Can Expected U dlty Theory Exphnn
G am blng?

by Roger Hartley and Lisa Fanrell

W e Ihvestigate the ability of expected utility theory to account or simul-
taneocus gam blng and nsurance. Contrary to a previouschin thatborrow -
Ing and lending in perfect capialm arkets rules out a dem and for gam bles,
we show that expected utility theory w ith non-concave utility fiinctions can
still explain gambling. W hen the rates of hterest and tim e preference are
equal, agents will seck to gamble unless ncom e fAlls in a  nite set of ex-
ceptional values. W hen these rates d®er, there will be a range of incom es
for whith gambles are desired. In both cases repeated gambling is not ex-—
phhed but m arket in perfections such as di®erent borrow ng and Jending
rates can account for persistent gam bling provided the rates span the rate of

tim e preference.



Accounthg for gam bling presents a sgni cant challenge to theordes of
decision m aking under uncertanty, particulrly in a dynam i setting. If
expected utility theory is to be used to m odel decision-m aking under un-
certainty, the only way to explaln sinulaneocus gambling and hsurance is
to Introduce non-concave segm ents into the utility finction. This approach
was rst taken by Friedm an and Savage B] who used a utility fimction with
a sihgle convex segm ent accom panied by a justi cation of this shape. They
deam onstrated that a utility finction which hcluded a section w ith hcareasing
m argial utility could account for the existence of consum ers w ho purchase
both nsurance and othery tickets.

The explanatory pow er of the Friedm an-Savage approach was challenged
by Bailey, Olon and W onnacott [1] who argued that non-concave utility
functions could not, In princplk, explain gamblng. The intuition behind
thelr argum ent is simple. Consider the Friedm an-Savage utility function v
shown n Figure 1 together wih the comm on tangent to the curve at the
ponntscandc. W ewriteCv for the concave hullof v n which the graph ofv
isbrdged by the canm on tangentbetween cand ¢c. An agent atc can m ove
up from v (©) to Cv (c) by buyhg a fairgam blebetween cand c. W hen there
are two periods the agent has an altemative possibility : save by consum ing
¢ In the mhithAl period to ~nance consum ption of ¢ in the second, or borrow

to support consum ption of ¢ I the ™ rst period and ¢ in the sscond period.



W hen the rates of hterest and tin e preference are equal thisdoes just aswell
asgam bling. W hen they d®er, one of these altematives is strictly preferred
to gam bling.

Unfortunately, this argum ent encounters two dit aulties. First, the re
quired pattem of saving or borrow ng is only feasible if lhcom e is chosen
approprately. For exam ple, when the rates of hterest and tin e preference
are both zero, the am ount saved I the  rst period m ust equal the increase
In consum ption In the sscond period. T his requires that incom e be egqual to
(c+ ¢)=2. Forallother ncom e levels therew ill be gam bles strictly preferred
to the optim al pattem of saving and borrow ng. This conclusion contiues
to hold when the rates of nterest and tin e preference are equal and positire
although there are now two exceptional ncom e levels correspondng to sav-
ng or borrow ng. The second dit culty is that the m odel of Baiky et al
does not allow for the possibility that an agentm ay w ish to save or borrow
and gambl. Pem ittihg gambling as well as saving and borrow ing can re—
store a dem and for gambles even when pure saving or borrow ng is strictly
preferred to pure gamblng. This follow s from the doservation that optim al
saving and borrow Ing w thout gam bling w il typically Jead to a consum ption
level d®erent fran ¢ and ¢ In at Jeast one period. Tn any period m which
the consum ption les strictly between ¢ and ¢ total expected utility can be

hcreased by gam bling In that perdod as this shifts expected utility upwards



on to the comm on tangent. Hence a dan and or gam bles is restored.

