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Abstract

We focus on four stylized facts of behavior under risk. Decision makers: (1)

Overweight low probabilities and underweight high probabilities. (2) Ignore events

of extremely low probability and treat extremely high probability events as certain.

(3) Buy inadequate insurance for very low probability events. (4) Keeping the ex-

pected loss �xed, there is a probability below which the take-up of insurance drops

dramatically. Expected utility (EU) fails on 1-4. Existing models of rank dependent

utility (RDU) and cumulative prospect theory (CP) satisfy 1 but fail on 2, 3, 4.

We propose a new class of axiomatically-founded probability weighting functions,

the composite Prelec weighting functions (CPF) that simultaneously account for 1

and 2. When CPF are combined with RDU and CP we get respectively, composite

rank dependent utility (CRDU) and composite cumulative prospect theory (CCP).

Both CRDU and CCP are able to successfully explain 1-4. CCP is, however, more

satisfactory than CRDU because it incorporates the empirically robust phenomena

of reference dependence and loss aversion.
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�... people may refuse to worry about losses whose probability is below some threshold.
Probabilities below the threshold are treated as zero.�Kunreuther et al. (1978, p. 182).
�Obviously in some sense it is right that he or she be less aware of low probability

events, other things being equal; but it does appear from the data that the sensitivity goes
down too rapidly as the probability decreases.�Kenneth Arrow in Kunreuther et al. (1978,
p. viii).
�An important form of simpli�cation involves the discarding of extremely unlikely out-

comes.�Kahneman and Tversky (1979, p. 275).
�Individuals seem to buy insurance only when the probability of risk is above a threshold

...� Camerer and Kunreuther et al. (1989, p. 570).

1. Introduction

The insurance industry is of tremendous economic importance. The total global gross in-
surance premiums for 2008 were 4:27 trillion dollars, which accounted for 6:18% of global
GDP (Plunkett, 2010). The study of insurance is crucial in almost all branches of eco-
nomics. Yet, despite impressive progress, we show that existing theoretical models are
unable to explain the stylized facts on the take-up of insurance for low probability events.
The main motivation for the paper is to provide a theory that explains the stylized facts on
insurance for events of all probabilities, particularly those occurring with low probabilities.
We highlight the following four robust empirical stylized facts, S1-S4, about the be-

havior of decision makers under risk.

S1. Decision makers overweight low probabilities but underweight high probabilities.

S2. Decision makers ignore very low probability events and treat very high probability
events as certain.

S3. Decision makers buy inadequate insurance against low probability events.

S4. Whether premiums are actuarially fair, unfair or subsidized, there is a probability
below which the take-up of insurance drops dramatically, as the probability of the
loss decreases and the loss increases, keeping the expected loss constant.

We discuss these stylized facts at greater length, below. For the moment, note that
S1 and S2 are generic stylized facts about human behavior under risk.1 However, S3, S4
apply speci�cally in an insurance context.2

1See, for instance, Kahneman and Tversky (1979), Kahneman and Tversky (2000), Starmer (2000).
2See Kunreuther (1978). S3 and S4 are not the only known behavioral attitudes towards insurance.

Individuals might also be in�uenced by framing e¤ects and exhibit the conjunction fallacy when they view
damages broken into their subparts; see Camerer and Kunreuther (1989). These lie outside the scope of
this paper.
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The most popular decision theory in economics, expected utility theory (EU), predicts
too much insurance and it violates all of S1-S4. For example, a well known result under
EU is that a risk-averse decision maker will buy full insurance if the premium is actuarially
fair. By contrast, Kunreuther et al. (1978, p.169) found that only 20% of experimental
subjects buy insurance, at the actuarially fair premium, if the probability of the loss is
0:001. We shall consider the insurance implications of EU in more detail in Section 2.3.
Rank dependent utility theory (RDU) and cumulative prospect theory (CP) were both

developed to give a better explanation of behavior under risk. RDU and CP, unlike EU,
incorporate probability weighting functions3 that incorporate stylized fact S1. An example
is the axiomatically-founded Prelec (1998) probability weighting function that is consistent
with S1 (but, crucially, not S2). We show that this feature leads to the excessive take-up
of insurance. In this sense, RDU and CP actually do worse than EU. The main aim of
our paper is to propose a theoretical solution that enables RDU and CP to explain the
stylized facts S1-S4. However, it is not possible to rescue EU.
To cope with the stylized fact S2 (and other phenomena) Kahneman and Tversky

(1979) proposed an editing phase where decision makers decide which events to ignore and
which to treat as certain. This is followed by an evaluation phase in which the decision
maker chooses from among the psychologically-cleaned lotteries from the �rst stage.
Inspired by Kahneman and Tversky�s (1979) idea,4 we propose a new class of proba-

bility weighting functions which are simultaneously able to account for S1 and S2. We call
these composite Prelec probability weighting functions (CPF) because they are composed
of several segments of Prelec (1998) probability weighting functions, each appropriate for
the relevant probability range. The CPF�s are parsimonious, �exible, compatible with the
empirical evidence and are axiomatically-founded (see Appendix 2, Proposition 14, for an
axiomatic derivation of CPF).
We use the term composite rank dependent utility theory (CRDU) to refer to (otherwise

standard) RDU when combined with a CPF. Similarly, we use the term composite prospect
theory (CCP) to refer to (otherwise standard) CP when combined with a CPF. We show
how CCP and CRDU can explain all the stylized facts S1-S4. We know of no other decision
theory under risk that can replicate this performance. Furthermore, we argue that CCP is
likely to be superior to CRDU because it also incorporates reference dependence and loss
aversion which are not only psychologically salient but are also robust empirical �ndings.5

We conjecture that CCP can be fruitfully applied to all situations of risk, especially those

3By a probability weighting function we mean a strictly increasing function w(p) : [0; 1] onto! [0; 1]. w(p)
is the subjective probability assigned by an individual to an objective probability, p.

4Incidentally Kahneman and Tversky (1979) is the second most cited paper in Econometrica and in
all of economics. We are grateful to Peter Wakker for pointing this out.

5See, for instance, Kahneman and Tversky (2000), Starmer (2000) and Dhami and al-Nowaihi (2007,
2010b).
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where the probability of an event is very low.6

The structure of the paper is as follows. In Section 2 we discuss, heuristically, human
behavior for low probability events, and the relative failure of EU, RDU and CP to explain
observed insurance behavior. Section 3 formally describes the basic insurance model.
Section 4 introduces some essentials of non-linear probability weighting functions that
are required to apply RDU and CP. Section 5 describes the Prelec probability weighting
function (Prelec, 1998), which plays a fundamental role in this paper. In Sections 6 and
7 we formally derive our results on insurance behavior under RDU and CP, respectively.
Section 8 introduces our proposed new probability weighting functions, which we call
composite Prelec probability weighting functions (CPF). Section 8 then combines CPF
with, respectively, RDU and CP to form composite rank dependent theory (CRDU) and
composite prospect theory (CCP). Section 9 shows that CRDU and CCP successfully
explain S1-S4. Section 10 concludes. Proofs are relegated to Appendix 1. Appendix 2
contains an axiomatic derivation of the CPF (Proposition 14) and some useful information
on the Prelec function (Propositions 12 and 13).

2. The insurance problem

2.1. Insurance for low probability events (Stylized facts S3, S4)

The seminal study of Kunreuther et al. (1978) provides striking evidence of individuals
buying inadequate, non-mandatory insurance against low probability events, e.g., earth-
quake, �ood and hurricane damage in areas prone to these hazards (stylized fact S3 ). This
was a major study, with 135 expert contributors, involving samples of thousands, survey
data, econometric analysis and experimental evidence. All three methodologies gave rise
to the same conclusion, see Kunreuther et al. (1978).7

EU predicts that a decision maker facing an actuarially fair premium will buy full in-
surance for all probabilities, however small. Kunreuther et al. (1978, chapter 7) report the
following experimental results. They presented subjects with varying potential losses with
various probabilities, keeping the expected value of the loss constant. Subjects faced actu-
arially fair, unfair or subsidized premiums. In each case, they found that there is a point
below which the take-up of insurance drops dramatically, as the probability of the loss
decreases and as the magnitude of the loss increases, keeping the expected loss constant
(stylized fact S4 ). These results were robust to changes in subject population, experimen-
tal format and order of presentation, presenting the risks separately or simultaneously,
bundling the risks, compounding over time and introducing �no claims bonuses�.

6See al-Nowaihi and Dhami (2010) for further details.
7In the foreword, Arrow (Kunreuther et al.,1978, p. vii) writes: �The following study is path breaking

in opening up a new �eld of inquiry, the large scale �eld study of risk-taking behavior.�
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Remarkably, the lack of interest in buying insurance arose despite active government
attempts to (i) provide subsidy to overcome transaction costs, (ii) reduce premiums below
their actuarially fair rates, (iii) provide reinsurance for �rms and (iv) provide relevant
information. Hence, one can safely rule out these factors as contributing to the low take-
up of insurance. Arrow�s own reading of the evidence in Kunreuther et al. (1978) is
that the problem is on the demand side rather than on the supply side. Arrow writes
(Kunreuther et al., 1978, p.viii) �Clearly, a good part of the obstacle [to buying insurance]
was the lack of interest on the part of purchasers.�
A skeptical reader might question this evidence on the grounds that potential buyers of

insurance could have had limited awareness of the losses or that they might be subjected
to moral hazard (in the expectation of federal aid). Both explanations are rejected by the
data in Kunreuther et al. (1978). Furthermore, there is no evidence of procrastination
(arising from say, hyperbolic discounting) in the Kunreuther et al. (1978) data.

2.2. Other examples of individual response to low probability events

In diverse contexts, people ignore low probability events that could, in principle impose
huge losses to them (stylized fact S2). Since many of these losses are self-imposed, because
of individual actions, people are choosing not to self-insure. It is beyond the scope of this
paper to go through the relevant evidence, but we make some suggestive remarks here.8

People were reluctant to use seat belts prior to their mandatory use despite publicly
available evidence that seat belts save lives. Prior to 1985, only 10-20% of motorists wore
seat belts voluntarily, hence, denying themselves self-insurance; see Williams and Lund
(1986). Even as evidence accumulated about the dangers of breast cancer (low probability
event) women took up the o¤er of breast cancer examination, only sparingly.9

Bar-Ilan and Sacerdote (2004) estimate that there are approximately 260,000 accidents
per year in the USA caused by red-light running with implied costs of car repair alone of
the order of $520 million per year. It stretches plausibility to assume that these are simply
mistakes. In running red lights, there is a small probability of an accident, however, the
consequences are self in�icted and potentially have in�nite costs.
A user of mobile phones, while driving, faces potentially in�nite costs (e.g. loss of

one�s and/or the family�s life) with low probability, in the event of an accident. Survey
evidence in UK indicates that up to 40% of individuals drive and talk on mobile phones;
see, Royal Society for the Prevention of Accidents (2005). Pöystia et al. (2004) report
that two thirds of Finnish drivers and 85% of American drivers use their phone while
driving. Mobile phone usage, while driving, increases the risk of an accident by two to

8See Dhami and al-Nowaihi (2010a) for further examples.
9In the US, this changed after the greatly publicised events of the mastectomies of Betty Ford and

Happy Rockefeller; see Kunreuther et al. (1978, p. xiii and p. 13-14).
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six fold. Hands-free equipment, although now obligatory in many countries, seems not to
o¤er essential safety advantage over hand-held units. A natural explanation is that the
individuals simply ignore or substantially underweight the low probability of an accident.

