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Abstract

In this paper we model an oligopoly where firms invest in abatement technologies
and emissions are taxed by the government. We show that a stricter environmental
policy does not necessarily lead to an increase in firms’ R&D investment into cleaner
production methods. In fact, the emission-to-output ratio may be a U-shaped func-
tion of the environmental damage parameter. This result holds both when the
government can commit and in the social optimum. When the government cannot
commit, this relationship is ambiguous except in markets with few firms. Our re-
sults further suggest that if the emission-to-output ratio is decreasing throughout,
output is a U-shaped function of the environmental damage.

Keywords: Environmental innovation, environmental taxation, commitment,
oligopoly.
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1 Introduction

Environmental policy gives polluting firms an incentive to do R&D and invest in cleaner
ways of producing, to reduce their compliance costs. There is a large literature on the
effect of environmental policy on innovation (see e.g. Requate (2005) for an overview)
starting from Kneese and Schultze (1978). One question that has received relatively little
attention is: When the environmental policy becomes stricter and stricter, will firms invest
more and more in environmental R&D? Our immediate intution might suggest that this
should be the case, and indeed it is in models where a firm’s marginal abatement costs only
depend on its emissions (Downing and White (1986), Milliman and Prince (1989), Jung
et al. (1996) and Requate and Unold (2003).) However, taking the output market into
account, another element comes into play. Firms responds in two ways to an increase in the
tax rate on emissions: by investing more in environmental R&D and by reducing output.
The latter response, in turn, reduces firms’ incentives to conduct environmental R&D. In
other words, the profitability of investing in a reduction of the emissions-to-output ratio
depends on the eventual level of output. If the firm will produce very little because of
a very strict environmental policy, it also has little incentive to invest in environmental
R&D. This suggests that while output is decreasing in the strictness of environmental
policy, the emissions-to-output ratio might be U-shaped. However, the effects might
conceivably also be reversed: When an ever stricter environmental policy prompts a firm
to invest more and more in environmental R&D, production might eventually become so
clean that it starts to increase again.

The effects of a stricter environmental policy on emission intensity and output, and the
interactions between these variables, are therefore far from clear. However, this subject
has hardly been researched so far.

Ulph (1997) is the most important contribution related to the topic of our paper. The
author sets up a free-entry Cournot oligopoly model with very general functional forms,
treating the environmental tax rate ¢ as an exogenous variable. In stage one, firms decide
whether to enter the market. Then in stage two of the “simultaneous entry” game, the

firms in the market simultaneously spend R&D money F' on reducing their emission-to-



output ratio ¢ and set their output levels ¢.! In the “sequential entry” game, the firms
first set F' (in stage two) and then ¢ (in stage three). Ulph (1997) finds that in both

games, an increase in t reduces ¢ if and only if:?
e(F)E"(F) = [e(F)* >0 (1)

The effect of t on R&D spending is ambiguous, however when t is low, an increase in
t raises R&D spending in both models.

Katsoulacos and Xepapadeas (1996) set up a Cournot oligopoly with technology
spillovers, where the government taxes emissions and subsidizes R&D. They assume, as
we will do, a linear demand function and a quadratic R&D cost function. Their finding
that the effect of ¢ on ¢ is ambiguous is in accordance with Ulph (1997), because the
sign of the LHS of (1) is ambiguous for a quadratic R&D cost function. Katsoulacos and
Xepapadeas (1996) further find that R&D spending is increasing in the tax rate.

A separate research strand has been dealing with the issue of R&D investment into
cleaner technologies in the context of cross-border competition. In an international
Cournot duopoly, Ulph (1994) finds that the effect of an increase in the domestic tax
rate on domestic R&D is ambiguous, both when foreign output is given and when it is
endogenous (but foreign R&D is given). An increase in the domestic tax rate reduces
domestic full marginal cost (marginal production cost plus implicit tax te on output) and
increases foreign production if and only if (1) holds. Ulph and Ulph (1996) show that
the same result holds if firms can choose how much to spend on reducing marginal pro-
duction costs as well as on emission intensity. Simpson and Bradford (1993) also set up
an international Cournot duopoly, with investment that simultaneously reduces marginal
production costs and emission intensity. In spite of this complication, it seems that their
results are still driven by the £(F') function, since with an exponential ¢(F') function, the
LHS of (1) is zero and the domestic tax rate has no effect on domestic full production
costs or foreign output, as Ulph (1994) has shown. However, with a logarithmic ¢(F)
function, Simpson and Bradford (1993) show that the effect is ambiguous.

Finally, similar results have been found in different but related settings. In an interna-

1To assist with comparisons, we will use the notation of our own model when discussing other papers.
2Ulph (1997, p. 47) mistakenly writes €”(F) < 0. This should be &”(F) > 0.



tional Cournot duopoly where the two firms buy an environmental input from an eco-firm,
Feess and Muehlheusser (2002) show that in general, the effect of the domestic tax rate
on a firm’s demand for the environmental input is ambiguous. In a model of perfect
competition where firms can switch to a clean technology at a certain cost, Bréchet and
Meunier (2011) show that the number of clean firms is inverse U-shaped in the emission
tax rate.

