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W einvestigatetheabilityofexpected utility theory to accountforsim ul-

taneousgam blingand insurance. Contrary toa previousclaim thatborrow-

ing and lending in perfectcapitalm arketsrulesouta dem and forgam bles,

weshow thatexpected utility theory with non-concave utility functionscan

stillexplain gambling. W hen the ratesofinterestand tim e preferenceare

equal,agents willseek to gam ble unless incom e falls in a ¯nite set ofex-

ceptionalvalues. W hen these ratesdi®er,there willbe a rangeofincom es

forwhich gamblesare desired. In both casesrepeated gambling isnotex-

plained but m arket im perfections such as di®erent borrowing and lending

ratescan accountforpersistentgambling provided theratesspan therateof

tim epreference.
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Accounting for gam bling presents a signī cant challenge to theories of

decision m aking under uncertainty,particularly in a dynam ic setting. If

expected utility theory is to be used to m odeldecision-m aking under un-

certainty,the only way to explain simultaneous gambling and insurance is

to introduce non-concave segm entsinto theutility function.Thisapproach

was¯rsttaken by Friedm an and Savage[8]who used a utility function with

a singleconvex segm entaccom panied by a justī cation ofthisshape.They

dem onstrated thatautility function which included asection with increasing

m arginalutility could accountfortheexistenceofconsum erswho purchase

both insuranceand lottery tickets.

Theexplanatory poweroftheFriedm an-Savageapproach waschallenged

by Bailey, Olson and W onnacott [1]who argued that non-concave utility

functions could not,in principle,explain gambling. The intuition behind

theirargum entissim ple. Considerthe Friedm an-Savage utility function v

shown in Figure 1 together with the com m on tangent to the curve at the

pointscand c. W ewriteCv fortheconcavehullofv in which thegraph ofv

isbridged by thecom m on tangentbetween cand c. An agentatccan m ove

up from v(c)toCv(c)bybuyingafairgam blebetween cand c. W hen there

are two periodsthe agenthasan alternativepossibility:saveby consum ing

c in the initialperiod to ¯nanceconsum ption ofc in the second,orborrow

to supportconsum ption ofc in the ¯rstperiod and cin the second period.
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W hen theratesofinterestand tim epreferenceareequalthisdoesjustaswell

asgam bling. W hen they di®er,oneofthesealternativesisstrictly preferred

to gambling.

Unfortunately,thisargum entencounterstwo di± culties. First,the re-

quired pattern ofsaving or borrowing is only feasible ifincom e is chosen

appropriately. Forexam ple,when theratesofinterestand tim epreference

are both zero,the am ountsaved in the r̄stperiod m ustequaltheincrease

in consum ption in thesecond period. Thisrequiresthatincom ebeequalto

(c+ c)=2. Forallotherincom elevelstherewillbegamblesstrictlypreferred

to the optim alpattern ofsaving and borrowing. Thisconclusion continues

to hold when theratesofinterestand tim epreferenceareequaland positive

although there are now two exceptionalincom e levelscorresponding to sav-

ing orborrowing. The second di± culty isthatthe m odelofBailey et al.

doesnotallow forthepossibility thatan agentm ay wish to saveorborrow

and gamble. Perm itting gambling aswellassaving and borrowing can re-

store a dem and forgambleseven when pure saving orborrowing isstrictly

preferred topuregambling. Thisfollowsfrom theobservation thatoptim al

saving and borrowing withoutgam blingwilltypically lead to aconsum ption

leveldi®erentfrom c and cin atleastone period. In any period in which

the consum ption lies strictly between c and c totalexpected utility can be

increased by gam bling in thatperiod asthisshiftsexpected utility upwards

3



on to thecom m on tangent. Hencea dem and forgam blesisrestored.

In this paper,we extend the m odelofBailey et al. by allowing agents

to gam ble as wellas save and borrow. W ith this extension,the analysis

showsthat expected utility with non-concave utility functionscan explain

the desire to gamble even with perfectcapitalm arkets and tim e-separable

utility functions. A dem and forgambleswillpersistin ourm odelwhen the

ratesofinterestand tim epreferenceareequalunlessincom ehappensto take

oneofa n̄itesetofexceptionalvalues. W hen theratesdi®er,therewillbe

a rangeofincom elevelsforwhich thereisa dem and forgam bles. However,

as in Bailey et al.,repeated gam bling can not be explained in the m odel

withoutinvoking m arketfailure.