T this paper, we extend the m odel of Baiky et al. by allbwing agents
to gan bl as well as save and borrow . W ith this extension, the analysis
show s that expected utility with non-concave utility functions can explin
the desire to gambl even w ith perfect capial m arkets and tim essparable
utility fimctions. A dan and for gambles w ill persist n our m odel when the
rates of nterest and tin e preference are equalunless hcan e happens to take
one of a nite set of exceptional values. W hen the rates d®er, there willbe
a range of lncom e Jevels forwhich there isa dem and for gam bles. H owever,
as n Bailey et al., repeated gam bling can not be explhined In the m odel
w ithout Invoking m arket &ilire.

D iscom fort w ith the notion of hcreashg m arghalutility ofm arket goods
hasled severalauthors to o®er a foundation rnon-concavitiesofthe Friedm an-
Savage type using indivisibilities In m arkets such as abor supply (D cbbsi])
and education (Ng[13]) or capital m arket inperfections Kin [11]). Jul
lien and Sabn#&[l0] show that a sampl of racetrack bettors exhibit local
risk aversion sim ilbr to that arising from Friedm an-Savage utility finctions,
withn the context of cumubtive progpect theory. These explnations and
obsarvations Im ply non-concave functions ofwealth but are vulnerable to the
idea that borrow Ing and saving can transform them nhto a concave function.

In direct regoonse to the Bailkey et al. critique, D owell and M cL.aren 5] show



how am odel n which wage rates crease w ith work experience can lead to
a Friedm an-Savage function of nonhum an wealth w ithout invoking m arket
n perfections.

The principal altemative explnation of gam bling is that it o®ers direct
consum ption value. It is usefiil to distinguish two form s of this assum ption.
Firstly, and m ost simply, the utility of non-m cnetary activities asociated
w ith gam blng such as attending a race m eeting or view Ing a bttery-related
television program when one has a stake in the outcan e, could be hcluded
directly In the calkultions. H istorically, this approach has consisted of little
more than Inform al comm ents, but m ore recently Sinon[l5] has used an
explicit dream ' function to m odel dem and for ottery tickets. Jchnson and
Shi P] have estim ated such a function for betting on horse races usng data
from bookm akers. These authors alo ponnt cut punters' behavior which is
hard to rationalize w ithout Invoking such a function.

Theother form of the assum ption m odi es expected utility theory by sup-
posing that the m oney values and probabilities .n any risky progoect have
direct value beyond that clided in the expression for expected utility. A
particularly elegant version was presented by Conlisk 3] who dem onstrated
that adding an arbitrarily an all function of the m oney values and proba-
bilities to an otherw ise concave utility function could explin risk preferring

behavior such as the purchase of bttery tickets. O ther non-expected utility



theoriesm ay explai features ofgam blng, such as the nature of the prizes in
lottery gam es, w hich are hard to justify ushg expected utility theory. (See
Quign [4])

However, these approaches are not without dir culties. It is unclear
whetherdream functions should be applied to all risky decision-m aking as in
Conlisk or only to, say, unfair gam blesw ith very Iong odds such asare ound
n ottery gam es as In Sim on. T he latter possibility leavesm any other form s
ofgam blhgunexplined. H owever, a universally applied dream function only
partially determ ines how the characteristics of the gam ble, such as the size
of prizes, probability of w hning, tin e at which uncertainty is resoled etc.,
could be explahed. W ithout a clear prescription of the nature of the fimc-
tion, it becan es a dix cult task to can pare the dem and or relhted gambles
such as one gam bl which is a m ean-preserving ricsk spread of another, or to
analyze the portfolio e®ects of activities such as byhg xed oddsand sporead
bets on the sam e sporting event. The °exbility In finctional form m eans
that, rather than explain gam blhg, it is all too easy to in pose cbsarved
behavior by suitable choie of a dream function. Furtherm ore, the dynam ic
consistency of such m odels is controversial [12] which m akes their app lication
In Inter-tem poralm odels problem atic.