In this paper we aim at disentangling the interplay of the two effects of the environ-
mental policy mentioned above and shed some light on the circumstances that will make
the emissions-to-output ratio be U-shaped or strictly decreasing in the strictness of the
policy. To this aim, we build on and extend the framework in Ulph (1997). We depart
from Ulph in that we endogenize the choice of the emissions tax rate. In particular, the
government chooses this tax rate given the (perceived) environmental damage. We con-
templace the cases where the government can and cannot commit to the emissions tax
rate. The latter case is interesting because the government might be tempted to adjust its
environmental policy once firms have chosen their emission intensity. Ulph (1997), along
with the other papers discussed so far, assumes that the government will not give in to
this temptation.> We also differ from Ulph (1997) in that we assume that the R&D cost
function is quadratic. This assumption is widely used in the context of R&D investment
as it implies the existence of diminishing returns to R&D investments. As a benchmark,
we also solve the social optimum.

Our results show that the emission-to-output ratio may be a U-shaped function of the
(perceived) environmental damage. This result holds both when the government is able
to commit to the tax rate as well as when it is not. The same may also apply in the social
optimum. Our results further suggest that if the emission-to-output ratio is decreasing
throughout, output is a U-shaped function of the environmental damage. The U-shaped
function of the emissions-to-output ratio will tend to arise in situations where the R&D

costs and number of firms are relatively large and the size of the market is relatively small.

3There is a literature that compares the outcomes of games where the government can and cannot
commit to its environmental policy, the latter is also called time consistency (Amacher and Malik, 2001,
and Petrakis and Xepapadeas, 2001). However, the comparison of the two games is not the main focus
of our paper.



The rest of this paper is organized as follows. In Section 2, we introduce our model.
We derive the welfare optimum in Section 3. In Sections 4 and 5, we analyze the game

where the government can and cannot commit, respectively. Section 6 concludes the

paper.

2 The model

There are m firms producing a homogeneous good. Firm ¢, + = 1,--- ,m, producing g;

faces the inverse demand function
P=a-Q (2)
with P the product price, Q@ = >"1" | ¢; and @ > 0. Production is polluting. Firm 4’s total

emissions F; are a linear function of production ¢; and are given by
E; =¢€iq; (3)

where ¢; € [0, 1] is the emissions-to-output ratio, which depends on the abatement tech-
nology that the firm installs.* There is a fixed cost F' of installing the technology, which
is decreasing in the emissions-to-output ratio (i.e. increasing in the effectiveness of the
technology):

g

Ple) = 21— &) (4)

with 4 > 0. The (perceived) environmental damage produced by pollution is given by:

ngﬁ (5)

where E = " | E; and the environmental damage parameter 3 measures the severity
of the environmental problem or the strength of the policy maker’s preference for the
environment.

The policy maker imposes a tax ¢t on emissions. We will assume throughout that
all firms respond symmetrically to environmental regulation. We assume that § is high

enough to guarantee a positive tax rate (¢ > 0).5 Marginal costs of production are constant

4 Alternatively we can interpret ¢; as a coefficient that identifies the type of manufacturing technology
the firm uses where the alternative technologies differ in terms of their emissions per unit of output (see
Asproudis and Gil-Molto, 2009).

>For small 3, the policy maker will want to set ¢t < 0, to induce the monopolist to produce more.



and normalized to zero. Thus firms do not incur other costs than the technology costs

(F;) and the tax payments (tE;). Thus, using (2) to (4), firm i’s profits can be written as
T = Pg; —1E; — F(&;) = (a — Q)q; — teiq; — %(1 — &)’ (6)

The policy maker’s objective function is the aggregation of consumer and producer
surplus (CS and PS respectively) minus the environmental damage plus the revenues from
taxing emissions (t£), ie

W =PS+CS—D+tE (7)

where producer surplus is given by the sum of the firms’ profits and consumer surplus is

defined in the standard way. Substituting (2) to (6) into (7), welfare is given by:

W = (a — %Q) Q — %7 ;(1 - 5@')2 - %5 [; 5in‘] (8)

We want to determine how &; responds to the strictness of environmental policy as
measured by the environmental damage parameter 5. In order to do this, we will study

two cases:

1. Commitment c: The regulator moves first and sets the tax rate ¢ in stage one. Each
firm ¢ chooses its technology level ¢; in stage two and its output level ¢; in stage

three.

2. No commitment n: The firms move first, each firm ¢ choosing its technology level
¢; in stage one. The government responds by setting the tax rate ¢ in stage two.