Discom fortwith thenotion ofincreasingm arginalutilityofm arketgoods

hasledseveralauthorstoo®erafoundationfornon-concavitiesoftheFriedm an-

Savagetypeusing indivisibilitiesin m arketssuch aslaborsupply (Dobbs[4])

and education (Ng[13]) or capitalm arket im perfections (Kim [11]). Jul-

lien and Salani¶e[10]show that a sam ple ofracetrack bettors exhibit local

risk aversion sim ilarto thatarising from Friedm an-Savage utility functions,

within the contextofcumulative prospecttheory. These explanationsand

observationsim plynon-concavefunctionsofwealth butarevulnerableto the

idea thatborrowing and savingcan transform them into a concavefunction.

In directresponseto theBailey etal.critique,Dowelland M cLaren[5]show
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how a m odelin which wageratesincreasewith work experiencecan lead to

a Friedm an-Savage function ofnonhum an wealth without invoking m arket

im perfections.

Theprincipalalternativeexplanation ofgam bling isthatito®ersdirect

consum ption value.Itisusefulto distinguish two form softhisassum ption.

Firstly,and m ost sim ply,the utility ofnon-m onetary activities associated

with gam bling such asattending a racem eeting orviewing a lottery-related

television program when onehasa stakein theoutcom e,could beincluded

directly in thecalculations.Historically,thisapproach hasconsisted oflittle

m ore than inform alcom m ents,but m ore recently Sim on[15]has used an

explicit d̀ream 'function to m odeldem and forlottery tickets. Johnson and

Shin[9]haveestim ated such a function forbetting on horseracesusing data

from bookm akers. These authorsalso pointoutpunters'behaviorwhich is

hard to rationalizewithoutinvoking such a function.

Theotherform oftheassum ptionm odī esexpectedutility theoryby sup-

posing thatthe m oney valuesand probabilitiesin any risky prospecthave

directvalue beyond thatincluded in the expression forexpected utility. A

particularly elegantversion waspresented by Conlisk [3]who dem onstrated

that adding an arbitrarily sm allfunction ofthe m oney values and proba-

bilitiesto an otherwiseconcaveutility function could explain risk preferring

behaviorsuch asthepurchaseoflottery tickets. Othernon-expected utility
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theoriesm ay explain featuresofgam bling,such asthenatureoftheprizesin

lottery gam es,which are hard to justify using expected utility theory. (See

Quiggin [14].)

However, these approaches are not without di± culties. It is unclear

whetherdream functionsshould beapplied to allriskydecision-m aking asin

Conlisk oronlyto,say,unfairgam bleswith very longoddssuch asarefound

in lottery gam esasin Sim on.Thelatterpossibility leavesm any otherform s

ofgam blingunexplained.However,auniversallyapplieddream functiononly

partially determ ineshow the characteristicsofthegam ble,such asthe size

ofprizes,probability ofwinning,tim e atwhich uncertainty isresolved etc.,

could be explained. W ithouta clearprescription ofthenatureofthe func-

tion,itbecom esa di± culttask to com parethedem and forrelated gambles

such asonegamblewhich isa m ean-preserving risk spread ofanother,orto

analyzetheportfolioe®ectsofactivitiessuch aslaying¯xed oddsand spread

bets on the sam e sporting event. The °exibility in functionalform m eans

that,rather than explain gam bling, it is alltoo easy to im pose observed

behaviorby suitable choiceofa dream function.Furtherm ore,the dynam ic

consistencyofsuch m odelsiscontroversial[12]which m akestheirapplication

in inter-tem poralm odelsproblem atic.

Therestofthe paperdescribesour extension ofthe m odelofBailey et

al. and analysesitsproperties. In Section Iwe formulate the consum er's
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optim ization problem when gamblesareavailableand dem onstratehow this

problem m ay be solved in term s ofa related determ inistic problem . This

construction allowsusto relatetheindi®erencem apswhen gam bling ispos-

sibleand when itisexcluded and these resultsare applied to an analysisof

two-period problem sin Section II.In Section III,weoutlineresultsform ore

than two periods. In Section IV we show that the m odelcannot explain

repeated gambling withoutintroducing som em arketim perfection and inves-

tigatehow di®erentborrowingand lending ratesm ay overcom ethisproblem .

Ourconclusionsarestated in Section V.

I. Solving the m ulti-period problem

A.M ethodology

Ourapproach isin threesteps.

1.W e write down the m ulti-period optim ization problem facing a con-

sum erwho can borrow and savein a perfectcapitalm arketand hasa

separableutilityfunction in whichintra-periodpreferencesarere°ected

in a non-concaveutility function. W ereferto the optim alsolution of

thisproblem ,when no gamblesareavailable,astheno-gam bling so-
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lution.

2.W e extend the previous optim ization problem by allowing consum ers

accesstofairgambleswithanypatternofpayo®s. Thisisourextension

ofthe m odelofBailey et al. The solution to this problem issim ply

referred to asoptim al.