The rest of the paper describes our extension of the m odel of Baiky et

al. and analyses its properties. In Section Iwe formulte the consum er's



optin zation problan when gambles are availabl and dem onstrate how this
problam m ay be solved In tem s of a related determ hnistic problen . This
construction allow s us to relate the nd®erencem aps when gam bling ispos-
sible and when it is excluded and these results are applied to an analysis of
tw operiod pradblam s In Section IT. Tn Section ITT, we outline results form ore
than two periods. In Section IV we show that the m odel cannot explain
repeated gam blng w ithout iIntroducing som em arket In perfection and nves-
tigate how d®erent borrow ing and Jending ratesm ay overcom e thisproblam .

O ur conclusions are stated n Section V.

I. Solving the m ulti-period problem

A . M ethodology

O ur approach is in three steps.

1. W e wrte down the m ultiperiod optin ization problem facihg a con-
sum er who can borrow and save in a perfect capital m arket and hasa
Separable utility function i which intra-period preferences are ref ected
n a non-concave utility finction. W e refer to the optin al solution of

this problem , when no gambles are avaibbl, as theno-gam bling so-



ution.

2. W e extend the previous cotin ization problem by allow hg consum ers
access to fairgam blesw ith any pattem ofpayo®s. This isourextension
of the m odel of Bailey et al. The solution to this problam is simply

referred to asoptim al.

3. W e ask whether the optin al ob Fctive values of the two problam s are

the sam e ie. is the no-gam bling solution cotin al?

A negative angver to the  nal question im plies a positive dem and or
fair gam bles and, by continuity, ©r som e unfair gambles. W hether this will
actually result n gam bling dependson the supply side of thegam bling m arket
whih isnotanalyzed here'. W e therefore interpret a negative answer to 3.
as support for the explanatory power of Friedm an-Savage or m ore general

non-concave von Neum ann-M orgenstem utility finctions.

B . The no-gam bling solution

Since we wish to dam onstrate that non-concave utility finctions can ex-

phnh gam bling even when utility functions are separable, wew ill folow Baiky



et al. In assum Ing a von Neum ann-M orgenstern utility function of the om

X v
Ulgiiiia) = l—ctt (1)
-1 @+ )
where ¢ s consumption I period t(= 1;:::;T) and ~ > 0. We assume

that vis strictly increasihg but not necessarily concave?. T Fiure 1, we
graph both v and its concave hull Cv for the classic Friedm an-Savage utility
function . The non-concavity of vm eans that there w ill be consum ption levels
csatisfylngvic) < Cvic) andwewrite (¢;c) forthe setofallauch consum ption
levels’ . For such a c¢; the consum er w ill prefer to the status quo a gam bk in
which the ex post wealth is either ¢ or ¢ and the probability of wihnihg is
chosen to m ake the gambl fair. lhdeed, there willbe unfair gam bles giving
an expected utility greater than v(c). It is also convenient to assum e that
forc< ¢ orc> ¢theconaum er is risk-averse: the Friedm an-Savage function
containsno lnear sections’ .

Assum Ing perfect capial m arkets with rate of hnterest r; the optimal
solution in the absence of gam bling is found by m axin izing U subject to

Xt o X 1

—  _— " _ 2
o 1+ )t Y . 1+ r)t @)

where V" is perm anent ncoan e.



C .Consum er's optim ization problan

W enow htroduce the possibility of gam bling by allow ing the consum er to

ncrease herwealh in period tby adding any random variable X . satisfying

tto depend on the outcom e of the gam bl X  and random events n previ-

ous periods. Thism akes consum ption I any period a random variable and

W e alo require the budget constraint (2) to be satis ed for every samplk
path. Thus, the consum er's optin ization problan for T periods, which we
abbreviate to CPT , becom es

X vey
L+ )F

=1

max B

X oo X oyex,

sub ¥ to = ; dEX, = = EX+=0
et 1+ )t o1 1+ nt an 1= e T

=1

w ith respect to the joint distrdbution of these randan variables.