Finally, each firm 7 sets its output level ¢; in stage three.

We also solve the welfare optimum w (where both ; and ¢; are chosen to maximize
welfare). As usual we solve the different games by means of backwards induction to find

their respective subgame perfect Nash equilibria.

3 Welfare optimum

In the welfare optimum w, the regulator chooses ¢; and ¢;, ¢ = 1,--- , m, to maximize

welfare. As firms are symmetric, we focus on the symmetric equilibrium of the game; that



is, where ¢; = g and ¢; = ¢ for all i = 1,--- ;m. In symmetry, welfare (8) can be written

as W = mw with:

w= (= gma) g (127 = 3m ey )

The first order conditions are:

ow o

a a—mq— Pme*qg=0 (10)
ow 5

e (1 —¢) = Bmeqg” =0 (11)

We cannot solve explicitly for the optimal levels of ¢ and €. However, we can analyze
the effect of the environmental cost parameter 5 on the optimal output and emission

intensity levels. Totally differentiating (10) and (11) with respect to /3 yields:

(1+ 552)5—2 + 25&13—; +e?q = 0 (12)
(v + Bmg?) j—; + 2&%3—2 +meq® = 0 (13)

Solving for dgq/df and de/df and using (11):

dgw  _ (me*B — ) ¢ _ [1 - 2e]vge (14)
dp v+ Bre® + mg?B — 3mg?B%e: y + Bye? + mgB — 3mg?Be?

dew (Be? — 1) mg’e B (6 = 1] (1 = ¢) (15)
A v+ By +ma2B — 3mg2B’e: B (v + Bye + mg2B — 3mg2B%s?)

The denominator on the RHS of both expressions is positive, because this is a second

order condition for welfare maximization (the Hessian must be negative definite):

v+ Bre + m@?B — 3mg?Fe? = g (48% — 382 +1) > 0 (16)

The equality follows from (11). The signs of (14) and (15) thus depend on the respec-
tive terms in square brackets on the RHS.
An increase in the cost of pollution leads to a decrease in the welfare-maximizing level

of pollution:

E _ 3 _ 2 2 1
ap dp B B (y+ Bye? + mg?B — 3mg?°e?)




The second equality follows from (14) and (15). The denominator on the RHS is
positive by (16). The sign of the RHS then follows from:

30e® —2Be? —e+1=(1—¢) (48> - 38> + 1) + Be* (1 — 2¢)> > 0

The first equality follows from (11). The inequality follows from (16).

We can now state:®
Proposition 1 Define v* = a?/m. Then in the welfare optimum:
1. If v < ~Y, then de,/dB < 0 for all 5 > 0 and

v

for 2m (a + \/a? — m7)2

dq./dB

VoA
o
VoA

2. If v > ~", then dq,/dB < 0 for all § > 0 and

<

de,/df =0 forf

2
My 4+ y/my — a?

3. If v =~", then for B < %, both dq,,/dB < 0 and de,,/dS < 0. For = %, dq,/dp =
dey/dB = 0. For B > 1, either g, = a/(2m) and de,/dB < 0 or e, = % and
dqw/dp < 0.

VoA

>

Initially, as 3 starts to increase from zero, both output ¢, and emission intensity ¢,, are
decreasing in 5. However, there comes a point when either ¢, or ¢,, starts increasing in .
When « > a?/m, at this point output has decreased by so much that it is not worthwhile
investing any further in reducing emissions per unit of output. Indeed, it becomes optimal
to increase emission intensity. When v > a?/m on the other hand, production has become
so clean at the turning point that it becomes optimal to increase production again.

The significance of the comparison between a? and m~ can be explained as follows.
When a is high, demand is high, so that the regulator does not want to reduce output
by too much and is anxious to increase it again if possible. When m~ is high, the cost

of reducing emission intensity per firm v and for all firms m is high. Then the regulator

6 All proofs are in the Appendix.



does not want to spend too much on reducing emission intensity and is happy to increase
emission intensity again if possible.

All in all, the U-shape function of ¢,, is more likely to appear for large v and m relative
to a. That is, when the market size is small relative to the R&D costs and the number of
firms. In other words, when the profitability of investing on environmental R&D is lower

(therefore making the option of reducing output a more efficient way to reduce emissions).

4 Regulator moves first (commitment)

In the commitment scenario ¢, the regulator sets the tax rate ¢ in stage one. Subsequently,
each firm ¢ chooses abatement technology ¢; in the second stage and output ¢; in the third
and last stage. Thus the regulator can commit to a tax rate and is not going to adjust it
after the firms have chosen their abatement technologies.