2.3. The failure of expected utility theory (EU) to explain the stylized facts

It is a standard theorem of EU that people will insure fully if, and only if, they face
actuarially fair premiums. Since insurance �rms have to at least cover their costs, market
premiums have to be above the actuarially fair ones. Thus, EU provides a completely
rational explanation of the widely observed phenomenon of under-insurance. This has the
policy implication that if full-insurance is deemed necessary (because of strong externalities
for example), then it has to be encouraged through subsidy or stipulated by law. However,
EU is unable to explain several stylized facts from insurance, as we now outline.10

First, Kunreuther et al. (1978, ch.7) found that only 20% of experimental subjects
insure, at the actuarially fair premium, if the probability of the loss is 0:001. Second,
EU cannot explain why many people simultaneously gamble and insure. The size of
the gambling/insurance industries makes it di¢ cult to dismiss such behavior as quirky.
Third, EU predicts that a risk averse decision maker always buys some insurance, even
when premiums are unfair. However, many people simply do not buy any insurance, even
when it is available, especially for low probability events. Fourth, when faced with an
actuarially unfair premium, EU predicts that a decision maker, who is indi¤erent between
full-insurance and not insuring, would strictly prefer probabilistic insurance11 to either.
This is contradicted by the experimental evidence (Kahneman and Tversky, 1979: 269-
271).
What accounts for the low take-up of insurance for low probability events? There is

some evidence of a bimodal perception of risks that could o¤er a potential explanation.12

Some individuals focus more on the probability and others on the size of the loss. The
former do not pay attention to losses that fall below a certain probability threshold, while
for the latter, the size of the loss is relatively more salient. Hence, the former are likely to
ignore insurance while the latter might buy it for low probability but highly salient events.
We focus here on the former set of individuals.
10There are also well known problems with EU in non-insurance contexts; see Kahneman and Tversky

(2000), Starmer (2000) and Dhami and al-Nowaihi (2007, 2010b).
11For example, according to EU, an individual who is indi¤erent between full insurance and not insuring

at all should strictly prefer being covered on (say) even days (but not odd days) to either.
12See Camerer and Kunreuther (1989) and for the evidence, see McClelland et al (1993) and Schade et

al (2001).
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2.4. The failures of alternative theories to explain the stylized facts

The di¢ culties arising from the use of EU have motivated a number of alternatives. The
most important of these are rank dependent utility theory (RDU), see Quiggin (1982,
1993), and cumulative prospect theory (CP), see Tversky and Kahneman (1992).13 These
two theories o¤er several improvements over EU, e.g., CP can explain the anomalous result
arising from probabilistic insurance that EU cannot.14

Unlike EU, both RDU and CP use probability weighting functions, w(p), to overweight
low probabilities and underweight high probabilities (stylized fact S1). One such w(p)
function, that is consistent with much of the evidence on non-extreme probability events,
and has axiomatic foundations, is the Prelec (1998) function plotted in Figure 2.1 below.15.

10.750.50.250
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Figure 2.1: The Prelec (1998) function, w (p) = e�(� ln p)
1
2 .

Remark 1 (In�nite overweighting of in�nitesimal probabilities): Several weighting func-
tions, in addition to Prelec�s (1998), have been proposed; we discuss some below. However,
they all have the feature that the decision maker, (1) in�nitely overweights in�nitesimal
probabilities in the sense that the ratio w(p)=p goes to in�nity as p goes to zero, and (2)
in�nitely underweight near-one probabilities in the sense that the ratio [1 � w(p)]=[1 � p]
goes to in�nity as p goes to 1. We call the set of these functions as standard probability
weighting functions. They underpin all models of RDU and CP and violate stylized fact
S2.
13Mark Machina (2008) has recently argued that �... the Rank Dependent form has emerged as the

most widely adopted model in both theoretical and applied analyses.�However, CP, by adding the notions
of reference dependence, loss aversion and separate attitudes to risk in the domain of gains and losses, can
explain everything that RDU can do and, in addition, explain phenomena of major economic importance
that RDU cannot.
14For other speci�c improvements o¤ered by RDU and CP over EU, see Starmer (2000).
15See De�nition 5, below.
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We make three contributions, C1-C3, in this paper. The �rst contribution, C1, is listed
immediately below, followed by contributions C2 and C3 in the next subsection.

C1. Failure of RDU and CP : Recall that �standard probability weighting functions�in-
�nitely overweight in�nitesimal probabilities. Hence, we show that decision makers
who use RDU or CP, insure fully against a su¢ ciently low probability loss even under
actuarially unfair premiums and �xed costs of insurance, provided a mild participa-
tion constraint is satis�ed. Thus, CP and RDU cannot account for stylized facts S3
and S4. This is a big blow to RDU and CP, because both were proposed precisely
to overcome the empirical refutations of EU in the domain of choice under risk.

2.5. Towards an explanation of the stylized facts from insurance

We now describe how RDU and CP might be modi�ed to explain the stylized facts S1-S4.
We begin with the insight of Kahneman and Tversky (1979) in prospect theory (PT), which
describes two sequential phases.

1. In the editing phase, decision makers choose which improbable events to treat as
impossible and which probable events to treat as certain. In the insurance context,
decision makers might ignore events below a probability threshold (stylized fact S3).
Kahneman and Tversky (1979, pp. 282-83) wrote: �Because people are limited in
their ability to comprehend and evaluate extreme probabilities, highly unlikely events
are either ignored or overweighted, and the di¤erence between high probability and
certainty is either neglected or exaggerated.�

2. In the decision/evaluation phase, which follows the editing phase, decision makers
apply prospect theory to the psychologically-edited lotteries. Having decided to
ignore low probability events in the editing phase, decision makers demand zero
insurance for such events in the decision phase, in conformity with stylized fact S3.

We can now describe our remaining two main contributions, C2 and C3.

C2. Composite Prelec probability weighting functions (CPF): Recall that the Prelec weight-
ing function (see Figure 2.1) captures stylized fact S1 but fails on stylized fact S2. We
modify the end points of the Prelec function that enables us to address, simultane-
ously, S1 and S2. Intuitively, we combine the editing and the evaluation phases of PT.
The resulting function, the composite Prelec probability weighting function (CPF) is
sketched in Figure 2.2. It is consistent with the empirical evidence, is parsimonious
but �exible and has an axiomatic foundation (see Appendix 2, Proposition 14, for
an axiomatic derivation of CPF). In Figure 2.2, decision makers heavily underweight
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Figure 2.2: A composite Prelec probability weighting function (CPF)

very low probabilities in the range [0; p1] (by contrast the Prelec weighting function
in Figure 2.1, in�nitely overweights near-zero probabilities). Akin to Kahneman and
Tversky�s (1979) editing phase, decision makers who use the CPF in Figure 2.2 would
typically ignore very low probability events by assigning low subjective weights to
them (stylized fact S2). Hence, in conformity with the evidence, they do not buy
insurance for very low probability events (unless mandatory).16 Over the probability
range [p3; 1], decision makers overweight the probability, as suggested by the evi-
dence; see, for instance, Kahneman and Tversky�s (1979, p.282-83). In the middle
segment, p 2 [p1; p3], the CPF is identical to the Prelec function, and so addresses
stylized fact S1.

C3. Explanation of S1-S4 using composite prospect theory (CCP: CP+CPF) and com-
posite rank dependent utility (CRDU: RDU+CPF): Tversky and Kahneman (1992)
introduced cumulative prospect theory (CP). This replaced Kahneman and Tversky�s
(1979) prospect theory (PT) in two respects. (i) The psychologically-rich editing
phase that determined, among other things, which low probability events to ignore
(stylized fact S2) was eliminated.17 (ii) Cumulative transformations of probability
replaced the point transformations under PT.18 Hence, a decision maker using CP

16In other contexts, they are unlikely to be dissuaded from low-probability high-punishment crimes,
reluctant to wear seat belts (unless mandatory), reluctant to participate in voluntary breast screening
programs (unless mandatory) and so on.
17The reason for this was that the cumulative transformations of probabilities in CP requires a continu-

ous, 1� 1, and onto probability weighting function, w(p), on [0; 1] such that w(0) = 0 and w(1) = 1. The
editing phase in PT, however, creates discontinuities in the weighting function, which are not permissible
under CP.
18The introduction of cumulative transformation of probabilities was an insight borrowed from RDU.
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never chooses stochastically dominated options (unlike PT).
When CP is augmented with CPF (instead of a standard probability weighting func-
tion; see remark 1) we refer to it as composite cumulative prospect theory (CCP).
Analogously, when combined with CPF, RDU is referred to as composite rank de-
pendent utility, CRDU. CCP and CRDU are able to address all four stylized facts,
S1-S4. In particular, a decision maker who uses CCP and CRDU will not buy insur-
ance against an expected loss of su¢ ciently low probability; in agreement with the
evidence. To quote from Kunreuther et al. (1978, p248) �This brings us to the key
�nding of our study. The principal reason for a failure of the market is that most
individuals do not use insurance as a means of transferring risk from themselves
to others. This behavior is caused by people�s refusal to worry about losses whose
probability is below some threshold.�

2.6. Are these low probabilities economically relevant?

In section 8.1, we �t two composite Prelec probability weighting functions (CPF) to two
separate data sets from Kunreuther et al. (1978). The range of low probabilities that are
underweighted by the CPF (the range (0; p1] in Figure 2.2) are, respectively, (0; 0:195] and
(0; 0:006]. The upper ends of these intervals involve probabilities that would comfortably
seem to accommodate many insurance contexts. The decision maker might, however, still
want to buy insurance even if he/she underweights these probabilities. This brings us to
the issue of the exact amount of underweighting and the probability of a loss for which
insurance is sought. These are some of the issues addressed in our paper.

3. The Model

Suppose that a decision maker can su¤er the loss, L > 0, with probability p 2 (0; 1). She
can buy coverage, C 2 [0; L], at the cost rC+ f , where r 2 (0; 1) is the premium rate, and
f � 0 is a �xed cost of buying insurance.19 We allow departures from the actuarially fair
condition. We do so in a simple way by setting the insurance premium rate, r, to be

r = (1 + �) p. (3.1)

Thus, � = 0 corresponds to the actuarially fair condition, � > 0 to the actuarially unfair
condition and � < 0 to the actuarially �over-fair�condition. Hence, the decision maker�s

See, for example, Quiggin (1993) or Starmer (2000) for arguments for preferring the cumulative transfor-
mation of probability to the point transformation.
19The �xed costs include various transactions costs of buying insurance that are not re�ected in the

insurance premium. For instance, the costs of information acquisition about alternative insurance policies,
the opportunity costs of one�s time spent in buying insurance and so on.
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wealth is: �
W � rC � f with probability p

W � rC � f � L+ C � W � rC � f with probability 1� p

Let UI (C) be the utility of the decision maker if she decides to buy an amount of coverage,
C > 0. Let C� be the optimal level of coverage. Denote by UNI the utility of the decision
maker from not buying any insurance. Then, a decision maker who buys coverage C�,
satis�es the participation constraint,

UNI � UI(C�).

3.1. Some observations on limiting processes

In this paper, we shall make heavy use of limiting arguments. The decision maker faces a
loss, L, with probability, p. Hence, the expected value of the loss is L = pL. We shall take
the limit p ! 0, keeping L �xed. It follows that L ! 1. One can object by saying that
losses can never be in�nite.20 At this level of generality, one could argue against the use
of asymptotic theory in statistics on the grounds that samples can never be in�nite. One
could also argue against using in�nite horizon models, against in�nitely divisible quantities
and so on.21

A further example may help. The early literature that studied convergence of Cournot
competition to perfect competition assumed that market size remained �xed while the
number of producers tended to in�nity.22 A consequence was that the size of each pro-
ducer had to approach zero. Further consequences were that the average cost curve had
to be positive sloping and that any transaction cost, however small, would block trade.
These consequences were regarded as unsatisfactory. Therefore, the subsequent literature
considered producers of �xed size with U-shaped average cost curves, possibly with �xed
costs. As the number of �rms tended to in�nity, the total size of the market had to also
tend to in�nity. Although no market can, in fact, be in�nite, the later literature was
regarded as more satisfactory.23

20Actually, loss of life, which can be associated with many kinds of low probability disasters is arguably
an in�nite loss. Loss of honour or severe injustice (in many societies), or su¤ering a serious lifelong
handicap could also approximate in�nite losses.
21Continuous-time trading and an exogenous process for the underlying asset are fundamental assump-

tions of the Black-Scholes-Merton model, one of the fundamental models in �nance. However, any trans-
action costs, no matter how small, would block continuous time trading. An exogenous process for the
underlying asset (una¤ected by trade in the �nancial derivative) implies an in�nite quantity traded in the
underlying asset. Similarly, in physics, any particle following a Brownian motion must cover an in�nite
distance in any time period, no matter how brief, which in itself is not a physically acceptable result. But
the assumption of Brownian motion is of immense utility, as it facilitates derivation of refutable empirically
important consequences.
22See, for example, Frank (1965) and Ru¢ n (1971).
23See, for example, Novshek (1980).
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More speci�cally, one can object by saying that we are considering the wrong limiting
argument. In particular, that we should take the limit p ! 0, keeping L �xed. It then
follows that L! 0. However, in fact, the �rst type of limiting argument (p! 0, keeping
L �xed) is the relevant one in our case. The limiting process we consider is the theoretical
analogue of the experimental treatments of Kunreuther et al. (1978, chapter 7). They
presented subjects with varying potential losses with various probabilities, keeping the
expected value of the loss constant. Subjects faced actuarially fair, unfair or subsidized
premiums. In each case they found that there is a point below which the take-up of
insurance drops dramatically, as the probability of the loss decreases and as the magnitude
of the loss increases, keeping the expected loss constant.