3.W e ask whethertheoptim alobjective valuesofthe two problem sare

thesam ei.e.istheno-gam bling solution optim al?

A negative answer to the ¯nalquestion im plies a positive dem and for

fairgam blesand,by continuity,forsom eunfairgambles.W hetherthiswill

actuallyresultingamblingdependson thesupplysideofthegamblingm arket

which isnotanalyzed here1.W e thereforeinterpreta negative answerto 3.

as support for the explanatory power ofFriedm an-Savage orm ore general

non-concavevon Neum ann-M orgenstern utility functions.

B.The no-gam blingsolution

Since we wish to dem onstratethatnon-concave utility functionscan ex-

plain gam blingevenwhenutilityfunctionsareseparable,wewillfollow Bailey
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etal.in assum ing a von Neum ann-M orgenstern utility function oftheform

U(c1;:::;cT )=
TX

t= 1

v(ct)

(1+ )́t
(1)

where ct is consum ption in period t(= 1;:::;T) and ´ > 0. W e assum e

that vis strictly increasing but not necessarily concave2. In Figure 1,we

graph both v and itsconcavehullCv fortheclassicFriedm an-Savageutility

function.Thenon-concavity ofvm eansthattherewillbeconsum ption levels

csatisfyingv(c)< Cv(c)andwewrite(c;c)forthesetofallsuchconsum ption

levels3.Forsuch a c;theconsum erwillpreferto thestatusquo a gam blein

which the ex post wealth iseitherc or c and the probability ofwinning is

chosen to m akethegamble fair.Indeed,therewillbeunfairgam blesgiving

an expected utility greater than v(c). Itisalso convenient to assum e that

forc< c orc> ctheconsum erisrisk-averse:theFriedm an-Savagefunction

containsno linearsections4.

Assum ing perfect capitalm arkets with rate ofinterest r;the optim al

solution in theabsence ofgam bling isfound by m axim izing U subjectto

TX

t= 1

ct

(1+ r)t
= y¤

TX

t= 1

1
(1+ r)t

, (2)

wherey¤ isperm anentincom e.
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C.Consum er'soptim ization problem

W enow introducethepossibilityofgamblingby allowingtheconsum erto

increaseherwealth in period tby adding any random variableX t satisfying

EX t = 0 fort= 1;:::;T:W ealsoperm ittheconsum ption decision in period

tto depend on the outcom e ofthe gam ble X t and random events in previ-

ousperiods.Thism akesconsum ption in any period a random variableand

we place no restrictions on the joint distribution5 of(X 1;C1;:::;X T ;CT ).

W e also require the budget constraint (2) to be satis̄ ed for every sam ple

path. Thus,the consum er'soptim ization problem forT periods,which we

abbreviateto CPT ,becom es

m ax E
TX

t= 1

v(Ct)

(1+ )́t

subjectto
TX

t=1

C t

(1+ r)t
=

TX

t= 1

y¤ + X t

(1+ r)t
;and EX 1 = ¢¢¢= EX T = 0

wherethem axim izationiswith respecttoX 1;C1;:::;X T ;CT or,equivalently

with respectto thejointdistribution oftheserandom variables.

D.Solving the consumer'sproblem

This problem can be solved by an indirect approach. Since the best

choice ofgamble m oves the consum er from v to Cv,we start by solving a
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m odī cation oftheno-gam blingproblem oftheprevioussubsection in which

v in theobjectivefunction isreplaced byCv. W henevertheoptim alsolution

ofthisproblem requiresconsum ptioncbetween cand cinacertainperiod,an

optim alsolution ofCPT isfound by choosing thegam blerequired to obtain

expected utility Cv(c)in thatperiod.M oreform ally,weproceed asfollows.

Substituting Cv forv in CPT yieldsan upperbound totheoriginalprob-

lem since Cv ¸ v. Furtherm ore,the concavity ofCv and linearity ofthe

constraintallowsustoreplacetherandom variableswith theirexpected val-

ueswithoutreducing the value ofthe objective function6. Thisshowsthat

the following determ inistic problem ,which we shallrefer to asthe deter-

m inistic equivalent ofCPT ,

m ax
TX

t= 1

Cv(ct)
(1+ ´)t

subjectto (2),

yieldsan upperbound forCPT .

W ecan constructa solution (bX 1;bC1;:::;bX T;bC T)ofCPT which achieves

this upper bound,and is therefore optim al,asfollows. Let(bc1;:::;bcT )be

the optim alsolution ofthe determ inistic equivalent and write Ix for the

degeneraterandom variablewhich takesthevaluex with certainty.Foreach

t= 1;:::;T;two casesarepossible.

C ase 1:v(bct)= Cv(bct):

Let bX t = I0 and bCt = Ibct.