In the last stage, each firm i chooses ¢; to maximise its profit (6), taking all ¢;,j =

1,---,m,j # 1 as given. The FOC can be written as:
g =a—Q — tg (18)

Summing over i and solving for () yields:”

ma—ty " &

) = 19
@ m+1 (19)
Substituting (19) back into (18), we can solve for ¢;:
a—mte;+1) .4 €;
G = 2oy (20)

m+1
In stage two of the game, each firm i chooses ¢; to maximize its profit, taking all
€j,J =1,---,m,j # 1, as given and anticipating the effect of ¢; on ¢; and @) as given by
(20) and (19) respectively. Substituting (19), (20) and (4) into (6), firm ¢’s profits can be
written as:
__ 5 7

fi=gt - 201 -a) (21)

Maximizing with respect to ¢; yields, from (20):

37ri,c . 2mtq2
de; m+1

+7(1—¢)=0 (22)

"Expressions for @), ¢; and m; that still contain ; are denoted with a bar.

9



The second order condition is, from (20):

0?7 e B 2m?2t?
g2 (m+1)2

(2

-7 <0 (23)

By simple comparative statics, it is easy to see that the second order condition is more

likely to be satisfied the higher v is and the lower m and ¢ are.

In a symmetric solution, ¢; = € so that ¢; = ¢ foralli = 1,--- ,m. Then (20) becomes:
a —te

Cle,—e — 24

Gele,e = 12y (24)

Note that gq. > 0 only if a — et > 0. To guarantee that there is positive production
for any e, we impose that a > t. Also note that ¢. is decreasing in ¢ and in €. That is,
for a given ¢, the higher the tax rate is, the less each firm produces. Likewise, for a given
t, the higher ¢ is (the higher the emissions per unit are), the less firms produce. The
reason for these results is that firms’s marginal cost is determined by both ¢ and ¢. Profit
maximisation implies that a higher marginal cost will lead to lower output.

Solving for € and ¢ from (22) and (24) yields:

Y(1+m)? — 2amt
v(1 4+ m)? — 2mt?
(a—t)y(1+m)
v(1 4+ m)? —2mt?

(25)

C

qe (26)

The denominator in (25) and (26) is positive by (23). This also implies that £, > 0,

if v > (S@Lﬁg? In other words, v has to be large relative to a so that ¢ > 0. In addition,
€. < 1 given that a > t.

For the firm’s choice of € as a function of ¢, we find:

Lemma 1 Define v¢ = % Let the regulator set the environmental tax rate t in stage
one. Then if v < ~¢, €. is strictly decreasing in t. If v > ~°, e. s first decreasing and

then increasing in t.

Several interesting aspects can be highlighted from Lemma 1. First, the relevance of
the size of the market (a), number of firms (m) and the technology costs (). If a is large
enough and/or m low enough relative to v (7 < 7€), it is very profitable to invest in the

abatement technology and therefore, increases in ¢ can only lead to higher investments in

10



abatement and consequently lower €. However, if a is not so large or m not so low relative
to 7y (v > ~°), increases in the tax rate do not have such an unequivocal effect in the level
of investment in abatement. This leads us to the discussion of the second relevant aspect
in Lemma 1. As t increases, firms initially increase their investment in abatement (they
lower €) but after a critical value of ¢, they actually reduce their investment in abatement.
The intuition is that a higher ¢ generates incentives to invest in abatement (because a firm
can save more on the tax payment), but also increases the marginal cost of production,
making firms produce less (recall that ¢. is decreasing in t for a given €). The lower the
output is, the less profitable it is to invest in abatement. If ¢ is large enough, this second
effect will outweigh the first effect, implying that higher ¢ might actually lead to higher
e. Finally, note that as m increases v > ~¢ is more likely to hold as the RHS of the
inequality is decreasing in m. In other words, the higher m is, the more likely it is that
the emissions to output ratio in equilibrium is U-shaped in the emissions tax rate.

Lemma 1 is in accordance with, but more specific than, Ulph (1997) who shows that
with a quadratic R&D function, the effect of ¢ on ¢ is ambiguous. In our model, depending
on the parameter values, ¢ is either decreasing throughout or U-shaped as a function of
t. Our result is in contrast with Katsoulacos and Xepapadeas (1996) who find that ¢ is
decreasing throughout in t. However, Katsoulacos and Xepapadeas (1996) assume that
the government is also subsidizing R&D investment, whereas in our model it is only taxing
emissions.

We are now in a position to explore the total effect of a change in ¢ on ¢.. This effect

can be decomposed into two separate effects:

dg.  0q. N 0q. de.
dt Ot  Os dt

It is easy to see from (24) that the direct effect of ¢ on output is negative (

94c
5e < 0), as

discussed above (a higher ¢ implies a higher marginal cost and therefore a lower output

de.
) dt

in equilibrium). The same applies to % < 0. On the other hand turns from negative
to positive as t increases for v > ¢ as shown in Lemma 1. Thus, for v > ~¢, the total
effect of ¢t on ¢. could potentially be positive for low values of t. The next lemma states
that this does not occur and and that, in fact, the output level is strictly decreasing in ¢

for any ¢ for v > 7°. From Lemma 1 we also know that ¢. is strictly decreasing in ¢ for

11
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Figure 1: Emission intensity ¢ and output ¢ as a function of the tax rate ¢t for v < (12;”::)2

(a=1,v=4/25 m=4).

v < % (that is, % < 0). This could potentially lead to the total effect of ¢ on output

to be positive. Our next lemma also shows that this may actually happen for high enough

values of t.