4. Non-linear transformation of probabilities

The main alternatives to expected utility (EU) under risk, i.e., rank dependent utility
(RDU) and cumulative prospect theory (CP), introduce non-linear transformation of the
cumulative probability distribution. In this section, we introduce the concept of a proba-
bility weighting function and some other concepts which are crucial for the paper.

De�nition 1 (Probability weighting function): By a probability weighting function we
mean a strictly increasing function w(p) : [0; 1] onto! [0; 1].

Proposition 1 : A probability weighting function, w(p), has the following properties:
(a) w (0) = 0, w (1) = 1. (b) w has a unique inverse, w�1, and w�1 is also a strictly
increasing function from [0; 1] onto [0; 1]. (c) w and w�1 are continuous.

De�nition 2 : The function, w(p), (a) in�nitely-overweights in�nitesimal probabilities, if
lim
p!0

w(p)
p
=1, and (b) in�nitely-underweights near-one probabilities, if lim

p!1
1�w(p)
1�p =1.

De�nition 3 : The function, w(p), (a) zero-underweights in�nitesimal probabilities, if
lim
p!0

w(p)
p
= 0, and (b) zero-overweights near-one probabilities, if lim

p!1
1�w(p)
1�p = 0.

Data from experimental and �eld evidence typically suggest that decision makers ex-
hibit an inverse S-shaped probability weighting function over outcomes. See Figure 5.1 for
an example. Tversky and Kahneman (1992) propose the following probability weighting
function, where the lower bound on � comes from Rieger and Wang (2006).

De�nition 4 : The Tversky and Kahneman probability weighting function is given by

w (p) =
p�

[p� + (1� p)�]
1
�

, 0:5 � � < 1, 0 � p � 1. (4.1)
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Proposition 2 : The Tversky and Kahneman (1992) probability weighting function (4.1)
in�nitely overweights in�nitesimal probabilities and in�nitely underweights near-one prob-
abilities, i.e., lim

p!0
w(p)
p
=1 and lim

p!1
1�w(p)
1�p =1, respectively.

Remark 2 (Standard probability weighting functions): A large number of other prob-
ability weighting functions have been proposed, e.g., those by Gonzalez and Wu (1999)
and Lattimore, Baker and Witte (1992). Like the Tversky and Kahneman (1992) function,
they all in�nitely overweight in�nitesimal probabilities and in�nitely underweight near-one
probabilities. We shall call these as the standard probability weighting functions.

5. Prelec�s probability weighting function

The Prelec (1998) probability weighting function has the following merits: parsimony,
consistency with much of the available empirical evidence (at least away from the end-
points of the interval [0; 1]) and an axiomatic foundation.

De�nition 5 (Prelec, 1998): By the Prelec function we mean the probability weighting
function w(p) : [0; 1]! [0; 1] given by

w (0) = 0, w (1) = 1; (5.1)

w (p) = e��(� ln p)
�

, 0 < p � 1, � > 0, � > 0. (5.2)

Proposition 3 : The Prelec function (De�nition 5) is a probability weighting function in
the sense of De�nition 1.

The parameter � controls the convexity/concavity of the Prelec function. If � < 1,
then the Prelec function is strictly concave for low probabilities but strictly convex for
high probabilities, i.e., it is inverse S-shaped as in w (p) = e�(� ln p)

1
2 (� = 1

2
, � = 1), and

sketched in Figure 5.1.
The converse holds if � > 1, in which case, the Prelec function is strictly convex for

low probabilities but strictly concave for high probabilities, i.e., it is S-shaped. An example
is w (p) = e�(� ln p)

2

(� = 2, � = 1), sketched in Figure 5.2 as the light, lower, curve (the
straight line in Figure 5.2 is the 45o line).
Between the region of strict convexity (w00 > 0) and the region of strict concavity (w00 <

0), for each of the cases in Figures 5.1 and 5.2, there is a point of in�exion (w00 (ep) = 0).
The parameter � in the Prelec function controls the location of the in�exion point relative
to the 450 line. Thus, for � = 1, this point of in�exion is at p = e�1 and lies on the 450

line, as in Figures 5.1 and 5.2 (light curve), above. However, if � < 1, then the point
of in�exion lies above the 450 line, as in w (p) = e�

1
2
(� ln p)2(� = 2; � = 1

2
), sketched as
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Figure 5.1: A plot of the Prelec (1998) function, w (p) = e�(� ln p)
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Figure 5.2: A plot of w (p) = e�
1
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(� ln p)2 and w (p) = e�(� ln p)
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.

the thicker, upper, curve in Figure 5.2. In this case, the �xed point, w (p�) = p�, is at
p� ' 0:14 but the point of in�exion, w00 (ep) = 0, is at ep ' 0:20.
The full set of possibilities for the Prelec function is established by Propositions 12 and

13 of Appendix 2.
In Figure 5.1 (and �rst row in Table 2 of Appendix 2), where � < 1, note that the

slope of w (p) becomes very steep near p = 0. By contrast, in �gure 5.2 (and last row in
Table 2 of Appendix 2), where � > 1, the slope of w (p) becomes very gentle near p = 0.
This is established by the following proposition, which will be important for us.

Proposition 4 : (a) For � < 1 the Prelec function (De�nition 5): (i) in�nitely-overweights
in�nitesimal probabilities, i.e., lim

p!0
w(p)
p
=1, and (ii) in�nitely underweights near-one prob-

abilities, i.e., lim
p!1

1�w(p)
1�p =1 (Prelec, 1998, p505); see De�nition 2 and Figure 5.1.

(b) For � > 1 the Prelec function: (i) zero-underweights in�nitesimal probabilities, i.e.,
lim
p!0

w(p)
p
= 0, and (ii) zero-overweights near-one probabilities, i.e., lim

p!1
1�w(p)
1�p = 0; see De�-
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nition 3 and �gure 5.2.

According to Prelec (1998, p.505), the in�nite limits in Proposition 4a capture the
qualitative change as we move from certainty to probability and from impossibility to
improbability. On the other hand, they contradict stylized fact S2, i.e., the observed
behavior that people ignore events of very low probability and treat very high probability
events as certain; see, e.g., Kahneman and Tversky (1979). In sections 6 and 7, below, we
show that this leads to people fully insuring against all losses of su¢ ciently low probability,
even with actuarially unfair premiums and �xed costs of insurance. This is contrary to the
evidence, e.g., that in Kunreuther et al. (1978). These speci�c problems are avoided for
� > 1. However, for � > 1, the Prelec function is S-shaped, see Proposition 13d and Figure
5.2. This is in con�ict with the empirical evidence, which indicates an inverse-S shape for
probabilities bounded away from the end points of the interval [0; 1] (see stylized fact S1).
Hence, the two cases, � < 1 or � > 1, by themselves, are unable to simultaneously address
stylized facts S1 and S2.

6. Rank dependent utility (RDU) and insurance

We now model the behavior of an individual using rank dependent utility theory (RDU).
RDU may be regarded as a conservative extension of expected utility theory (EU) to the
case where probabilities are transformed in a non-linear manner using decision weights.
To illustrate RDU, consider a decision maker with utility of wealth, u, and a probability

weighting function, w(p), where u is strictly concave, di¤erentiable, and strictly increasing,
i.e., u0 > 0. In addition to these standard assumptions, we shall assume that u0 is bounded
above24 by (say) u0max. Suppose that the decision maker faces the lottery (x1; p1;x2; p2),
i.e., the wealth level, x1, occurs with probability p1 and the wealth level, x2, occurs with
probability p2, x1 < x2, 0 � pi � 1, p1 + p2 = 1. A decision maker using RDU evaluates
the utility from the lottery (x1; p1;x2; p2), as follows:

U (x1; p1;x2; p2) = [1� w (1� p1)]u (x1) + w (p2)u (x2) . (6.1)

For w (p) = p, RDU reduces to standard expected utility theory.25 Note that the higher
outcome, x2, receives weight �2 = w (p2), while the lower outcome, x1, receives weight

24The boundedness of u0 is needed for part (b) of Proposition 5. This seems feasible on empirical
grounds, since people do undertake activities with a non-zero probability of complete ruin, e.g., using the
road, undertaking dangerous sports, etc. However, the boundedness of u0 excludes such tractable utility
functions as lnx and x
 , 0 < 
 < 1. By contrast, the boundedness of u0 is not a requirement in CP, as we
shall see.
25From Proposition 12, this is the case for � = � = 1 (see Appendix 2).
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�1 = w (p1 + p2) � w (p2) = w (1) � w (p2) = 1 � w (p2) = 1 � w (1� p1). �1 and �2 are
the decision weights associated with the relevant outcomes26

We now apply this framework to the insurance model outlined in section 3. If the
decision maker buys insurance, then the utility under RDU is given by:

UI (C) = w (1� p)u (W � rC � f) + [1� w (1� p)]u (W � rC � f � L+ C) . (6.2)

Since UI (C) is a continuous function on the non-empty compact interval [0; L], an optimal
level of coverage, C�, exists. For full insurance, C = L, (6.2) gives:

UI (L) = u (W � rL� f) . (6.3)

On the other hand, the decision maker�s utility from not buying insurance is:

UNI = w (1� p)u (W ) + [1� w (1� p)]u (W � L) . (6.4)

The decision maker must satisfy the following participation constraint to buy a level of
insurance coverage C�:

UNI � UI (C�) . (6.5)

Proposition 5 : Suppose that the decision maker follows RDU.
(a) A su¢ cient condition for the participation constraint in (6.5) to hold is that �xed costs
of insurance, f , be bounded above by LF (p), where L = pL and

F (p) =
1� w (1� p)

p
� (1 + �) . (6.6)

(b) If the probability weighting function in�nitely-underweights near-one probabilities (De-
�nition 2b) then, for a given expected loss, the decision maker will insure fully for all su¢ -
ciently small probabilities. This holds even in the presence of actuarially unfair insurance
and �xed costs of insurance.
(c) If a probability weighting function zero-overweights near-one probabilities (De�nition
3b) then, for a given expected loss, a decision maker will not insure, for all su¢ ciently
small probabilities.

The intuition behind Proposition 5 is as follows. First, consider part (b). Suppose
that the probability weighting function in�nitely-underweights near-one probabilities (De-
�nition 2b). This is the case for all the standard probability weighting functions and, in

26The framework is easily extended to any �nite number of outcomes; see Quiggin (1982, 1993) for the
details. We now clarify a common source of confusion. The decision weights, �i (not w (pi)), sum up
to one under RDU. This is no longer the case under CP when there are both gains and losses (de�ned
below). However, if all outcomes under CP are in the domain of gains or all are in the domain of losses,
then the decision weights will sum to 1.
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particular, for the Tversky-Kahneman probability function (De�nition 4 and Proposition
2) and for the Prelec function with � < 1 (De�nition 5 and Proposition 4(aii)). In this
case, and as illustrated in Figure 5.1, the probability weighting function is very steep near
1 (becoming in�nitely steep in the limit) and considerably underweights probabilities close
to 1.
Now return to (6.1). Recall that x1 < x2, so that (in the present context) x1 is total

wealth if the loss occurs (with probability, p1) and x2 is total wealth if the loss does
not occur (with probability p2 = 1 � p1). As p1 ! 0, p2 ! 1 and, hence, as required in
Proposition 5(b), w (p2) underweights p2. This reduces the relative salience of the weighted
utility of wealth, w (p2)u (x2), if the loss does not occur but increases the relative salience
of the weighted utility of wealth, [1� w (p2)]u (x1), if the loss does occur. This makes
insurance even more attractive under RDU than under EU (which was already too high,
given the evidence).
The reverse occurs in case (c). Here the probability weighting function zero-overweights

near-one probabilities (De�nition 3b). This is the case for the Prelec function with � > 1
(De�nition 5 and Proposition 4(bii)). In this case, and as illustrated in Figure 5.2, the
probability weighting function is very shallow near 1 (with the slope, in fact, approaching
zero) and considerably overweights probabilities close to 1. Now return to (6.1). As
p2 ! 1, as required in Proposition 5(c), w (p2) overweights p2. This increases the relative
salience of the weighted utility of wealth, w (p2)u (x2), if the loss does not occur. But it
also reduces the relative salience of the weighted utility of wealth, [1� w (p2)]u (x1), if the
loss does occur. This makes insurance against very low probability events unattractive
under RDU, in conformity with the evidence.
From Proposition 4(aii) and Proposition 5(b), a decision maker using a Prelec probabil-

ity weighting function (De�nition 5), will fully insure against all losses of su¢ ciently small
probability. It is of interest to get a feel for how restrictive this participation constraint
is. Example (1), below, suggests that it is a weak restriction.