D . Solng the consum er's problam

This problan can be solved by an indirect approach. Since the best

choice of gamble m oves the consum er from v to Cv, we start by solving a
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m odi cation of the no-gam blhg problan ofthe previous subsection n which
v In the dojective function isreplced by Cv. W henever the optin alsolution
ofthisproblm requires consum ption c between cand ¢ in a certain period, an
optin alsolution of CPT is found by choosing the gam ble required to obtain
expected utility Cv (¢) in that period. M ore form ally, we proceed as Dllow s.

Substituting Cv forv n CPT yieds an upper bound to the orighalprdo-
lem shce Cv | v. Furthem ore, the concavity of Cv and lhearity of the
constraint allow s us to replace the random variables w ith their expected val-
ues w tthout reduchg the vale of the cbjctive function®. This show s that
the follow Ing determ inistic problam , which we shall refer to as the deter-
m inistic equivalent of C PT,

X
max 2% Gt o @),
@+ ")r

=1

yieds an upper bound orC PT .

the optim al solution of the determ nistic equivalent and write L, for the

degenerate random variablew hich takes thevaluex with certanty. Foreach

Casel:vly)=Cvin):

Let®, = Iy and ® = T, .
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Case2:v({y) < Cvin):
Let}lpt take the value
b | ¢;with probability 1 ; % and
¢ b;with probability %;

where

1A:

! | &
In

ol
0

and et ®. = b+ P,:

Note that, in CaseZ,E}bt: 0 as required, and

Ev®) = %uvie)+ (L %)vi) = Cvi):

These results are alo rwvaly true 1 Case 1, =0 the constructed solution

lem on every samplk path. W e refer to this construction as the Standard
C onstruction and conclude that an optim al solution to CPT may ke db-
taneal by ~ rst solving the determ nistic equivalent and then usihg the stan-
dard construction to genemte a solution of CPT . Furthem ore, the optimal

objective values of CPT and its determ inistic equivalent are the sam e.

II. Two-period problem s

12



A . Ind®erence m aps

T this section we describe a graphical approach to problm s with two
periods. The starting point is the utility function for the problm w ih no

gam blng

via) v@)
U (@)= 1+ ,)+ Yk 3)

The argum ent 11 the previous section shows that C P? has the sam e optin al
ob pctive function value as its determ nistic equivalmt and solving the htter
nvolves substituting Cv for v in (3). Thus, br any reference Jevel of utility,
we can draw a corresponding pair of v-and Cv-ind®erence curves. In Figure
2,we diplhy a pair of nd®erence curves’ corregponding to the sam e utiliny
level, where v has the cshape shown n Figure 1. Ind®erence curve I, drawn
asa 0ld lne, is forv and I', drawn dashed w here it d®ers from I, is forCv.
W e note that md®erence curve ITdoesnot ~ 1l in' the ndentation n T°.

W ealo include (drawn dotted) thefourlinesg = candc. = cfort= 1;2.
These Ihes divide the positive quadrant of the plane into nine regions. T he
central square inchudes all consum ption vectors corresponding to gam bling
n both periods. T this region, Cv is Inear I both periods o that all Cv-

hd®erence curves have the sam e sbope: | (1+ 7) throughout the square. Tn

13



the ur comer regions there is no gam bling i either period and hd®erence
curvesofv and Cv for the sam e kevelofutility coincide. TheEast (¢ > C;c<
@ < ¢) and W est regions correspond to gambling only in the second period
and the N orth and South regions to gambling only In the ™ rst period. If I
passes through (c;0) wherec< ¢ < ¢, then v(c) < Cv(a) and there isa
section of T lying closer to the origh than (g ;¢). Sin ilar conclusions hold
ifc< @ < ¢cproving O bservation 1. Exospt in the ur comer regions,
hcluding their boundaries, a Cv-indi®erence curve lies strictly below (i.e. on
the origin side of) the v-ind®erence curve mrregoonding to the sam e utdlity
Bvel