Lemma 2 Let the requlator set the environmental tax rate in stage one. If v < ¢, then

2 . .
= (IQT—:;)Q, then ¢ is decreasing

*

qx s first decreasing and then increasing in t. If v > ¢

mnt.

To sum up, increases in the tax rate may lead to higher investments in abatement
both if v < ~¢ and if v > 7°. However, only in the first case (when a is high and m is
low relative to ) a higher tax rate could lead to a subsequent increase in output. This
requires that the tax rate is sufficiently high (where the equilibrium emission-to-output
ratio will be very low).

Lemma 2 is in accordance with, but more specific than, previous results in the lit-
erature. Katsoulacos and Xepapadeas (1996) and Ulph (1997) have shown that with a
quadratic R&D cost function, the effect of ¢t on ¢ is ambiguous. In our model, depending
on the parameters values, ¢ is either decreasing throughout or U-shaped as a function of
t. Combining Lemmas 1 and 2, we also show that ¢ is decreasing in ¢ when ¢ is U-shaped
in ¢t and vice versa.

Figures 1 and 2 illustrate Lemmas 1 and 2. In Figure 1, v < 7¢, so that emission

intensity is monotonically decreasing in ¢, but output is U-shaped in t. For low levels of

12



1 0.2
0.957 0.151
e
0.9--.]. 0.1
0.857 0.051
O 0.2 ’t0.4 0.6 0.8 1 O 0.2 ’t0.4 0.6 0.8
Figure 2: Emission intensity ¢ and output ¢ as a function of the tax rate t for v > (12117;‘;2)2

(a=1,v=1/2, m=4).

t, it is profitable for the firms to reduce emission intensity and output as environmental
policy becomes stricter. However, an increasingly strict environmental policy leads to
lower and lower emission intensity, so that eventually the effective tax rate et on output
decreases and output rises again. For completely clean production (¢ = 0), output is back
at the level without environmental policy.

In Figure 2, v > ~¢ so that output is monotonically decreasing in ¢, but emission
intensity is U-shaped in ¢. For low levels of ¢, it is profitable for the firm to reduce emission
intensity and output as environmental policy becomes stricter. However, an increasingly
strict environmental policy leads to lower and lower output levels, which makes it less
worthwhile to reduce the emission intensity. For ¢ = 0, there is no point investing in
emission reduction at all and ¢ is back to one.

In the first stage, the government chooses ¢ to maximise its objective function. Finding
an explicit solution is difficult. However, it is possible to characterise t. as a function of

5. The following lemma presents this characterisation:

Lemma 3 Let the government set the environmental tax rate t in stage one. Then the

tax rate t’ s strictly increasing in [3.

As [ increases, the relative weight in the government’s obejctive function of the damage

made by the emissions increases. This leads the government to increase the tax per unit

13



of emissions. To finish this section, we wish to characterize the equilibrium emissions-
to-output ratio as a function of 5. We present this characterization in the following

proposition:

Proposition 2 Let the government set the environmental tax rate t in stage one. Then

if v < ¢, e is strictly decreasing in 3, whereas q. is first decreasing and then increasing

in B Ify > ¢ = (121”532, . 18 first decreasing and then increasing in (3, whereas q. is

strictly decreasing in [3.

Interestingly, as 3 increases, the government raises the tax per unit of emissions with
the objective of reducing the environmental damage. As reaction to this, firms will reduce
their emissions levels via investments in abatement and via reduction of output. As firms
reduce their output levels, they have a lower incentive to invest in abatement. When
this second effect dominates, a higher g will lead to a higher emissions-to-output ratio in
equilibrium. Therefore, even when the tax rate is chosen endogenously by the government,
a stricter environmental technology can lead to more emissions per unit of output.

Comparing the critical levels 4* for the welfare optimum and ¢ for the commitment
case, from Propositions 1 and 2 respectively, we see that v¢ < 4" for m < 2 and ¢ > "
for m > 3. This means that a U-shaped relation between strictness of environmental policy
and emission intensity is more prevalent with commitment than in the welfare optimum
for m < 2, but less prevalent with commitment for m > 3. When m < 2, there is very
little competition between firms (none at all for m = 1), so that the regulator sets a low
tax rate in order to increase output, but output will still be below the optimal level. With
output and the emission tax rate being very low, firms have little incentive to invest in
cleaner technology, and there is more likely to be a turning point from where emission
intensity starts increasing with the regulator’s environmental preference. When m > 3,
output and the tax rate are relatively higher, so that it becomes more profitable to invest
in cleaner technology, and emission intensity is more likely to be decreasing monotonically

in the regulator’s environmental preference.