Example 1 : To check the restrictiveness of the participation constraint we use the result
in Proposition 5(a), i.e., the su¢ cient condition f � LF (p) for the participation constraint
to hold. The �rst row of the following Table gives losses, L (in dollars, say), from 10 to
10; 000; 000, with corresponding probabilities, p, in row 2, ranging from 0:1 to 0:000; 000; 1.
Hence, the expected loss in each case is L = 1 and so the su¢ cient condition is simply

f � 1� w (1� p)
p

� (1 + �) � F (p) :

In row 3 are the corresponding values of 1�w(1�p)
p

for the Prelec function w (p) = e�(� ln p)
0:65

,
where the values � = 0:65 and � = 1 are suggested by Prelec (1998). Row 4 of the table
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reports the corresponding value for F (p) for the case of a relatively high pro�t rate for
insurance �rms of 100% (i.e., � = 1) so that F (p) = 1�w(1�p)

p
� 2: Row 5 gives the upper

bound on �xed costs as a percentage of expected losses..

L 101 102 103 104 105 106 107

p 10�1 10�2 10�3 10�4 10�5 10�6 10�7

1�w(1�p)
p

2:067 4 4:903 9 11:161 25:088 56:219 125:88 281:83

F (p) 0:067 4 2:903 9 9:161 23:088 54:219 123:88 279:83
F (p)

L
� 100 6:74 290:3 9 916:1 2308:8 5421:9 12388 27983

.

We see, from the table, that the upper bound on (i) �xed costs, and (ii) �xed cost as
a percentage of the expected loss, is hardly restrictive for low probabilities. Thus, from
Proposition 5(a), we see that using RDU in combination with the Prelec weighting function
is likely to lead to misleading results, in that it would predict too much insurance.

Proposition 5(c) will enable us to demonstrate that the decision maker will not insure
against any loss of su¢ ciently small probability, in agreement with observation. We further
discuss this in section 8, below.

7. Cumulative prospect theory (CP) and insurance

The four central features of cumulative prospect theory (CP) all based on strong empirical
evidence, are as follows.27 (1) In CP, unlike EU and RDU, the carriers of utility are
not levels of wealth, assets or goods, but di¤erences between these and a reference point
(reference dependence). The reference point is often (but not necessarily) taken to be the
status quo. (2) The utility function in prospect theory is concave for gains but convex
for losses (declining sensitivity).28 (3) The disutility of a loss is greater than the utility of
a gain of the same magnitude (loss aversion). (4) Probabilities are transformed, so that
small probabilities are overweighted but high probabilities are underweighted. We now
explain these features in greater detail.
Consider a level of wealth y and a reference point r. Then de�ne the transformed

variable x = y� r as the wealth relative to the reference point. The utility function in CP
is de�ned over x; x > 0 is a gain while x < 0 is a loss.

De�nition 6 (Tversky and Kahneman, 1979). The utility function under CP, v(x) :
(�1;1)! (�1;1), is a continuous, strictly increasing, mapping that satis�es:
1. v (0) = 0 (reference dependence)

27See, for instance, Kahneman and Tversky (2000), Starmer (2000).
28This feature of CP can also explain the observation that individuals can simultaneously gamble and

insure. CP can also explain the unpopularity of probabilistic insurance (see section 2.3).
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2. v (x) is concave for x � 0 (declining sensitivity for gains)
3. v (x) is convex for x � 0 (declining sensitivity for losses)
4. �v (�x) > v (x) for x > 0 (loss aversion).

Example 2 : The properties in De�nition 6 are satis�ed by v (x) = 1�e�x and v (x) = x
,
0 < 
 < 1 but not by v (x) = lnx, since ln 0 is not de�ned. A popular utility function in
CP that is consistent with the evidence and is axiomatically founded is the power form:29

v (x) =

�
x
 if x � 0

��(�x)
 if x < 0
, 0 < 
 < 1, � > 1. (7.1)

7.1. Illustration of CP for the case of a prospect with two outcomes

Consider a decision maker who faces the lottery (x1; p1;x2; p2), i.e., win x1 with probability
p1 or x2 with probability p2, x1 < x2, 0 � pi � 1, p1 + p2 = 1. The case of most interest
to us is that when both x1 and x2 are in the domain of losses, i.e., x1 < x2 < 0. In
this case, the decision maker using CP evaluates the lottery (x1; p1;x2; p2), by forming the
value function, V , as follows:

V (x1; p1;x2; p2) = w
� (p1) v (x1) +

�
1� w� (p1)

�
v (x2) . (7.2)

Note that here, the lower outcome, x1, receives weight �1 = w� (p1), while the higher
outcome, x2, receives weight �2 = w� (p1 + p2)�w� (p1) = w� (1)�w� (p1) = 1�w� (p1).30

7.2. The insurance decision of an individual who uses CP

Consider a decision maker whose behavior is described by CP and who faces the insurance
problem described in Section 3. Take the status-quo wealth, W , of the decision maker as
the reference point. With probability 1� p, her wealth relative to the reference wealth is

(W � rC � f)�W = �rC � f < 0. (7.5)

29For an axiomatic derivation of this value function, see al-Nowaihi et al. (2008).
30If 0 < x1 < x2, then the value function under CP is:

V (x1; p1;x2; p2) = w
+ (p2) v (x2) +

�
1� w+ (p2)

�
v (x1) , (7.3)

which is similar to the corresponding formula for RDU in (6.1) except that here xi are deviations from
reference wealth, while in (6.1) they are absolute levels of wealth. However, if x1 is in the domain of losses
while x2 is in the domain of gains, so that x1 < 0 < x2, then

V (x1; p1;x2; p2) = w
+ (p2) v (x2) + w

� (p1) v (x1) . (7.4)

Note that the probability weighting function for losses, w�, may be di¤erent from that for gains w+,
although, empirically, it appears that w� = w+ = w; see Prelec (1998). This is the assumption that we
shall also make.
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With the complementary probability p, her wealth relative to the reference point is

(W � rC � f � L+ C)�W = �rC � f � (L� C) � �rC � f < 0. (7.6)

Notice from (7.5), (7.6) that the decision maker is in the domain of loss in both states.

De�nition 7 (Major and Minor loss): We call L+ f + rC the major loss and f + rC the
minor loss. These losses occur with respective probabilities p and 1� p.

The decision maker�s value function under CP when some level of insurance coverage
C 2 [0; L] is purchased is given by:

VI (C) = w (p) v (�rC � f � (L� C)) + [1� w (p)] v (�rC � f) . (7.7)

Since VI (C) is a continuous function on the non-empty compact interval [0; L], an optimal
level of coverage, C�, exists. For full insurance, C = L, (7.7) gives:

VI (L) = v (�rL� f) . (7.8)

On the other hand, if the decision maker does not buy any insurance coverage (i.e., C = 0),
and so also does not incur the �xed cost (f = 0), the value function is (recall that v (0) = 0):

VNI = w (p) v (�L) . (7.9)

For the decision maker to buy insurance coverage C� 2 [0; L], the following participation
constraint (the analogue here of (6.5)) must be satis�ed:

VNI � VI (C�) . (7.10)

Proposition 6 : Suppose that a decision maker uses CP, then the following hold.
(a) There is a corner solution in the following sense. A decision maker will either choose to
insure fully against any loss, i.e., C� = L, or choose zero coverage, i.e., C� = 0, depending
on the satisfaction of the participation constraint.31 This holds even in the presence of
actuarially unfair premiums and a �xed cost of insurance.
(b) For Prelec�s probability weighting function (De�nition 5), with � < 1, for the value
function (7.1) and for a given expected loss, the participation constraint (7.10) is satis�ed
for all su¢ ciently small probabilities. A su¢ cient condition for the satisfaction of the
participation constraint is that f < LF (p) where

F (p) =
e�

�


(� ln p)�

p
� (1 + �) , 0 < � < 1, � > 0, 
 > 0. (7.11)

(c) If a probability weighting function zero-underweights in�nitesimal probabilities (De�-
nition 3a) then, for a given expected loss, a decision maker will not insure against any loss
of su¢ ciently small probability.
31The answer, therefore, depends on the parameters of the model and so, we require simulations. See

Example 3, below.
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The reason that part (a) holds is very simple. Since the value function is strictly convex
for losses, a decision maker will always insure fully, if he insures at all. This is, of course,
at variance with the evidence from partial coverage.
The intuition behind part (b) is as follows. For � < 1, the Prelec function in�nitely-

overweights in�nitesimal probabilities (De�nitions 2a and 5 and Proposition 4(ai)). In
this case, and as illustrated in Figure 5.1, the probability weighting function is very steep
near 0 (becoming in�nitely steep in the limit) and considerably overweights probabilities
close to 0. Now return to (7.2). Recall that x1 < x2 < 0 in this case. Hence, x1 is
the di¤erence between wealth if the major loss occurs (with probability, p1) and reference
wealth. On the other hand, x2 is the di¤erence between wealth if the minor loss occurs
(with probability p2 = 1 � p1) and reference wealth. As p1 ! 0, and as required by
Proposition 6(b), w (p1) increasingly overweights p1. This increases the relative salience
of the weighted major loss, w� (p1) v (x1) but reduces the relative salience of the weighted
minor loss, [1� w� (p1)]u (x1). This makes insurance even more attractive under CP than
under EU (which was already too high, given the evidence).
The reverse occurs in case (c). Here, the probability weighting function zero-underweights

in�nitesimal probabilities (De�nition 3a). This is the case for the Prelec function with
� > 1 (De�nition 5 and Proposition 4(bii)). In this case, and as illustrated in Figure 5.2,
the probability weighting function is very shallow near 0 (the slope, in fact, approaches
zero) and considerably underweights probabilities close to 0. Now return to (7.2). As
p1 ! 0, and as required by Proposition 6(c), w (p1) underweights p1. This reduces the
relative salience of the weighted major loss, w (p1) v (x1) but reduces the relative salience
of the weighted minor loss, [1� w (p1)]u (x2). This makes insurance against very low
probability events unattractive under CP, in conformity with the evidence.
By Proposition 6(a), a decision maker will insure fully against any loss, provided the

participation constraint (7.10) is satis�ed, even with �xed costs of insurance and an actu-
arially unfair premium. By Proposition 6(b), for Prelec�s probability weighting function
(De�nition 5), for the value function (7.1) and for a given expected loss, the participation
constraint (7.10) is satis�ed for all su¢ ciently small probabilities. It is of interest to get a
feel for how restrictive this participation constraint is. Example (3), below, suggests that
it is a weak restriction.

Example 3 : The the �rst row of the following Table gives losses (in dollars, say) from 10
to 10; 000; 000, with corresponding probabilities (row 2) ranging from 0:1 to 0:000; 000; 1;
so that the expected loss in each case is L = 1. In row 3 are the corresponding values

of e
��

 (� ln p)�

p
, where the values � = 0:65 and � = 1 are suggested by Prelec (1998) and


 = 0:88 is suggested by Tversky and Kahneman (1992). Row 4 gives F (p) (see (7.11)) for

the high pro�t rate of 100% (� = 1) for the insurance �rm, so that F (p) = e
��

 (� ln p)�

p
� 2.
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Row 5 gives the upper bound on �xed costs as a percentage of expected losses.

L 101 102 103 104 105 106 107

p 10�1 10�2 10�3 10�4 10�5 10�6 10�7

e�
1

0:88 (� ln p)0:65

p
1:416 9 4:658 9 18:48 81:342 383:83 1906:3 9852:3

F (p) �0:583 1 2:658 9 16:48 79:342 381:83 1904:3 9848:3
F (p)

L
� 100 �58:31 265:89 1648 7934:2 38183 190430 984830

.

It follows that the participation constraint is satis�ed, and is hardly restrictive for low
probabilities. Thus, from Proposition 6(a),(b), we see that using CP in combination with
the Prelec weighting function, is likely to lead to misleading results, because it predicts
too much insurance.
Proposition 6(c) will help us reconcile composite prospect theory (CCP), which we

describe below, with the evidence from the take-up of insurance for low probability events.
This will be further discussed in section 8 below.