11



C ase 2:v(bct)< Cv(bct):

Let bX t takethevalue

bct¡ c;with probability 1¡ ¼ and

c¡ bct;with probability ¼;

where

¼ =
bct ¡ c

c¡ c

and let bC t = bct+ bX t:

Notethat,in Case2,E bX t = 0 asrequired,and

Ev(bCt)= ¼v(c)+ (1¡ ¼)v(c)= Cv(bct):

These results are also trivially true in Case 1,so the constructed solution

achievesthe upperbound. Furtherm ore,since (bc1;:::;bcT )isfeasible in the

determ inisticequivalent,(bX 1;bC1;:::;bX T ;bCT )isfeasiblein theoriginalprob-

lem on every sam ple path. W e refer to thisconstruction asthe Standard

C onstruction and conclude that an optim alsolution to CPT m ay be ob-

tained by r̄stsolving the determ inistic equivalentand then using the stan-

dard construction to generate a solution of CPT . Furtherm ore,the optimal

objective valuesof CPT and itsdeterm inistic equivalentare the sam e.

II.T wo-period problem s
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A.Indi®erence maps

In thissection we describe a graphicalapproach to problem s with two

periods. The starting pointisthe utility function forthe problem with no

gambling

U (c1;c2)=
v(c1)

(1+ )́
+

v(c2)

(1+ ´)2
: (3)

Theargum entin theprevioussection showsthatCP2 hasthesam eoptim al

objectivefunction valueasitsdeterm inisticequivalentand solving thelatter

involvessubstituting Cv forv in (3).Thus,forany referencelevelofutility,

wecan draw acorresponding pairofv-and Cv-indi®erencecurves.In Figure

2,wedisplay a pairofindi®erencecurves7 corresponding to thesam eutility

level,wherev hastheshape shown in Figure 1.Indi®erencecurveI,drawn

asasolid line,isforv and I¤,drawn dashed whereitdi®ersfrom I,isforCv.

W enotethatindi®erencecurveIdoesnot `̄ llin'theindentation in I¤.

W ealsoinclude(drawndotted)thefourlinesct = candct = cfort= 1;2.

Theselinesdivide thepositive quadrantoftheplaneinto nineregions.The

centralsquare includesallconsum ption vectors corresponding to gambling

in both periods. In thisregion,Cv islinearin both periodsso thatallCv-

indi®erencecurveshavethesam eslope:¡(1+ )́throughoutthesquare.In
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thefourcornerregionsthereisnogam blingin eitherperiod and indi®erence

curvesofvand Cv forthesam elevelofutilitycoincide.TheEast(c1 > c;c<

c2 < c)and W estregionscorrespond to gambling only in thesecond period

and the North and South regionsto gambling only in the ¯rstperiod. IfI

passesthrough (c1;c2)wherec< c1 < c,then v(c1)< Cv(c1)and thereisa

section ofI¤ lying closerto the origin than (c1;c2).Sim ilarconclusionshold

ifc < c2 < c proving O bservation 1. Exceptin the four corner regions,

includingtheirboundaries,a Cv-indi®erencecurveliesstrictly below (i.e.on

the origin sideof)the v-indi®erence curve correspondingto the sam eutility

level.

W e have also included in Figure 2 (m arked with dots and dashes) the

iso-slope locus8,L,ofallpoints(c1;c2)forwhich v0(c1)= v0(c2).L isalso

the setofpointsatwhich the slope ofthev-indi®erence curvesis¡(1+ )́

and therefore where the r̄st-order conditionsform axim izing U subjectto

theinter-tem poralbudgetconstraint:

c1

(1+ ´)
+

c2

(1+ ´)2
=

(2+ ´)y¤

(1+ ´)2
(4)

aresatis̄ ed.ThisgivesO bservation 2.Allno-gam blingsolutionsfor r= ´

lie on L9.

Sincevhasacom m on tangentatcandc(seeFigure1),theiso-slopelocus

m ustincludethe fourverticesofthe centralsquareofFigure2.Otherwise,
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theonlypartofL whichcan enterthefourcornerregionsisthe45± line.This

can be seen by exam ining the m arginalutility function v0 fora Friedm an-

Savage v;which wehave graphed in Figure 3 and in which we havem arked

cand c:If(c1;c2)isa pointofL wherec1 6= c2;then v0(c1)and v0(c2)lieon

the sam e horizontalline. Since thisis also true ofv0(c)and v0(c),atm ost

oneofc1 and c2 can falloutsidetheinterval(c;c).

CombiningthisresultwithO bservation2givesO bservation 3.Ifv(y¤)<

Cv(y¤),no-gamblingsolutionsfor r= ´ cannotliein the interiorofa corner

region.