14



5 Firms move first (no commitment)

In the no-commitment scenario n, each firm i chooses its abatement technology ¢; in stage
one. The government then sets its environmental tax rate ¢ in stage two. Finally, each
firm ¢ sets its output level ¢; in the third stage. Thus the government cannot commit to
a tax rate ahead of the firm’s choice of technology.

The third stage, where each firm ¢ sets ¢; for given ¢t and €;,j = 1,--- ,m, is the same
as in the commitment game. Thus, the equilibrium output level and profits are g; in (20)
and 7; in (21) respectively.

In the second stage the government chooses ¢ to maximize welfare, given the ¢; chosen

by the firms in stage one. From (8), the regulator’s first order condition in stage two is:

ow Q) dg;|
O == QG 5[] [ L] -0
Using (19) and (20) and setting ¢; = - - - = &, = €, we can solve for t:

2
-1
tl. . = a(fme” —1) (27)
i me(l + pe?)
Note that ¢, > 0 requires 3me? — 1 > 0. In other words, 3 has to be sufficiently high

for the government to tax the firms’ emissions.®

In general, we can state:

Lemma 4 If the firms set ey = - -- = &, = € in stage one, then in stage two

it dt 1t .
de;  dej  mde b =m

Using straightforward comparative statics we can state the following:

Lemma 5 Let each firm i set its emissions-to-output ratio €; in stage one. Then we find
for the emission tax rate t} in the symmetric equilibrium with ey = --- = ¢, = €

% _ag(m+1) -0 % B a =0
g m(Be? +1)° ’ dm — m2e(Be2 4 1)
dt,  a[(B3+m)Be* —mpt +1] dt, a[(B+m)Be® —mBet +1]

= me? (Be? + 1)’ ©ode m?e? (Be? + 1)

(28)

8The SOC for a maximum is fulfilled for any 3 > 0 and ¢ > 0. Moreover, we require 3 < (2 +m)/m
so that to guarantee that in equilibrium W > 0 for any ¢ € [0,1]. The proof of this is available from the
authors upon request.
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The lemma is intuitive. The higher the (perceived) environmental damage of emissions,
the higher the tax on emissions is. The tax rate is increasing in the number of firms,
because increasing competition between firms means they will be less successful in driving
the product price up by limiting their output. Therefore the regulator is more worried
about the pollution from production than about output being below the optimal level.

In the first stage of the game, each firm ¢ chooses its emission intensity ¢; to maximise

profits. The FOC is, from (21):

dm;, dq;  Oq; dt
Mmoo g. - 1—¢)= 2
Qin [851» + T dei] +9(1—¢)=0 (29)

From (20) we find:

8qi,n o —me; + Zj gj a(b,n o —mt

ot m+ 1 de;  m+1

Substituting this along with (20) and (28) into (29), we find:

—2aY
m3e (B2 +1)° (m + 1)

+v(1—-¢)=0 (30)

with
Y =m’e (1+ 552)2 —amfB®e! + (3+m)aBe® +a >0 (31)

Given that finding the explicit solution to the above equation is very intricate, we
resort to the implicit function theorem to characterise the relationship between g and e,,.

We can establish the following result:

Proposition 3 Let each firm i set its emissions-to-output ratio €; in stage one. Then for
m < 3 firms, €, is increasing throughout in 5. For m > 4 firms, the relation between [

and &, s ambiguous.

In this case we can see again that the relationship between environmental damage and
emissions per unit of output may non be monotonic, particularly for a relatively large
number of firms. An increasingly strict environmental policy (higher ) tends to lead to
a higher tax rate, increasing the incentives to invest in abatement technologies on the
one hand but lowering output on the other. This latter effect will be stronger in markets

with more firms (in particular, in markets with m > 4), where competition in output is
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stronger. The result of the interaction of these two effects will therefore be ambiguous in
those markets.

Finally, we wish to comment on the relationship between the equilibrium output and
B. After substituting ¢, from (27) and ¢; = &, into (20), we can write the equilibrium

ouput as:
a

- m(1 + pBe?)
It can be seen that g affects ¢, both directly and indirectly, though its effect on ¢,,.

n (32)

The direct effect of 5 is negative: Higher 5 leads to higher taxes and as a consequence
of that, to lower output. However, higher taxes can also lead to more investment on
abatement which tends to favour an increase of production. The interplay between these
two effects determines whether the equilibrium level of output in increasing or decreasing

in 4. The next lemma formalizes this observation:

Lemma 6 Let the firm set the emissions-to-output ratio € in stage one. Then q, is:

i. Decreasing in (8 if Uifg >0, or if‘f—g <0 and e, > —25%-

ii. Increasing in (5 if C{j—g <0 ande, < —25%'

6 Conclusion

Does an increasingly strict environmental policy spur on the polluting industry to invest
more and more in finding cleaner ways to produce? The answer might seem obvious,
but it is not once we take the output market into account. When stricter environmental
policy leads to a reduction in output, investment in reducing the emissions-to-output ratio
becomes less profitable.