8. Resolving the insurance problem.

Recall the four stylized facts, S1-S4 in the introduction. Our aim is to introduce composite
Prelec functions (CPF), which when combined with either RDU or CP, can explain all of
the stylized facts S1-S4. We begin, in section 8.1, by providing two numerical examples
of CPF that are motivated by the empirical evidence from Kunreuther (1978). This is
followed, in subsection 8.2, by a more formal treatment of CPF.

8.1. Two numerical examples of CPF

8.1.1. The urn experiment in Kunreuther (1978)

An obvious solution that simultaneously addresses stylized facts S1 and S2 is to adopt a
3-piece probability weighting function, as in Figure 2.2, above. Figure 8.1, below gives a
numerical example of such a CPF, as we now explain.
The CPF in Figure 8.1 is composed of segments from three Prelec functions, and is

given by:

w (p) =

8><>:
e�0:61266(� ln p)

2

, i.e., � = 2; � = 0:61266, if 0 � p < 0:25,
e�(� ln p)

1
2 , i.e., � = 0:5; � = 1, if 0:25 � p � 0:75,

e�6:480 8(� ln p)
2

, i.e., � = 2; � = 6:4808, if 0:75 < p � 1.
(8.1)

The three segments of the CPF in (8.1) are described as follows.

1. For 0 � p < 0:25, the CPF is identical to the S-shaped Prelec function, e��0(� ln p)�0 ,
with �0 = 2, �0 = 0:61266. �0 is chosen to make w (p) continuous at p = 0:25.
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Figure 8.1: The composite Prelec function.

2. For 0:25 � p � 0:75, the CPF is identical to the inverse S-shaped Prelec function of
Figure 5.1 (� = 0:5; � = 1).

3. For 0:75 < p � 1, the CPF is identical to the S-shaped Prelec function, e��1(� ln p)�1 ,
with �1 = 2, �1 = 6:4808. �1 is chosen to make w (p) continuous at p = 0:75.

Remark 3 (Fixed points, concavity, convexity): The CPF in Figure 8.1 has �ve �xed
points, at 0, 0:19549, e�1 = 0:36788, 0:85701 and 1. It is strictly concave for 0:25 < p < e�1

and strictly convex for e�1 < p < 0:75 (a bit hard to see in Figure 8.1, but see our
next example).32 The CPF is strictly convex for 0 < p < 0:25 and strictly concave for
0:75 < p < 1.

Remark 4 (Underweighting and overweighting of probabilities): The CPF in Figure 8.1
overweights �low�probabilities, in the range 0:19549 < p < e�1 and underweights �high�
probabilities, in the range e�1 < p < 0:85701. These regions, therefore, address stylized
fact S1 in the introduction. Furthermore, the CPF underweights �very low�probabilities,
in the range 0 < p < 0:19549 and overweights �very high� probabilities, in the range
0:85701 < p < 1. For p close to zero, the CPF is nearly �at, thus capturing Arrow�s
astute observation: �Obviously in some sense it is right that he or she be less aware
of low probability events, other things being equal; but it does appear from the data that
the sensitivity goes down too rapidly as the probability decreases.� (Kenneth Arrow in
Kunreuther et al., 1978, p. viii). Note that this probability weighting function is also
nearly �at near 1. These two segments, i.e., p 2 (0; 0:19549) [ (0:85701; 1) are able to
address stylized fact S2.

32For � 2
�
0; 12

�
or � 2

�
1
2 ; 1
�
the concavity/convexity is even milder than for � = 1

2 , with the slope
being less steep for � 2

�
0; 12

�
but more steep for � 2

�
1
2 ; 1
�
. In fact, w0 (p)! 0 as �! 0 and w0 (p)! 1

as �! 1.
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The parameters in (8.1) have been chosen primarily to clarify the properties mentioned
in Remarks 3 and 4. The cuto¤points 0:25 and 0:75 in (8.1) and Figure 8.1 were motivated
by actual evidence. Kunreuther et al. (1978, chapter 7) report that in one set of their
experiments (the �urn�experiments) 80% of subjects (facing actuarially fair premiums)
took up insurance against a loss with probability 0:25. But that the take-up of insurance
declined when the probability of the loss declined (keeping the expected loss constant).
When the probability of the loss reached 0:001, only 20% of the subjects took up actu-
arially fair insurance. Thus, although Figure 8.1 was chosen primarily for illustration, its
qualitative features match the evidence in Kunreuther et al. (1978).

8.1.2. The farm experiments in Kunreuther (1978)

In a second set of experiments, the �farm�experiments, Kunreuther et al. (1978, ch.7)
report that the take-up of actuarially fair insurance begins to decline if the probability of
the loss (keeping the expected loss constant) goes below 0:05. This is shown in Figure 8.2.
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Figure 8.2: The composite Prelec function.

The probability weighting function in Figure 8.2 is composed of segments from three
Prelec functions, w (p) = e��(� ln p)

�

and given by:

w (p) =

8><>:
e�0:19286(� ln p)

2

, i:e:, � = 2; � = 0:19286 if 0 < p < 0:05

e�(� ln p)
1
2 , i:e:, � = 0:5; � = 1 if 0:05 � p � 0:95

e�86:081(� ln p)
2

, i:e:, � = 2; � = 86:081 if 0:95 < p � 1
(8.2)

The three segments of the CPF in (8.2) are described as follows.

1. For 0 � p < 0:05, the CPF is identical to the S-shaped Prelec function, e��0(� ln p)�0 ,
with �0 = 2, �0 = 0:192 86. �0 is chosen to make w (p) continuous at p = 0:05.
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2. For 0:05 � p � 0:95, the CPF is identical to the inverse S-shaped Prelec function of
Figure 5.1 (� = 0:5, � = 1).

3. For 0:95 < p � 1, the CPF is identical to the S-shaped Prelec function, e��1(� ln p)�1 ,
with �1 = 2, �1 = 86:081. �1 is chosen to make w (p) continuous at p = 0:95.

Remark 5 (Fixed points): This CPF has �ve �xed points: 0, 0:0055993, e�1, 0:98845 and
1. It is strictly concave for 0:05 < p < e�1 and strictly convex for e�1 < p < 0:95. It is,
strictly convex for 0 < p < 0:05 and strictly concave for 0:95 < p < 1.

Remark 6 (Underweighting and overweighting of probabilities): The CPF overweights
low probabilities, in the range 0:0055993 < p < e�1 and underweights high probabilities,
in the range e�1 = 0:367 88 < p < 0:98845. This accounts for stylized fact S1. Behavior
near p = 0, and near p = 1, is not obvious from Figure 8.2. So, Figures 8.3 and 8.4, below,
respectively magnify the regions near 0 and near 1.
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0.000
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Figure 8.3: Behaviour of Figure 8.2 near 0.

From Figure 8.3, we see that (8.2) underweights very low probabilities, in the range
0 < p < 0:0055993. For p close to zero, we see that this probability weighting function
is nearly �at, thus, again capturing Arrow�s observation �...it does appear from the data
that the sensitivity goes down too rapidly as the probability decreases.�From Figure 8.4,
we see that (8.2) overweights very high probabilities, in the range 0:98845 < p < 1. For p
close to one, we see that this probability weighting function is nearly �at.

8.2. A more formal treatment of the CPF

Notice that the upper cuto¤ points for the �rst segment of the CPF in Figures 8.1 and 8.2
are respectively, at probabilities 0:25 and 0:05. Denote this cuto¤ point as p. Similarly,
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Figure 8.4: Behaviour of Figure 8.2 near 1.

the upper cuto¤ point for the second segment of the CPF in Figures 2.2 and 8.2 are
respectively, at probabilities 0:75 and 0:95. Denote this cuto¤ point as p. Now de�ne,

p = e
�
�
�
�0

� 1
�0��

, p = e�
�
�
�1

� 1
�1��

. (8.3)

The probability weighting functions (8.1), (8.2) and their graphs, Figures 8.1-8.4, sug-
gest the following de�nition.

De�nition 8 (Composite Prelec weighting function, CPF): By the composite Prelec weight-
ing function we mean the probability weighting function w : [0; 1]! [0; 1] given by

w (p) =

8>><>>:
0 if p = 0

e��0(� ln p)
�0

if 0 < p � p
e��(� ln p)

�

if p < p � p
e��1(� ln p)

�1
if p < p � 1

(8.4)

where p and p are given by (8.3) and

0 < � < 1, � > 0; �0 > 1, �0 > 0; �1 > 1, �1 > 0; �0 < 1=�
�0�1
1�� , �1 > 1=�

�1�1
1�� . (8.5)

Proposition 7 : The composite Prelec function (De�nition 8) is a probability weighting
function in the sense of De�nition 1.

The restrictions � > 0, � > 0, �0 > 0 and �1 > 0, in (8.5), are required by the
axiomatic derivations of the Prelec function (see Prelec (1998), Luce (2001) and al-Nowaihi
and Dhami (2006)). The restriction �0 < 1=�

�0�1
1�� guarantees that the �rst segment of

the CPF, e��0(� ln p)
�0 , crosses the 450 to the left of p and the restriction �1 > 1=�

�1�1
1��

guarantees that the third segment of the CPF, e��1(� ln p)
�1 , crosses the 450 degree line to

the right of p. Together, they imply that the second segment of CPF, e��(� ln p)
�

, crosses the
450 between these two limits. It follows that the interval

�
p; p
�
is not empty. The interval
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limits are chosen so that the CPF in (8.4) is continuous across them. These observations
lead to the following proposition. First, de�ne p1; p2; p3 that correspond to the notation
used in Figure 2.2 in the introduction.

p1 = e
�
�
1
�0

� 1
�0�1

, p2 = e
�( 1� )

1
��1
, p3 = e

�
�
1
�1

� 1
�1�1

. (8.6)

Proposition 8 : (a) p1 < p < p2 < p < p3. (b) p 2 (0; p1) ) w (p) < p. (c) p 2
(p1; p2)) w (p) > p. (d) p 2 (p2; p3)) w (p) < p. (e) p 2 (p3; 1)) w (p) > p.

By Proposition 7, the CPF in (8.4), (8.5) is a probability weighting function in the sense
of De�nition 1. By Proposition 8, a CPF overweights low probabilities, i.e., those in the
range (p1; p2), and underweights high probabilities, i.e., those in the range (p2; p3). Thus
it accounts for stylized fact S1. But, in addition, and unlike all the standard probability
weighting functions, it underweights probabilities near zero, i.e., those in the range (0; p1),
and overweights probabilities close to one, i.e., those in the range (p3; 1) as required in the
narrative of Kahneman and Tversky (1979, p. 282-83). Hence, a CPF also accounts for
the second stylized fact, S2 in the introduction.
The restrictions �0 > 1 and �1 > 1 in (8.5) ensure that a CPF has the following prop-

erties, listed below as Proposition 9, that will help explain human behavior for extremely
low probability events; see below.

Proposition 9 : The CPF (8.4):
(a) zero-underweights in�nitesimal probabilities, i.e., lim

p!0
w(p)
p
= 0 (De�nition 3a),

(b) zero-overweights near-one probabilities, i.e., lim
p!1

1�w(p)
1�p = 0 (De�nition 3b).

9. Explaining the stylized facts of insurance

9.1. Composite rank dependent utility theory (CRDU).

Let us use the name composite rank dependent utility theory (CRDU) to refer to (otherwise
standard) RDU when combined with a composite Prelec probability weighting function
(CPF). The following proposition establishes that such a theory would account for empir-
ical facts S3 and S4 in the list at the beginning of this section. Empirical facts S1 and S2
are already satis�ed by a CPF, as we saw in section 8.2.

Proposition 10 : Under composite rank dependent utility theory (CRDU), for a given
expected loss, a decision maker will not insure, for all su¢ ciently small probabilities.

Thus, unlike EU, RDU or CP, CRDU can account for all four stylized facts S1-S4,
listed in the introduction.

26



9.2. Composite cumulative prospect theory (CCP).

Let us use the name composite prospect theory (CCP) to refer to (otherwise standard)
CP when combined with a composite Prelec probability weighting function (CPF). The
following proposition establishes that such a theory would account for the stylized facts
S3 and S4. As shown in section 8.2, S1 and S2 are already satis�ed by a CPF.

Proposition 11 : Under composite prospect theory (CCP), for a given expected loss, a
decision maker will not insure, for all su¢ ciently small probabilities.

Thus, unlike EU, RDU or CP, CCP can account for all four stylized facts S1-S4. We
now provide examples motivated by Kunreuther�s (1978) urn experiments; see section 8.1
above.