B.The optimality ofno-gam bling solutions

Throughout this subsection,we assum e thatv(y¤) < Cv(y¤). W e ¯rst

exam ine the case r = .́ Observation 3 im plies that a tangency point

between the budget line (4) and a v-indi®erence curve cannot lie in the

interiorofa cornerregion.Observation 1 allowsusto concludethat,unless

thetangency pointhappensto bea cornerpointofthecentralsquare,there

are pointson theCv-indi®erencecurvewith the sam eutility levelwhich lie

closer to the origin than the tangency point. Thus,the sam e utility level

m ay be achieved in theinteriorofthe budgetsetwhen gambling isallowed

so theno-gambling solution issub-optim al.
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Thisisillustrated in Figure 2 where the no-gam bling solution isat the

intersection ofIand L in theEastregion whereasthesetoftangency points

between thebudgetlineand thecorresponding Cv-indi®erencecurveisAB.

An exceptionalcase where the v-indi®erence curve passes through the

point(c;c)isshown in Figure 4. Here,A=(c;c)isoptim albutthe slope of

both curves atA is¡(1+ ´):The com plete setofoptim alsolutionsis the

line-segm entAB.Hence there isan optim alno-gam bling solution although

therearealternativeoptim alsolutionswhich doinvolvegam bling.Theseare

theonly exceptionsand occuronly ifoneofthesecornershappensto lie on

thebudgetline which requiresthat

y¤ = [(1+ ´)c+ c]=(2+ )́ory¤ = [(1+ )́c+ c]=(2+ ´): (5)

Theseresultsestablish thenexttheorem .

T heorem 1 Ifc< y¤ < c and (5)does nothold,the no-gam bling solution

issub-optim al10.

W e now turn to the case r 6= ´ and start from the case r = ´ when

thetangency setbetween thebudgetline,which hasslope¡ (1+ )́;and the

optim alCv-indi®erencecurveisthesetADB inFigure2.Asrincreasesabove

[decreases below] ,́the budgetline rotates [anti]clockwise. The tangency

pointwith theCv-indi®erencecurvealwaysliesabovethe45± lineand m oves
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away from it. This is illustrated in Figure 5,where we have redrawn the

indi®erencecurvesfrom Figure2.ForthebudgetlineB1;theoptim alsolution

isA1 and itisclearthattheno-gambling solution issub-optim al.Thepoint

A 2 isoptim alforthebudgetlineB2:A 2 isalsotheno-gam blingsolution but

only in a trivialsense: the optim alsolution does not involve gam bling in

spiteofthenon-concavity ofv.W em ay concludethat,provided r isnottoo

di®erentfrom ,́there isa rangeofincom esforwhich forbidding gambling

m akesconsum ersworse o® and thusforwhich there isa dem and forunfair

gambles. This rem ains true even for the exceptionalcases,(5),identī ed

above: an exam ination ofthe indi®erence curves from Figure 4 shows that

ifr > ;́allglobally optim alsolutionslie on both curveswhereas,ifr< ;́

there are incom e levels forwhich the no-gambling solution is sub-optim al.

W ehaveestablished thefollowing result.

T heorem 2 There is a ± > 0 such that,ifr 6= ´ and jr¡ ´j< ±;there is

range ofincom elevelsforwhich theno-gam bling solution issub-optim al.

C.Pure gambling

Inthissubsection,welookatthetwo-periodproblem sstudiedbyBaileyet

al.whocom pared theno-gambling solution with puregam bling i.e.without
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inter-tem poralsubstitution,and claim ed thattheform erwould bepreferred

(weakly ifr= )́.

W hen r= ,́we can carry outthe com parison in Figure2. Thebudget

line coincides with the optim alCv-indi®erence curve in the centralsquare

so thatthe pure-gambling solution isfound attheintersection oftheindif-

ference curve and the 45± line (point D in the ¯gure). Unless this curve

passesthrough (c;c)or(c;c),itliesbelow thev-indi®erence curve with the

sam e utility levelby Observation 1,in which case D is preferable to the

no-gam bling solution. Hence,unless incom e happens to satisfy (5),pure

gam bling isstrictly preferred to borrowing and saving11.

W hen r 6= ;́theresultsare ambiguous. In Figure 6 we havedrawn Cv-

and v-indi®erence curves forthe sam e utility levelas wellas two possible

budget lines passing through the pointD,where the Cv-indi®erence curve

crossesthe45± line.ForB1B1,puregam bling ispreferableto borrowing and

saving whereas,forB2B 2,the converse istrue. Indeed,as the budget line

through D rotates clockwise beginning at a low angle with the horizontal

axis,itstartsby crossingthecorrespondingv-indi®erencecurve.Then,after

reaching a criticalslope, where it is a tangent, it ceases to cross the v-

indi®erence curve. Thiscontinuesuntila second tangency pointisreached

afterwhich thev-indi®erence curveiscrossed again.Thism eansthatthere

willbe interestratesrD and rU (> rD )such that,ifrD < r< rL,then pure
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gambling ispreferred to borrowing and saving whereas,ifr< rD orr> rU ,

preferencesarereversed12.

