, "c is strictly decreasing in t: The lemma follows.

Lemma 2. From (26) we �nd:

dqc
dt
=

(1 +m) [2mt(2a� t)� 
(1 +m)2]

(
(1 +m)2 � 2mt2)2 (38)

Notice that dqc
dt
is continuous in the relevant parameter space and that dqc

dt

��
t=0

< 0.

However, the sign of the derivative may change for higher values of t. Recall also that

t 2 (0; a). The sign of dqc
dt
is the sign of the term in square brackets on the RHS of (38):

The roots for 
(1 + m)2 � 4mat + 2mt2 = 0 are t =
2ma�

p
2m(2ma2�
(1+m)2

2m
. As t < a,

the only relevant root is t =
2ma�

p
2m(2ma2�
(1+m)2)

2m
: We now study the behaviour of dqc

dt

in the two cases highlighted in the lemma. It is easy to see that if 
 > 2ma2

(1+m)2
, there

are no real roots. By continuity, dqc
dt
< 0, for any t. Next, we turn our attention to
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the case where 
 < 2ma2

(1+m)2
. Recall that dqc

dt

��
t=0

< 0 and it is straightforward to see that

dqc
dt

��
t=a

= 
(1+m)
2ma2�
(1+m)2 > 0. Therefore if 
 <

2ma2

(1+m)2
, dqc
dt
< 0 for t <

2ma�
p
2m(2ma2�
(1+m)2

2m

and dqc
dt
> 0 for t >

2ma�
p
2m(2ma2�
(1+m)2

2m
. Finally, if 
 = ma2

2
, the highlighted root is

t = a: As t < a and dqc
dt

��
t=0

< 0, by continuity we know that dqc
dt
< 0 if 
 = ma2

2
. The

lemma follows.

Lemma 3. From the implicit function theorem we know that

dt

d�
= �@

2W=@�@t

@2W=@t2

The denominator on the RHS is negative, because this is the SOC for welfare maximiza-

tion. It is straightforward to see from (8) that @W
@�
= �1

2

�X
"cqc

�2
: Hence:

@2W=@�@t = �
�X

"cqc

�X�
d ["cqc]

dt

�
(39)

Thus, the sign of @2W=@�@t depends on the sign of
X�

d["cqc]
dt

�
where from (25), (26),

(37) and (38):
d ["cqc]

dt
= qc

d"c
dt
+ "c

dqc
dt
= � 
(1 +m)

[
(1 +m)2 � 2mt2]3
H

where H = 
2(1 + m)4 + 4am2t2(3a � 2t) + 2
m(1 + m)2(a2 � 6at + 3t2). By (23),

the denominator on the RHS is positive. Recall that t 2 [0; a]. Evaluating H at the

maximum value of t, we have H jt=a= (2a2m � 
(1 + 2m + m2))2 > 0. And at the

minimum value of t, we have H jt=0= 2a2
m(1 +m)2 + 
2(1 +m)4 > 0. Moreover, we

know that @H
@t
= 12m(a� t)(2amt� 
 [1 +m]2) < 0 given (23) and a > t. Thus, we know

that H is continuous and decreasing in t and given that H is positive at t = a and at

t = 0, we know that H > 0 for any feasible t. Thus, d["cqc]
dt

< 0 and therefore from (39),

we know that @2W=@t@� > 0. The rest of the lemma follows.

Proposition 2. By the chain rule, we know that d"c
d�
= d"c

dt
dt
d�
and dqc

d�
= dqc

dt
dt
d�
: The sign

of d"c=d� and dqc=d� is given by Lemmas 1 and 2 respectively, whereas dt=d� > 0 by

Lemma 3.

Lemma 4. In stage two, the regulator sets t according to @W ("1; � � � ; "m; t)=@t = 0.

Then since "i = "j = ":

dt

d"i
= �@

2W=@t@"i
@2W=@t2

= �@
2W=@t@"j
@2W=@t2

=
dt

d"j
8i; j
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Furthermore:

dt

d"
=

mX
i=1

�
�@

2W=@t@"i
@2W=@t2

�
= �m@

2W=@t@"j
@2W=@t2

= m
dt

d"j
8j

Lemma 5. The �rst three results follow straightforwardly from (27), whereas dtn=d"i

follows from (27) and Lemma 4.

Proposition 3. Totally di¤erentiating �rm i�s �rst order condition d�i=d"i = 0 with

respect to �; we �nd:  
d2�i
d"2i

+
X
j 6=i

d2�i
d"id"j

!
d"

d�
+
d2�i
d"id�

= 0

Thus we have:
d"n
d�

= � d2�i=d"id��
d2�i
d"2i

+
P

j 6=i
d2�i
d"id"j

�
The denominator on the RHS is negative by stability of the equilibrium (see Martin,

2001, p. 30). Thus, from (30), d"n=d� has the sign of

@2�i;n=@�@" =
2a" [Y + a (3�"2 � 1) (m+ 1)]

m3 (�"2 + 1)4 (m+ 1)

Since Y > 0 in (31) and tn > 0 requires �m"2� 1 > 0 by (27), the RHS is positive for

m � 3; but could be negative for m � 4:

Lemma 6. De�ne Bn � �"2n: From (32), we can then write:

dqn
d�

=
@qn
@Bn

�
@Bn
@�

+
@Bn
@"n

d"n
dt

�
=

�a"
m(1 + �"2n)

2

�
"n + 2�

d"n
dt

�
If the term in brackets is negative (positive), dqn

d�
> (<)0.
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