Example 4 (Urn experiment): Suppose that a decision maker faces a loss, L, of $200,000
with probability, p = 0:001. Insurance is assumed to be actuarially fair, i.e., r = p.
Under CP, suppose that the decision maker uses the Prelec probability weighting function,
w (p) = e��(� ln p)

�

with � = 1 and � = 0:50. Using the experimental values suggested by
Kahneman and Tversky (1979), the utility function (7.1) is given by

v (x) =

�
x0:88 if x � 0

�2:25 (�x)0:88 if x < 0
:

For CCP, we take the CPF in (8.1) from Kunreuther�s urn experiments. For p = 0:001,
and for CCP, (8.1) gives w (0:001) = e�0:612 66(� ln 0:001)

2

. We now check to see if it is optimal
for a decision maker under, respectively, CP and CCP, to fully insure, i.e., C� = L. Using
(7.10), we need to check, in each case, the following condition that ensures full insurance
(we have used the actuarially fair condition r = p):

w (p) v (�L) � v (�pL) (9.1)

(a) Decision maker uses CP: In this case, w (p) = e��(� ln p)
�

with � = 1 and � = 0:50 and
(9.1) require that,

e�(� ln 0:001)
0:50
�
�2:25

�
2� 105

�0:88� � ��2:25 �0:001� 2� 105�0:88� ,
, �7510:2 � �238:28,

which is true. Hence, a decision maker who uses CP will fully insure. However, Kun-
reuther�s (1978) data shows that only 20% of the decision makers will insure in this case.
(b) Decision maker uses CCP: In this case, (9.1) and w (0:001) = e�0:612 66(� ln 0:001)

2

imply
that,

e�0:612 66(� ln 0:001)
2
�
�2:25

�
2� 105

�0:88� � ��2:25 �0:001� 2� 105�0:88� ,
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, �2: 093� 10�8 � �238:28,

which is not true. Hence, a decision maker using CCPwill not insure, which is in conformity
with Kunreuther�s (1978) data.

Example 5 (Urn experiment): Now continue to use the set-up of Example 4. However,
let the probability of a loss be p = 0:25 (instead of p = 0:001). Kunreuther�s (1978) data
shows that 80% of the experimental subjects took up insurance in this case. For CCP, as
in Example 4, we take the CPF in (8.1) from Kunreuther�s urn experiments. For p = 0:25
the Prelec and CCP functions coincide and w (p) = e��(� ln p)

�

: Thus, in each case the full
insurance condition w (p) v (�L) � v (�pL) in (9.1) is given by,

e�(� ln 0:25)
0:50
�
�2:25

�
2� 105

�0:88� � ��2:25 �0:25� 2� 105�0:88� ;
, �32044 � �30710;

which is true. Hence, for losses whose probability is bounded well away from the end-points,
the insurance predictions of, both, CP and CCP are in conformity with the evidence.

In conjunction, Examples 4 and 5 illustrate how CCP can account well for the evidence
for events of all probabilities while CP�s predictions for low probability events are incorrect.

10. Conclusion

We argue that a satisfactory theory of insurance should explain the following four stylized
facts from the behavior of decision makers under risk. (S1) They overweight low probabil-
ities but underweight high probabilities. (S2) They ignore very low probability events and
treat very high probability events as certain. (S3) They buy inadequate insurance against
low probability events. (S4) Whether premiums are actuarially fair, unfair or subsidized,
and for a �xed expected loss, there is a probability below which the take-up of insurance
drops dramatically.
EU fails to account for any of S1-S4, in addition to being subjected to several other

problematic aspects in an insurance context that we brie�y discuss. Rank dependent util-
ity (RDU) and cumulative prospect theory (CP) are the two leading alternatives to EU
under risk. Both employ non-linear transformations of probability. In addition, CP also
incorporates, uniquely among decision theories, the psychologically rich and empirically
robust features of reference dependence and loss aversion, which considerably increase its
predictive power relative to RDU.
Both RDU and CP rely on standard probability weighting functions to transform objec-

tive probabilities. The leading example of a standard probability weighting function is the
Prelec (1998) weighting function. All these weighting functions have the feature that they
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in�nitely overweight in�nitesimal probabilities. Decision makers employing these functions
are, therefore, eager to insure for very low probability events, contradicting S2, S3, S4.
Generally, such decision makers would like to buy even greater insurance than a decision
maker who uses EU (whose demand for insurance is already excessive).
We propose a new class of probability weighting functions, the composite Prelec proba-

bility weighting functions (CPF). A CPF is formed of three segments of Prelec probability
weighting functions. For probabilities in the middle range, a CPF is identical to a stan-
dard Prelec function and satis�es S1, i.e., it is inverse S-shaped. However, it also satis�es
stylized fact S2, for probabilities close to the endpoints of the probability interval [0; 1].
CPF is parsimonious, �exible, and is axiomatically founded.
When a CPF is combined with otherwise standard RDU we call it as composite rank

dependent utility (CRDU). Likewise, when a CPF is combined with otherwise standard CP,
we call it composite prospect theory (CCP). Both, CRDU and CCP are able to account
for all four stylized facts S1-S4. On account of the presence of reference dependence
and loss aversion in CCP (which are absent in CRDU), we conclude that CCP is the most
satisfactory theory of behavior under risk. The implications of CCP are potentially relevant
to all economically interesting events under risk, especially those where low probabilities
create paradoxes that cannot be resolved with existing theories.33

11. Appendix 1: Proofs

Proof of Proposition 1: These properties follow almost immediately from De�nition 1.
�.

Lemma 1 : Let w (p) be a probability weighting function (De�nition 1). Then:
(a) If w (p) is di¤erentiable in a neighborhood of p = 0, then lim

p!0
w(p)
p
= lim

p!0
w0 (p).

(b) If w (p) is di¤erentiable in a neighborhood of p = 1, then lim
p!1

1�w(p)
1�p = lim

p!1
w0 (p).

Proof of Lemma 1: (a) Let p ! 0. Since w is continuous (Proposition 1c),
w (p)! w (0) = 0 (Proposition 1a). By L�Hospital�s rule, w(p)

p
! dw(p)=dp

dp=dp
= w0 (p).

(b) Similarly, if p ! 1, then w (p) ! w (1) = 1. By L�Hospital�s rule, 1�w(p)
1�p !

d[1�w(p)]=dp
d(1�p)=dp = w0 (p). �.
Proof of Proposition 2: w(p)

p
= 1

[p�+(1�p)� ]
1
� p1��

!1, as p! 0.

1�w(p)
1�p ! w0 (p) =

n
�
p
+ 1

p�+(1�p)�
h

1
(1�p)1�� �

1
p1��

io
w (p)!1, as p! 1. �.

Proof of Proposition 3: Straightforward from De�nition 5. �.
33See al-Nowaihi and Dhami (2010) for further details.
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Proof of Proposition 4: From (5.2) we get ln w(p)
p
= lnw (p)� ln p = �� (� ln p)��

ln p = (� ln p)�
�
(� ln p)1�� � �

�
. Hence, if � < 1, then lim

p!0
ln w(p)

p
= 1 and, hence,

lim
p!0

w(p)
p
= 1. This establishes (ai). On the other hand, if � > 1, then lim

p!0
ln w(p)

p
= �1

and, hence, lim
p!0

w(p)
p
= 0. This establishes (bi). From (5.2) we getw0 (p) = ��

p
(� ln p)��1w (p).

If � < 1, then lim
p!1
w0 (p) = 1. Part (aii) then follows from Lemma 1b. If � > 1, then

lim
p!1
w0 (p) = 0. Part (bii) then follows from Lemma 1b. �.
Proof of Proposition 5: (a) Consider an expected loss

L = pL. (11.1)

Di¤erentiate (6.2) with respect to C to get

U 0I (C) = �rw (1� p)u0 (W � rC � f)
+ (1� r) (1� w (1� p))u0 (W + (1� r)C � f � L) . (11.2)

Since u is (strictly) concave, u0 > 0 and 0 < r < 1, it follows, from (11.2) that U 0I (C)
is a decreasing function of C. Hence,

U 0I (L) � U 0I (C) � U 0I (0) for all C 2 [0; L] . (11.3)

Using (3.1), replace r by (1 + �) p in (11.2), then divide both sides by p, to get

U 0I (C)

p
= � (1 + �)w (1� p)u0 (W � (1 + �) pC � f)

+ (1� (1 + �) p) 1� w (1� p)
p

u0 (W � (1 + �) pC � f � L+ C) . (11.4)

For C = 0 and C = L, (11.4) gives (using (11.1)):

U 0I (0)

p
= [1� (1 + �) p] 1� w (1� p)

p
u0
�
W � f � L

p

�
� (1 + �)w (1� p)u0 (W � f) ,

(11.5)
U 0I (L)

p
=

�
1� w (1� p)

p
� (1 + �)

�
u0
�
W � (1 + �)L� f

�
. (11.6)

Since 0 < (1 + �) p < 1, 0 < p < 1, 0 < w (1� p) < 1, 0 < u0 < u0max we get, from
(11.5),

U 0I (0)

p
<
1� w (1� p)

p
u0max � (1 + �)w (1� p)u0 (W � f) . (11.7)

From (11.6) and (6.6) we get,

U 0I (L)

p
= F (p)u0

�
W � (1 + �)L� f

�
. (11.8)
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Since, u0 is always positive, from (11.8) we see that

U 0I (L) > 0, F (p) > 0. (11.9)

From (6.3), (6.4), (11.1), (6.6) and the facts that u is strictly increasing and strictly
concave, simple algebra leads to

f < LF (p)) UNI < UI (L) . (11.10)

Thus, if �xed costs are bounded above by LF (p), the participation constraint is guaranteed
to hold.
Let

q = 1� p. (11.11)

(b) Suppose w (p) in�nitely-underweights near-one probabilities. Then, from (11.11)
and De�nition 2b, lim

p!0
1�w(1�p)

p
= lim

q!1
1�w(q)
1�q = 1. Hence, from (6.6), for given expected

loss, L, we can �nd a p1 2 (0; 1) such that, for all p 2 (0; p1), we get f < LF (p). From
(11.10) it follows that the participation constraint (6.5) is satis�ed for all p 2 (0; p1). From
f < LF (p) we get that F (p) > 0 for all p 2 (0; p1). From (11.9) it follows that U 0I (L) > 0
for all such p. From (11.3) it follows that U 0I (C) > 0 for all such p. Hence, it is optimal
for the decision maker to choose as high a coverage as possible, and, so, C� = L, for all
p 2 (0; p1), because the participation constraint has already been shown to be satis�ed.
(c) Suppose w (p) zero-overweights near-one probabilities. Then, from (11.11) and

De�nition 3b, lim
p!0

1�w(1�p)
p

= lim
q!1

1�w(q)
1�q = 0. Hence, from (11.7), there exists p2 2 (0; 1)

such that for all p 2 (0; p2), U 0I (0) < 0. Hence, from (11.3), U 0I (C) < 0 for all C 2 [0; L].
Hence the optimal level of coverage is 0. �
Proof of Proposition 6: (a) Since v is strictly concave, �v is strictly convex. Hence,

from (7.7), it follows that VI is strictly convex. Since 0 � C � L, it follows that VI (C) is
maximized either at C = 0 or at C = L. Hence, if the participation constraint is satis�ed,
then the decision maker will fully insure against the loss.
(b) Consider the Prelec function (5.2) and the value function (7.1). Consider an ex-

pected loss
L = pL (11.12)

From (5.2), (7.1), (7.8), (7.9), (7.11) and (11.12), simple algebra leads to

f < LF (p)) VNI < VI (L) . (11.13)

From (7.11) and Proposition 4a(i), lim
p!0
F (p) = 1. Hence, for given expected loss, L, we

get f < LF (p), for all su¢ ciently small p. From (11.13) it follows that the participation
constraint is satis�ed for all such small p.
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(c) From (7.8) and (7.9) we get the following

VI (L)� VNI
p

= v (L)
w (p)

p
� v

�
(1 + �)L+ f

� 1
p
, (11.14)

lim
p!0

VI (L)� VNI
p

= v (L) lim
p!0

w (p)

p
� v

�
(1 + �)L+ f

�
lim
p!0

1

p
. (11.15)

Suppose w (p) zero-underweights in�nitesimal probabilities. Then, from De�nition 3a,
lim
p!0

w(p)
p
= 0. Hence, the �rst term in (11.15) goes to 0 as p goes to 0. The second term in

(11.15), however, goes to �1 as p goes to 0. Hence, there exists p2 2 (0; 1) such that for
all p 2 (0; p2), VNI > VI (L). �.
Proof of Proposition 7: Straightforward from De�nitions 1 and 8. �.
Proof of Proposition 8: Follows by direct calculation from (8.4) and (8.5). �.
Proof of Proposition 9: Part (a) follows from part (bi) of Proposition 4, since �0 > 1.