III.M ore than tw o periods

The results ofthe previous section extend to m ore than two periods.

W hen incom eliesbetween cand cand theratesofinterestand tim eprefer-

ence are equalthere willstillbe a dem and forgam bles. In particular,the

no-gam bling solution ofCPT ,forT > 2,issuboptim alprovided incom edoes

notfallin a n̄ite setofexceptionalvalues. However,thissetgrowsexpo-

nentially larger asthe num berofperiods increases,forexceptionalincom e

levelscorrespond to a consum ption pattern equalto eithercorcin each of

the T periods. Thisleads to 2T ¡ 2 such incom e levels between c and c.

Furtherm ore,asT increases the exceptionalvalues¯llin the interval(c;c)

and the per-period value ofthe optim alno-gambling solution13 approaches

Cv. This accords with the intuition behind the analysis ofBailey et al.

Them oreperiodsareavailable,them oreclosely theconsum ercan replicate

the gam ble which m ovesherfrom v onto Cv using a feasible pattern ofde-

term inistic consum ption. Such a conclusion suggeststhatthe dem and for

gambleswilldisappearifthenumberofperiodsisallowed tobecom ein̄ nite.

Con¯rm ation ofthis suggestion m ay be found in a detailed analysis ofthe
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in̄ nitehorizon case carried outin Farrelland Hartley [6].

The conclusions ofthe previous section also extend to m ore than two

periods when the rates of interest and tim e preference di®er. Provided

this di®erence is not too great,the optim alsolution ofthe determ inistic

equivalentofCPT entails consum ption ata levelbetween c and c in som e

period fora rangeofincom es. Em ployingthestandard construction we¯nd

thatthe optim alsolution ofCPT requiresthe consum er to gam ble in that

period. Hence,there willbea range ofincom esforwhich the no-gambling

solution issub-optim aland adem and forgam bleswillpersistforT > 2. By

contrastwith the resultwhen interestand tim e preference ratesare equal,

thisdem and doesnotgo away asthe num berofperiodsapproachesin n̄ity.

Fora rangeofincom es,consum erswilldem and gambleseven ifthe number

ofperiodsisunlim ited.

IV .R epeated gam bling

Although a positive dem and for gambling is predicted for Friedm an-

Savage utility functions,when r 6= ´,expected utility-theory stillhas dif-

¯culty in explaining repeated gambling.Fora Friedm an-Savageutility func-

tion,gambleswillbedem anded in atm ostoneperiod in CPT both for n̄ite
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orin̄ nite T. For T = 2,the factthatthe budgetline hasslope ¡(1+ r)

whilstthe Cv-indi®erence curveshave slope ¡(1+ ´)in the centralsquare

m eans that the optim alsolution cannot lie in the centralsquare and this

rules outgambling in both periods. ForgeneralT,the resultfollows from

the¯rst-orderconditionsforthedeterm inisticequivalentofCPT :

(Cv)0(ct)= ¸

µ
1+ ´

1+ r

¶ t

(6)

fort= 1;2;:::;where ¸ isa m ultiplier. Ifr 6= ,́there can be atm ostone

value oftforwhich the righthand side of(6)isequalto theslopeofCv in

theinterval(c;c).Hence,c< ct < cforatm ostonetwhich,bythestandard

construction,leads to a dem and for gam bles in atm ost one period. Even

when r = ,́although there can be optim alsolutionsinvolving gam bling in

every period,theoptim alsolution isnotuniqueand therewilltypically (e.g.

foraFriedm an-Savageutility function)bealternativeoptim alsolutionsthat

entailgambling in atm ostoneperiod.

In contrastto thesetheoreticalresults,periodicgam blingbehaviorseem s

to bewidespread.Forexam ple,participantsin lottery gam estypically pur-

chase a sm allnum berofticketseach week ratherthan m aking a large pur-

chase in a single week. The inability ofthe m odelto accountfor repeated

gambling is a serious problem that can only be avoided by m odifying the

objective function orthe constraint(orboth). The latterinvolvesdropping
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the assum ption ofa perfectm arket for borrowing and saving and we now

show thatan interestrate wedgecan accountfora dem and forgam bling in

every period.