We find that the emissions-to-output ratio can be a U-shaped function of the environ-
mental damage parameter. This can happen in the welfare optimum, in the game where
the regulator can commit to the emission tax rate before the firms decide on their envi-
ronmental R&D, and in the game where the regulator cannot commit. In all these games,
if the emissions-to-output ratio is decreasing throughout in environmental damage, it is
output that is U-shaped in environmental damage. Thus, while initially both output and

emission intensity are decreasing in environmental damage, eventually one of them will
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start to increase. Interestingly, the U-shaped function of the emissions-to-output ratio
will tend to arise in situations where the R&D costs and number of firms are relatively
large and the size of the market is relatively small. Such situations are associated with
lower profitability of investing in environmental R&D.

Policy makers may wish to stimulate environmental R&D in order to reduce environ-
mental compliance cost in the future or to strengthen their polluting or eco-industry in
the global market. We show that a strict environmental policy, or a higher weight on
environmental damage in the objective function, does not necessarily lead to more envi-
ronmental R&D. Indeed, games between the government and industry aside, it may not
even be optimal (in a static setting) for environmental R&D to keep increasing with the
strictness of environmental policy.

In future work we intend to generalize the market demand and R&D cost functions.
It is especially interesting to look at cost functions where the sign of the LHS of (1)
is ambiguous, so that the effect of environmental policy on environmental R&D is not

immediately clear.
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A Appendix: Proofs

Proposition 1. From (10) to (17), it is clear that for low values of 5 > 0, both dq/df <
0,de/dfp < 0, but for higher values of 3, either dq¢/d5 > 0 orde/df > 0, but not both.
Let us examine whether e can reach a turning point in 5 (de/d = 0), after which it

will start increasing in 3. When v < a?/m, then by (10) dg/dS = 0 for e = 1/2 and:

B=—1 (33)

mq?

Substituting both expressions into (10) yields:

a—mq—lzo

4q

Solving for ¢, we find:
a -+ +/a?>—my

q= 5 (34)

(The other solution is a local welfare minimum.) This confirms that there is only a

solution for ¢ if v < a?/m. Substituting (34) into (33), we find that dg/d3 = 0 for

g
b= 2
2m (a—i— a2—m7>

This proves point 1 of the Proposition.
From (15), we see that de/df = 0 when

Be? =1 (35)

Substituting this into (10), we find ¢ = a?/(4m?). Substituting this and (35) into (11)

yields:
2
a
l—eg)——=0
Yl —e) =
Solving for ¢, we find:
1 1 2
e=5+3/1- 51—7 (36)

(The other solution is a local welfare minimum.) Thus there is only a solution for ¢ if

v > a*/m. Substituting (36) into (35), we find that de/dS = 0 for:

2
' VY + A/ my — a?
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This proves point 2 of the proposition.

When v = a?/m, both dq/dB3 = 0 and de/dB = 0 at the same point, namely where
8= %, €=z and q = 5. For 8 > 7, either € remains at = and dq/df < 0 or g remains
at 5 and de / dp < 0. This proves point 3 of the Proposmon.

Lemma 1. From (25) we find:

de. _ 2m[y(1+m)*(2t — a) — 2mat?] (37)
dt (1 +m)? — 2mt*]?

dec

It is easy to see that

is continuous in ¢ in the relevant parameter space. As the

denominator on the RHS of (37) is positive, the sign of daﬂ

is the sign of the numerator.

Solving [y(1 + m)?(2t — a) — 2mat?] = 0 , we find the critical point (or points) at which

y(14+m)2—(14+m \/'y(’y 1+m)2—2a2m)
2am and

dec
dt

changes its sign. Two roots can be found, 7 =

~(14m)2+(1+m \/v y(1+m)2— 2a2m)
2am

Note that if v < zm“ e there are no real roots and

therefore dEC < 0 globally by continuity from dEC < 0 at t = 0. Now, we focus on the case
where there are real roots; that is where v > (12% When this holds, it is easy to see

that v > 7 and that v > a. Therefore, we can discard v because we require t < a so that
output is positive. We therefore focus on what happens before and after 7. It is relatively
easy to check that 7 > 0. Moreover, if t = 0, % < 0. By continuity, given that 7 > 0,
if t < 7, e is decreasing in ¢t and if t > 7, €, is increasing in ¢. Finally, we must consider

the case where v = (12+ )2 In such a case 7 = a. Given that t < a and that if t = 0, dftc

< 0, we know that if v = )2, €. is strictly decreasing in ¢. The lemma follows.