Part (b) follows from part (bii) of Proposition 4, since �1 > 1. �.
Proof of Proposition 10: Follows from Propositions 5c and 9b. �.
Proof of Proposition 11: Follows from Propositions 6c and 9a. �.

12. Appendix 2: Axiomatic foundations of the CPF

The main aim of this appendix is to give an axiomatic derivation of the composite Prelec
probability weighting function. This is accomplished by Proposition 14 in subsection 12.3,
below. This is preceded by subsection 12.2, on Cauchy�s famous algebraic functional
equations (see, for example, Eichhorn (1978)). These will be of fundamental importance
to us. Subsection 12.1, immediately below, gives a fuller treatment of the Prelec (1998)
probability weighting function.

12.1. The Prelec probability weighting function

The full set of possibilities for the Prelec function, depending on the parameters � and �,
is established by Propositions 12 and 13, below.

Proposition 12 : For � = 1, the Prelec probability weighting function (De�nition 5)
takes the form w (p) = p�, is strictly concave if � < 1 but strictly convex if � > 1. In
particular, for � = 1, w (p) = p (as under expected utility theory).

Proof of Proposition 12: Obvious from De�nition 5. �.

Lemma 2 : For � 6= 1, the Prelec function (De�nition 5) has exactly three �xed points,

at 0, p� = e�(
1
� )

1
��1

and 1. In particular, for � = 1, p� = e�1.
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Proof of Lemma 2: From Propositions 1a and 3 it follows that 0 and 1 are �xed
points of the Prelec function. For � 6= 1 and p� 2 (0; 1), a simple calculation shows that

e��(� ln p
�)� = p� , p� = e�(

1
� )

1
��1
. In particular, � = 1 gives p� = e�1. �.

Lemma 3 : Let w (p) be the Prelec function (De�nition 5) and let

f (p) = �� (� ln p)� + ln p+ 1� �, p 2 (0; 1) , (12.1)

then
f 0 (p) =

1

p

�
1� �2� (� ln p)��1

�
, p 2 (0; 1) , (12.2)

w00 (p) =
w0 (p)

p (� ln p)f (p) , p 2 (0; 1) , (12.3)

w00 (p) Q 0, f (p) Q 0, p 2 (0; 1) . (12.4)

Proof of Lemma 3: Di¤erentiate (12.1) to get (12.2). Di¤erentiate (5.2) twice and
use (12.1) to get (12.3). � ln p > 0, since p 2 (0; 1). w0 (p) > 0 follows from De�nitions
(1) and (5) and Proposition (3). (12.4) then follows from (12.3). �.

Lemma 4 : Let w (p) be the Prelec function (De�nition 5). Suppose � 6= 1. Then
(a) w00 (ep) = 0 for some ep 2 (0; 1) and, for any such ep:
(i) for � < 1, p < ep) w00 (p) < 0 and p > ep) w00 (p) > 0.
(ii) for � > 1, p < ep) w00 (p) > 0 and p > ep) w00 (p) < 0.
(b) The Prelec function has a unique in�exion point, ep 2 (0; 1), and is characterized by
f (ep) = 0, i.e., �� (� ln ep)� + ln ep+ 1� � = 0.
(c) � = 1) ep = e�1.
(d) @ep

@�
= �ep(� ln ep)1+�

(��1)(��ln ep) .
(e) @[w(ep)�ep]

@�
= ep(� ln ep)1+�

(��1)(��ln ep)
�
e
1��
� (ep) 1��� � �

�
.

(f) ep Q w (ep), � Q 1.

Proof of Lemma 4: (a) Suppose � < 1. From (12.1) we see that f (p)! 1� � > 0,
as p ! 1. We also see that f (p) =

h
��

(� ln p)1�� + 1
i
ln p + 1 � � ! �1 as p ! 0. Since

f is continuous, it follows that f (ep) = 0, for some ep 2 (0; 1). From (12.4), it follows that
w00 (ep) = 0. Since � < 1, (12.1) gives �� (� ln ep)� + ln ep < 0 and, hence,

ep < e�(��) 1
1�� . (12.5)

Consider the case, p < ep. From (12.5) it follows that p < e�(��)
1

1�� and, hence, 1 �
�2�

(� ln p)1�� > 1 � � > 0. Hence, from (12.2), f 0 (p) > 0. Since f (ep) = 0, it follows that
f (p) < 0. Hence, from (12.4), it follows that w00 (p) < 0. This establishes p < ep )
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w00 (p) < 0 . The derivation of the second part of Lemma 4(ai) is similar. The case � > 1
is similar.
(b) follows from (a) and (12.1), (12.4).
(c) Since f (e�1) = 0 for � = 1, it follows from (b) that ep = e�1 in this case.
(d) Di¤erentiating the identity f (ep) = 0 with respect to � gives @ep

@�
= �ep(� ln ep)�

�2�(� ln ep)��1�1 ,
then using f (ep) = 0 gives @ep

@�
= �ep(� ln ep)1+�

(��1)(��ln ep) .
(e) Di¤erentiate w (ep)�ep = e��(� ln ep)��ep with respect to �, and use (d) and f (ep) = 0,

to get @[w(ep)�ep]
@�

= ep(� ln ep)1+�
(��1)(��ln ep)

�
e
1��
� (ep) 1��� � �

�
.

(f) Assume � < 1. For � = 1, ep = e�1 and, hence, e 1��� (ep) 1��� �� = e 1��� (e�1)
1��
� �� =

1 � � > 0. Since @ep
@�
< 0 for � < 1, it follows that e

1��
� (ep) 1��� � � > 0 for � � 1. Hence,

@[w(ep)�ep]
@�

< 0 for � � 1. We have w (ep) � ep = w (e�1) � e�1 = w (p�) � p� = 0 for � = 1
(recall part c and Lemma 2). Hence, w (ep) > ep for � < 1. The case � � 0 is similar. The
case � > 1 is similar. �.

Proposition 13 : Suppose � 6= 1. Then:
(a) The Prelec function (De�nition 5) has exactly three �xed points at, respectively, 0,

p� = e�(
1
� )

1
��1

and 1.
(b) The Prelec function has a unique in�exion point, ep 2 (0; 1), at which w00(ep) = 0.
(c) If � < 1, the Prelec function is strictly concave for p < ep and strictly convex for p > ep
(inverse S-shaped).
(d) If � > 1, the Prelec function is strictly convex for p < ep and strictly concave for p > ep
(S-shaped).
(e) If � < 1, the in�exion point, ep, lies above the 450 line (ep < w (ep)).
(f) If � = 1, the in�exion point, ep, lies on the 450 line (ep = w (ep)).
(g) If � > 1, the in�exion point, ep, lies below the 450 line (ep > w (ep)).
Proof of Proposition 13: (a) is established by Lemma 2. (b) is established by

Lemma 4b. (c) follows from Lemma 4a(i). (d) follows from Lemma 4a(ii). (e), (f) and (g)
follow from Lemma 4f �.
Proof of Corollary 1: Immediate from Proposition 13. �.
Table 1, below, exhibits the various cases established by Proposition 13.

� < 1 � = 1 � > 1

� < 1
inverse S-shapeep < w (ep) inverse S-shapeep = w (ep) inverse S-shapeep > w (ep)

� = 1
strictly concave
p < w (p)

w (p) = p
strictly convex
p > w (p)

� > 1
S-shapeep < w (ep) S-shape

w (ep) = ep S-shapeep > w (ep)
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Table 2, below, gives representative graphs of the Prelec function, w (p) = e��(� ln p)
�

,
for each of the cases in Table 1.

� = 1
2

� = 1 � = 2

� = 1
2

0.0 0.5 1.0
0.0

0.5

1.0

p

w

w (p) = e�
1
2
(� ln p)

1
2

0.0 0.5 1.0
0.0

0.5

1.0

p

w

w (p) = e�(� ln p)
1
2 .

0.0 0.5 1.0
0.0

0.5
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p

w

w (p) = e�2(� ln p)
1
2

� = 1

0.0 0.5 1.0
0.0

0.5

1.0

p

w

w (p) = p
1
2

0.0 0.5 1.0
0.0

0.5

1.0

p

w

w (p) = p

0.0 0.5 1.0
0.0

0.5

1.0

p

w

w (p) = p2

� = 2

0.0 0.5 1.0
0.0

0.5

1.0

p

w

w (p) = e�
1
2
(� ln p)2 .

0.0 0.5 1.0
0.0

0.5

1.0

p

w

w (p) = e�(� ln p)
2

.

0.0 0.5 1.0
0.0

0.5

1.0

p

w

w (p) = e�2(� ln p)
2

Table 2: Representative graphs of w (p) = e��(� ln p)
�

.

Corollary 1 : Suppose � 6= 1. Then ep = p� = e�1 (i.e., the point of in�exion and the
�xed point, coincide) if, and only if, � = 1. If � = 1, then:
(a) If � < 1, then w is strictly concave for p < e�1 and strictly convex for p > e�1 (inverse-
S shape, see Figure 5.1).
(b) If � > 1, then w is strictly convex for p < e�1 and strictly concave for p > e�1 (S
shape, see Figure 5.2).

12.2. Cauchy�s algebraic functional equations.

We start with Cauchy�s �rst algebraic functional equation, with its classic proof. Our
notation is standard. In particular: R: reals, R+: non-negative reals, R++: positive reals
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and C1: class of continuous functions with continuous �rst derivatives.

12.2.1. Cauchy�s �rst algebraic functional equation

Theorem 1 : If f : R �! R is continuous and satis�es 8x 2 R, 8y 2 R, f (x+ y) =
f (x) + f (y), then 9c 2 R, 8x 2 R, f (x) = cx.

Proof. By mathematical induction it follows that, 8n 2 N, 8x1; x2; :::; xn 2 R,
f (�ni=1xi) = �

n
i=1f (xi). In particular, 8n 2 N, 8x 2 R; f (nx) = nf (x). Let n 2 N, x 2 R.

Let y = 1
n
x. Then x = ny. Hence, f (x) = f (ny) = nf (y) = nf

�
1
n
x
�
. Thus, 8n 2 N,

8x 2 R, f
�
1
n
x
�
= 1

n
f (x). And, so, 8m;n 2 N, 8y 2 R, f

�
m
n
y
�
= 1

n
f (my) = m

n
f (y).

From the continuity of f it follows that 8x; y 2 R, f (xy) = xf (y). In particular, for
y = 1, we get 8x 2 R. f (x) = xf (1). Letting c = f (1), we get 8x 2 R. f (x) = cx. �.

Remark 7 : Note that the rational number, m
n
, can be arbitrarily large. Hence, for the

proof to go through, we do need f : R �! R (or f : R+ �! R+ or f : R++ �! R++).
In particular, this proof in not valid for the case f : (a; b) �! R when (a; b) is a bounded
interval; which is what we need. This is why we need a local form of this theorem.

12.2.2. Local forms of Cauchy�s algebraic functional equations.

The third Cauchy equation arises naturally in the course of our proof of Proposition 14.
However, we need a local form of it. That is, a form restricted to a bounded real interval
around zero, rather than the whole real line (recall Remark7). We achieve this by replacing
the assumption of continuity with the stronger assumption of di¤erentiability.34 As in the
classical approach, we give the proof for the �rst equation. We then transform the third
equation to the second which, in turn, we transform to the �rst. There is a fourth Cauchy
algebraic functional equation, but we need not be concerned with it here.

Theorem 2 : Let f : (a; b) �! R be C1, a < 0 < b, 8x; y 2 (a; b), s.t. x + y 2 (a; b),
f (x+ y) = f (x) + f (y). Then 9c 2 R, 8x 2 (a; b), f (x) = cx.

Proof. f (0) = f (0 + 0) = f (0) + f (0). Hence, f (0) = 0.
f(x+�x)�f(x)

�x
= f(x)+f(�x)�f(x)

�x
= f(�x)

�x
. Hence, f 0 (x) = lim

�x!0
f(x+�x)�f(x)

�x
= lim

�x!0
f(�x)
�x
,

which is independent of x, thus, 9c 2 R, f 0 (x) = c and so f (x) = cx + C. Hence,
0 = f (0) = C. It follows that 9c 2 R, f (x) = cx. �.