A.A modelwith an im perfectm arket

W esupposethatrB and rL(< rB )aretheborrowingandlendingrates,re-

spectively.Theconsum er'soptim ization problem with m arketfailure,which

weshallwrite CM FPT ,can then bewritten:

m ax E
TX

t= 1

v(Ct)
(1+ ´)t

subjectto W t+ 1 =

8
>>>>>>>>>><

>>>>>>>>>>:

(1+ rB )(W t+ y¤ + X t ¡ Ct)

ifW t+ y¤ + X t ¡ Ct · 0

(1+ rL )(W t + y¤ + X t¡ Ct)

ifW t+ y¤ + X t ¡ Ct > 0

fort= 1;:::;T

and W 1 = 0;W T+ 1 ¸ 0;

whereW t representsaccum ulated wealth (or,ifnegative,debt)atthebegin-

ning ofperiod t.

W e willapply the m ethod ofSection Iby r̄st noting that,since v is
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strictly increasing and rL < rB ,theequation forW t+ 1 can bereplaced with

W t+ 1 · (1+ rB )(W t + y¤ + X t¡ Ct),and

W t+ 1 · (1+ rL)(W t+ y¤ + X t¡ Ct),

withoutchanging the setofoptim alsolutionsofCM FPT .

Since the objective function can be regarded as a concave function of

(W 1;X 1;C1;:::;W T ;X T ;CT ;W T+ 1) and the inequality constraints are lin-

ear,wecan apply Jensen'sinequality14 and argueasbeforethatan optim al

solution ofCM FPT problem can be obtained by solving the determ inistic

equivalent:

m ax
TX

t=1

Cv(ct)

(1+ )́t

subjectto

8
>><

>>:

w t+1 · (1+ rB )(wt+ y¤ ¡ ct)

w t+1 · (1+ rL)(wt+ y¤ ¡ ct)

9
>>=

>>;
fort= 1;:::;T

and w1 = 0;wT+ 1 ¸ 0

followed by thestandard construction to obtain a solution to CM FPT.

Toillustratetheapplication ofthisresult,considerFigure7 in which we

have drawn a budgetlineB1B1 forCM FP2 which hasa kink atD where it

crosses the 45± line and a slope of¡ (1+ rB )below and ¡ (1+ rL) above

D.Then D istheoptim alsolution ofCM FP2 provided the slope ofthe Cv-

indi®erence curve liesbetween the slopesofthe two sectionsofthe budget
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line which requires rL · ´ · rB . W e have established,for T = 2, the

following theorem which isproved forgeneralT in theappendix.

T heorem 3 IfrL · ´ · rB and v(y¤) < Cv(y¤),then (y¤;:::;y¤) is an

optim alsolution ofthe deterministic equivalentofCM FPT and corresponds

to gam blingin every period.

IfrL > ´ [or´ > rB ],theoptim alsolution ofCM FP2,isthesam e asin

Section IIwith r= rL [orr= rB ].In thiscase(and forgeneralT)therewill

beatm ostoneperiod ofgam bling.

W e note that the solutions referred to in Theorem 3 predict gambling

or borrowing and saving butnotboth in each period.A m ore sophisticated

m odelisrequired toexplain both borrowingorsavingand gam blingin every,

oratleastm orethan one,period.

V .C onclusion

Ithasnotbeen ourintention in thisstudy todeny theexplanatory power

ofnon-expected utility theoriesofdecision-m aking orthatgambling m ay of-

ferdirectconsum ption value.Rather,wehaveexplored theextentto which

expected utility theory with non-concave utility functions can account for

gambling in an inter-tem poralsetting and havedem onstrated thatthethe-
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ory can explain a desireforgam bling even when capitalm arketsareperfect

and utility functions are separable. O ur argum ents have notexploited the

fact that intra-period preferences are the sam e for allperiods and we ex-

pect broadly sim ilar conclusions to hold form ore generalpreferences over

consum ption stream sprovided wem aintain inter-period separability.

However,when theratesofinterestand tim epreferencedi®er,itisopti-

m alto gam blein atm ostoneperiod. Even when theseratesareequal,con-

sum erswillprefertogam bleatm ostonce,weaklyiffairgam blesareavailable

and strictly ifonly unfairgamblescan be bought. One way to accountfor

repeated gam blingusingexpectedutilitytheoryistoinvokem arketfailureas

in theprecedingsection15.An alternativeapproach isto perm itinter-period

interactions. This could change the results substantially. For exam ple,if

preferencesin oneperiod arepositively related to previousconsum ption,as

in Beckerand M urphy'sm odelofrationaladdiction [2],repeated gambling

ispossible.Nevertheless,itwould seem unlikely thathabituation isthesole

explanation forrepeated gambling.An em piricalstudy oflotto participation

by Farrelletal.[7]¯ndsevidenceofhabit-form ation,butitsextentissm all

and appearsinadequate asa com plete m odelofrepeated purchase oflotto

tickets.
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A ppendix

ProofofTheorem 3

W ewillshow thattheproposed solution satis̄ estheKuhn-Tuckercondi-

tionswhich,given the concave objective function and linearconstraintsare

necessaryandsu± cientforoptim ality.W earethusassum ingdi®erentiability

ofv (and thereforeofCv).