Lemma 2. From (26) we ﬁnd:

dg. _ ~(1L+m)[2mt(2a —t) — y(1 +m)?]
dt (7(1 4+ m)? — 2mt?)?

(38)

dQC

Notice that %% is continuous in the relevant parameter space and that

dt o < 0.

t

However, the sign of the derivative may change for higher values of t. Recall also that

€ (0,a). The sign of %= is the sign of the term in square brackets on the RHS of (38).

dt
2ma+ \/Qm(2ma2 —v(1+m)?
2m

The roots for v(1 + m)? — 4mat + 2mt* = 0 are t = . Ast < a,
2ma—\/2m(2ma2 ~v(1+m)?

2m

th,

the only relevant root is t = . We now study the behaviour of

2ma?

in the two cases highlighted in the lemma. It is easy to see that if v > (tm

T2 there

dgec
dt

are no real roots. By continuity, < 0, for any t. Next, we turn our attention to
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2ma

the case where v < i+ . Recall that dqc _o < 0 and it is straightforward to see that

dqc — ~(1+m) 2ma?_ dge 2ma:t\/2m(2ma2—7(1+m)2
@t lt—a = Zma@—(tm? = 0. Therefore if v < Trm? i < 0fort < e

2ma=++/2m(2ma2—~(14+m)?
and d;[ > 0 for t > ==~ \/m(;:la y(tm)

< 0, by continuity we know that dq° <0ify = mT“Q The

. Finally, if v = m—“2 the highlighted root is

t=a. Ast < a and ddqt"

t=0

lemma follows.
Lemma 3. From the implicit function theorem we know that
dt _82W/ opot
s O2W /ot?
The denominator on the RHS is negative, because this is the SOC for welfare maximiza-

2
tion. It is straightforward to see from (8) that %—Vg =-1 (Z 5ch> . Hence:

82W /030t = <Zscqc>z< ch}) (39)

Thus, the sign of 9?1W/030t depends on the sign of Z <d[ecqcl> where from (25), (26),

(37) and (38):
dlecge]  dec | dge _ v(1+m)

— T & =
dt dt [v(1+m)2 — th2]3
where H = +2(1 + m)* + 4am??(3a — 2t) + 2ym(1 + m)?(a® — 6at + 3t*). By (23),

the denominator on the RHS is positive. Recall that ¢ € [0,a]. Evaluating H at the
maximum value of ¢, we have H |,—,= (2a*m — v(1 + 2m + m?))?> > 0. And at the
minimum value of ¢, we have H |,—o= 2a?>ym(1 + m)? + v*(1 + m)* > 0. Moreover, we
know that 2 = 12m(a —t)(2amt — y [1 + m]*) < 0 given (23) and a > t. Thus, we know
that H is continuous and decreasing in ¢ and given that H is positive at ¢ = a and at
t = 0, we know that H > 0 for any feasible ¢t. Thus, % < 0 and therefore from (39),
we know that 9?°W/9td5 > 0. The rest of the lemma follows.

d&‘c dt and dQC dQC dt

Proposition 2. By the chain rule, we know that dEC = G ds = G ds

The sign
of de./dB and dq./dS is given by Lemmas 1 and 2 respectlvely, Whereas dt/dp > 0 by
Lemma 3.

Lemma 4. In stage two, the regulator sets ¢ according to OW (g1, -+ ,&m,t)/0t = 0.

Then since €; = ¢; = €:

At OPW/otde,  0PW/Otde;  dt i
de, | OPW/orr | WO de; "/
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Furthermore:

dt Zm: (_82W/atasi> W/ Otde; dt

@ _ —m v
= 52w /0t "ewier ~ M, J

Lemma 5. The first three results follow straightforwardly from (27), whereas dt, /de;
follows from (27) and Lemma 4.

Proposition 3. Totally differentiating firm 4’s first order condition dm;/de; = 0 with
respect to 3, we find:

Z d?7; dE d?m; _0
< de;de; deidﬁ N

den, d*m;/de;dB
d N d27rl d2m;
B ( + Z];éi dEidEj)
The denominator on the RHS is negative by stability of the equilibrium (see Martin,

2001, p. 30). Thus, from (30), de,,/df has the sign of

Thus we have:

2ae [Y +a (38 — 1) (m + 1))

2 _
O in/OB0E m3 (Pe? + 1)4 (m+1)

Since Y > 0 in (31) and ¢, > 0 requires Sme? —1 > 0 by (27), the RHS is positive for
m < 3, but could be negative for m > 4.

Lemma 6. Define B, = 2. From (32), we can then write:

dgy g, [8Bn 0B, dsn} _ : —ae [n+2ﬁd5n}

d ~ 0B, | 08 ' 0e, dt | m(l+ Be2)?
If the term in brackets is negative (positive), Cfi%} > (<)0.
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