Theorem 3 : Let g : (A;B) �! R be C1, 0 < A < 1 < B, 8X; Y 2 (A;B), s.t.
XY 2 (A;B), g (XY ) = g (X) + g (Y ). Then 9c 2 R;8X 2 (A;B) ; g (X) = c lnX.
34Theorem 2 (and hence also Theorems 3 and 4) holds if f is either continuous or monotonic (see,

for example, Theorem 2.6.9 in Eichhorn 1987). The assumption of di¤erentiability, however, facilitates a
much shorter proof.
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Proof. Let ai = lnA, bi = lnB. Then ai < 0 < bi, x 2 (ai; bi) , ex 2 (A;B) and
x; y; x+ y 2 (ai; bi)) ex; ey; exey = ex+y 2 (A;B).
De�ne f : (ai; bi) �! R by 8x 2 (ai; bi), f (x) = g (ex). Since ex 2 (A;B), f is well

de�ned. Since g is C1, f is also C1 and for x; y; x + y 2 (ai; bi), f (x+ y) = g (ex+y) =

g (exey) = g (ex) + g (ey) = f (x) + f (y). Hence, from Theorem 1, 9c 2 R, 8x 2 (ai; bi),
f (x) = cx. Hence, 8x 2 (ai; bi), g (ex) = cx. Let X 2 (A;B), x = lnX, then x 2 (ai; bi),
g (X) = g (ex) = cx = c lnX , i.e.,8X 2 (A;B), g (X) = c lnX. �.

Theorem 4 : Let G : (A;B) �! R++ is C1, 0 < A < 1 < B, 8X; Y 2 (A;B), s.t.
XY 2 (A;B), G (XY ) = G (X)G (Y ). Then 9c 2 R, 8X 2 (A;B), G (X) = Xc.

Proof. De�ne g : (A;B) �! R by 8X 2 (A;B), g (X) = lnG (X). Since G (X) > 0,
g is well de�ned. Since G is C1, g is also C1 and for X; Y 2 (A;B), s.t. XY 2 (A;B),
g (XY ) = lnG (XY ) = ln (G (X)G (Y )) = lnG (X) + lnG (Y ) = g (X) + g (Y ). Hence,
from Theorem 3, 9c 2 R, 8X 2 (A;B), g (X) = c lnX. Hence, 8X 2 (A;B), lnG (X) =
c lnX = lnXc. Hence, 8X 2 (A;B), G (X) = Xc. �.

12.3. Axiomatic foundations of the composite Prelec probability weighting
function.

Prelec (1998) gave an axiomatic derivation of (5.1) and (5.2) based on �compound invari-
ance�, Luce (2001) provided a derivation based on �reduction invariance�and al-Nowaihi
and Dhami (2006) gave a derivation based on �power invariance�. Since the Prelec function
satis�es all three, �compound invariance�, �reduction invariance�and �power invariance�are
all equivalent.
Here we introduced a version of power invariance that we call local power invariance.

On the basis of this behavioral property, we shall axiomatically derive the composite Prelec
function (CPF); see Proposition 14, below.

De�nition 9 (Composite Prelec function, CPF): By the composite Prelec function we
mean the function w : [0; 1]! [0; 1] given by

w (p) =

�
0 if p = 0

e��i(� ln p)
�i if pi�1 < p � pi, i = 1; 2; :::n,

(12.6)

where �i > 0, �i > 0, p0 = 0, pn = 1 and

e��i(� ln pi)
�i
= e��i+1(� ln pi)

�i+1 , i = 1; 2; :::n� 1. (12.7)

The restriction (12.7) is needed to insure that w is continuous.
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De�nition 10 (Power invariance; al-Nowaihi and Dhami, 2006): A probability weighting
function, w, satis�es power invariance if: 8p; q 2 (0; 1), (w (p))� = w (q) )

�
w
�
p�
���

=

w
�
q�
�
, �; � 2 f2; 3g.

De�nition 11 (Local power invariance): Let 0 = p0 < p1 < ::: < pn = 1. A probability
weighting function, w(:), satis�es local power invariance if, for i = 1; 2; :::; n, w(:) is C1 on
(pi�1; pi) and 8p; q 2 (pi�1; pi), (wi (p))� = wi (q) and p�; q� 2 (pi�1; pi) imply

�
w
�
p�
���

=

w
�
q�
�
.

De�nition 12 (Notation): Let 0 = p0 < p1 < ::: < pn = 1. De�ne P1 = (0; p1],
Pn = [pn�1; 1) and Pi = [pi�1; pi], i = 2; 3; :::; n� 1. Given p 2 Pi, i = 1; 2; :::; n, de�ne �i
as follows. �1 = [

ln p1
ln p
;1), �n = (0; ln pn�1ln p

], �i =
h
ln pi
ln p
; ln pi�1

ln p

i
, i = 2; 3; :::; n� 1.

Lemma 5 : Let pi, Pi and �i be as in De�nition 12. Then,

Let p 2 (pi�1; pi) . Then p� 2 (pi�1; pi), � 2
�
ln pi
ln p

;
ln pi�1
ln p

�
, (12.8)

furthermore, 0 <
ln pi
ln p

< 1 <
ln pi�1
ln p

. (12.9)

Let p 2 Pi. Then p� 2 Pi , � 2 �i. (12.10)

Proposition 14 (CPF representation): The following are equivalent.
(a) The probability weighting function, w, satis�es local power invariance.
(b) There are functions, 'i : �i ! R++, such that 'i is C1 on

�
ln pi
ln p
; ln pi�1

ln p

�
, i = 1; 2; :::; n,

where 0 = p0 < p1 < ::: < pn = 1, and, 8p 2 Pi, 8� 2 �i, w
�
p�
�
= (w (p))'i(�). Moreover,

for each i = 1; 2; :::; n, 9 �i 2 (0;1), 'i (�) = ��i.
(c) w is a composite Prelec function (De�nition 9).

Proof of Proposition 14 (CPF representation): (a))(b). Suppose the probability
weighting function, w, satis�es local power invariance.
Let

f (x; �) = w
��
w�1

�
e�x
����

, x; � 2 R++, (12.11)

and
' (�) = � ln f (1; �) = � lnw

��
w�1

�
e�1
����

, � 2 R++. (12.12)

Clearly,
' maps R++ into R++. (12.13)

Since w�1 (e�1) 2 (0; 1), it follows that (w�1 (e�1))� is a strictly decreasing function of �,
and so are w

�
(w�1 (e�1))

�
�
and lnw

�
(w�1 (e�1))

�
�
. Hence, from (12.12),

' is a strictly increasing function of �. (12.14)
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From (12.11) we get

f (�� lnw (p) ; �) = w
��
w�1 ((w (p))�)

���
, p 2 (0; 1) , �; � 2 R++. (12.15)

Let 0 = p0 < p1 < ::: < pn = 1.
Since w is C1 on (pi�1; pi) it follows, from (12.12) and (12.8), that

' is C1 on
�
ln pi
ln p

;
ln pi�1
ln p

�
. (12.16)

Let
p; q 2 (pi�1; pi) , (w (p))� = w (q) , p�; q� 2 (pi�1; pi) . (12.17)

From (12.17) we get
q = w�1 ((w (p))�) . (12.18)

From (12.17) and local power invariance, we get�
w
�
p�
���

= w
�
q�
�
. (12.19)

Substituting for q from (12.18) into (12.19), we get�
w
�
p�
���

= w
��
w�1 ((w (p))�)

���
, p; p� 2 (pi�1; pi) . (12.20)

From (12.20) and (12.15) we get

f (�� lnw (p) ; �) =
�
w
�
p�
���

, p; p� 2 (pi�1; pi) . (12.21)

In particular, for � = 1, (12.21) gives

f (� lnw (p) ; �) = w
�
p�
�
, p; p� 2 (pi�1; pi) . (12.22)

From (12.22) we get

(f (� lnw (p) ; �))� =
�
w
�
p�
���

, p; p� 2 (pi�1; pi) . (12.23)

From (12.21) and (12.23) we get

f (�� lnw (p) ; �) = (f (� lnw (p) ; �))� , p; p� 2 (pi�1; pi) . (12.24)

Put
z = � lnw (p) . (12.25)

From (12.24) and (12.25) we get
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f (�z) = (f (z; �))� , p; p� 2 (pi�1; pi) . (12.26)

From (12.12) and (12.26) we get

f (�) = (f (1; �))� = e��'(�), p; p� 2 (pi�1; pi) , (12.27)

and, hence,
f (� lnw (p) ; �) = (w (p))'(�) , p; p� 2 (pi�1; pi) . (12.28)

From (12.22) and (12.28) we get

w
�
p�
�
= (w (p))'(�) , p; p� 2 (pi�1; pi) , (12.29)

from which we get,

' (�) =
lnw

�
p�
�

lnw (p)
, p; p� 2 (pi�1; pi) . (12.30)

Let p; p�; p�; p�� 2 (pi�1; pi). From (12.29) and (12.30) we get

' (��) =
lnw(p��)
lnw(p)

=
lnw((p�)�)
lnw(p)

=
ln[(w(p�))'(�)]

lnw(p)
= '(�) ln(w(p�))

lnw(p)
=

'(�) ln[(w(p))'(�)]
lnw(p)

=
'(�)'(�) lnw(p)

lnw(p)
= ' (�)' (�), i.e.,

' (��) = ' (�)' (�) , p; p�; p�; p�� 2 (pi�1; pi) . (12.31)

From (12.8), (12.9), (12.16) and (12.31) we have: ' is C1 on
�
ln pi
ln p
; ln pi�1

ln p

�
, 0 < ln pi

ln p
<

1 < ln pi�1
ln p

, 8�; � 2
�
ln pi
ln p
; ln pi�1

ln p

�
, s.t. �� 2

�
ln pi
ln p
; ln pi�1

ln p

�
, ' (��) = ' (�)' (�). Hence, by

Theorem 4 (see Appendix 2, below), we have,

9�i 2 R, 8� 2
�
ln pi
ln p

;
ln pi�1
ln p

�
, ' (�) = ��i. (12.32)

But, by (12.14), ' is a strictly increasing function of �. Hence,

�i > 0. (12.33)

Let Pi and �i be as in De�nition12. Let p 2 Pi. De�ne 'i : �i ! R++ by 'i (�) = ��i.
Then, clearly, 'i is C

1 on
�
ln pi
ln p
; ln pi�1

ln p

�
. A simple calculation veri�es that 8p 2 Pi, 8� 2 �i,

w
�
p�
�
= (w (p))'i(�). This completes the proof of part (b).

(b))(c). Since e�1 2 (0; 1), e�1 2 Pi for some i = 1; 2; :::; n. We �st establish the result
for Pi, then we use induction, and the continuity conditions (12.7), to extend the result to
Pi+1, Pi+2, ... , Pn and Pi�1, Pi�2, ... , P1. Let �i = � lnw (e�1). Then w (e�1) = e��i.
Let p 2 Pi. Let � = � ln p. Then p = e��. Hence w (p) = w

�
e��
�
= w

�
(e�1)

�
�
=

(w (e�1))
'i(�) =

�
e��i

���i
= e��i�

�i = e��i(� ln p)
�i . Thus we have shown

w (p) = e��i(� ln p)
�i , p 2 Pi. (12.34)
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Let p 2 Pi. Let � =
ln p
ln pi
. Then p = p�i . Hence, w (p) = w

�
p�i
�
= (w (pi))

'i+1(�) =

(w (pi))
��i+1 =

�
e��i(� ln pi)

�i
���i+1

=
�
e��i+1(� ln pi)

�i+1
���i+1

= e��i+1(�� ln pi)
�i+1

= e��i+1(� ln p
�
i )

�i+1

=

e��i+1(� ln p)
�i+1 . Thus we have shown

w (p) = e��i+1(� ln p)
�i+1 , p 2 Pi+1. (12.35)

Let p 2 Pi�1. Let � = ln p
ln pi�1

. Then p = p�i�1. Hence, w (p) = w
�
p�i�1

�
= (w (pi�1))

'i�1(�) =

(w (pi�1))
��i�1 =

�
e��i(� ln pi�1)

�i
���i�1

=
�
e��i�1(� ln pi�1)

�i�1���i�1
= e��i�1(�� ln pi�1)

�i�1
=

e��i�1(� ln p
�
i�1)

�i�1
= e��i�1(� ln p)

�i�1 . Thus we have shown

w (p) = e��i�1(� ln p)
�i�1 , p 2 Pi�1. (12.36)

Continuing the above process, we get

w (p) = e��i(� ln p)
�i , p 2 Pi, i = 1; 2; :::; n, (12.37)

which establishes part (c).
Finally, a simple calculation shows that (c) implies (a). �.
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