W e can elim inate the constraintw1 = 0 in the determ inistic equivalent

ofCM FPT by substitution. W rite Át ¸ 0[Ãt ¸ 0]for the Kuhn-Tucker

m ultiplierassociated with theupper[lower]constrainthaving wt+ 1 on itsleft

hand side in the resulting problem and ' ¸ 0 forthe multiplierassociated

with w T+1 ¸ 0. The optim ality conditionsatthe proposed solution can be

written

[Cv]0(y¤)

(1+ ´)t
= (1+ rB )Át+ (1+ rL)Ãt fort= 1;:::;T;

Át¡ 1 + Ãt¡ 1 = (1+ rB )Át+ (1+ rL)Ãt fort= 2;:::;T;

ÁT + ÃT = ':

W e also have the requirem ent that any m ultiplier associated with a non-

binding constraint mustbe zero,but,atthe proposed solution w2 = ¢¢¢=

wT+ 1 = 0;so allconstraintsbind. Itisreadily verī ed thatthe optim ality
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conditionsaresatis̄ ed ifweset

Át =
(́ ¡ rL )[Cv]0(y¤)

(rB ¡ rL )(1+ )́t+ 1
¸ 0;

Ãt =
(rB ¡ )́[Cv]0(y¤)

(rB ¡ rL )(1+ )́t+ 1
¸ 0;

fort= 1;:::;T and ' = ÁT + ÃT .
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1However,itcan beshownthatifenough consum erswith identicalprefer-

encesdem and an unfairgam blethey willbeableto increasetheirindividual

expected utilitiesby betting with each other.

2W ealso assum ethateitherv isdē ned forallcorthereisa m inim um

acceptable consum ption level(which we¯x arbitrarily at0)atwhich v ap-

proaches¡ 1 :This assum ption,m ade forexpositionalconvenience,avoids

cornersolutionswhich com plicatebutdo notsubstantially m odify ourcon-

clusions.

3Forthestandard Friedm an-Savagefunction,thesetofcforwhich v(c)<

Cv(c) is a connected set. The results in the paper do not depend on this

property;theargum entextendsto thegeneralcase.

4Thisassum ptionavoids t̀hick'indi®erencecurvesin thesubsequentanal-

ysis.

5Itis naturalalso to require independence ofCt and X t+ 1;:::;X T but

doing so hasno e®ecton ourconclusions.
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6Form ally,thisisan application ofJensen'sinequality.

7Although thecurvesdrawn have a section bowed away from theorigin,

thisisnotnecessarily thecaseforallindi®erencecurves.M athem atica Note-

bookscontaining com pleteindi®erencem apsand otherdiagram s(including

thelocusL introduced below)based on specī cfunctionalform sareavailable

from theauthors.

8Although wehavedrawn L asa bounded,sym m etriccurve(plusthe45±

line)only thesym m etry isa universalproperty.Itisquite possibleforL to

vary widely in shapeand even beunbounded.

9However,not allpointson L are no-gam bling solutions. The 45± line

isalways part ofthe locus but,where the indi®erence curve isconcave to

theorigin asitcrossesthisline,thesecond orderconditionsarenotsatis̄ ed.

Evenpointswherethesecondorderconditionsaresatis̄ edm aybeonly local

m axim a.

10W e establish this and the following theorem using graphicalm ethods

assum ing a Friedm an-Savage utility function. The result can be general-

ized (with an extended set ofexceptionalvalues)to functions with several

non-concave segm entsand to m ore than two periods,using a m ore form al

argum ent,which weom it. Proofsareavailablefrom theauthorson request.

11Bailey etal.im plicitly assum ed (5)in theirargum ent.

12Ifr= rD orrU ;theconsum erisindi®erentbetween thealternatives.
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13I.e. the optim alno-gambling objective function divided by
P T

t= 1(1+

)́¡t.

14Convexity ofthefeasibleregion isessential.Ifthiswerefalse,wecould

use gambles to `̄ llin'indentations in the feasible set thereby potentially

increasing thevalueoftheobjectivefunction.

15See also the suggestion by Dowelland M cLaren[5]thatin theirm odel

an individualunable to borrow against future earningsm ay repeatedly ac-

cumulatesm allsum swith which to wager.
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