W e have also mcluded n Figure 2 (marked with dots and dashes) the
iso-slope locus®, L, ofallponts (g ;c) orwhich v?(¢;) = vOc,) . L isalo
the set of points at which the slope of the v-indi®erence curvesis ; 1+ )
and therefore where the  rstorder conditions for m axin izing U subject to

the mter-tem poralbudget constraint:

a . _© e+ WY

A+ ) @+ )2 @+ ") @

’

aresatis ed. ThisgivesO bservation 2. Allno-gam bling solitdons for r=
e on L°.
Sincevhasa comm an tangentatcand ¢ (seeFgure 1), the iso-slope Iocus

m ust Include the ur vertices of the central square of F gure 2. O therw ise,
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the only part of L, which can enter the four comer regions is the 45" Ine. This
can be seen by exam ning the m argnal utility fimction v° for a Friedm an-
Savage v; w hich we have graphed In Figure 3 and In whith we have m arked
candc: If (q ;c,) isapontofL wherec, 6 o,; then vP(q ) and vY(c,) lieon
the sam e horizontal line. Since this is also true of vY(c) and v°{c), at m ost
one of g and ¢, can fall outside the interval (c;C).

Combnihg thisresulw ith O bservation 2 givesO bservation 3. If v") <

Cv (™), no-gambling solutbons for r = ~ cannot lie in the nterior of a cormer

region.

B . The optdm ality of no-gam bling solutions

Throughout this subsection, we assum e that v (") < Cv(y”). We rst
exam e thecase r = 7. Obsarvation 3 inplies that a tangency point
between the budget lhe (4) and a v-hd®erence curve cannot lie I the
Interdior of a comer region. O bsarvation 1 allow s us to conclude that, unless
the tangency poit happens to be a comer point of the central square, there
are ponts on the Cv-nd®erence curve w ith the sam e utility level which lie
cser to the origih than the tangency ponnt. Thus, the sam e utility Jevel
m ay be achieved In the interior of the budget set when gambling is allbwed
0 the no-gam bling solution is sub-cptin al.
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This is ustrated In Figure 2 where the no-gam bling solution is at the
Intersection of Tand L In the E ast region w hereas the set of tangency points
betw een the budget lne and the corregponding Cv-nd®erence curve isAB.

An exceptional case where the v-hdi®erence curve passes through the
poit (c;c) is shown In Figure 4. Here, A= (¢;c) is optin albut the sbpe of
both curves at A is; 1+ 7):The complte st of optim al solutions is the
Inhessgm ent A B . Hence there is an optin al no-gam blhng solution although
there are altermative optin al solutions which do nvole gam bling. These are
the only exceptions and occur only if one of these comers happens to lie on

the budget line whih requires that

vi= 1+ "Je+ =2+ ory' = [(I+ e+ TER+ 7): (5)

These results establish the next theoram .

Theorem 1 Ifc< V" < ¢and (5) does not hold, the no-gam bling solition

is sub-optin a1®.

Wenow tum to thecaser 6 ~ and start from the case r = ~ when
the tangency set between the budget Ine, which has sope ; 1+ 7); and the
optin alCv-nd®erence curve istheset ADB in Figure2. A sr ncreases above
decreases belbw ] 7, the budget Inhe rotates pntilclckw ise. The tangency

pontw ih the Cv-hd®erence curve alvays lies above the 45* Ine and m oves

16



away fram it. This s flustrated In Figure 5, where we have redrawn the
nd®erencecurves from Figure?2. For thebudget IneB; ; the optim alsolution
isA, and it is clear that the no-gambling solution is sub-optim al. The point
A, is optin al for the budget Ine B, : A, is also the no-gam bling solution but
only n a trivial sense: the optin al solution does not involre gam bling in
soite of the non-conaaviyy ofv. W em ay conclude that, provided r isnot too
d®erent from ~, there is a range of hoom es ©r which orbiddng gam blng
m akes consum ers worse o® and thus forwhich there is a dem and for unfair
gambles. This ran alns true even for the exasptional cases, (), denti ed
above: an exam nation of the md®erence curves from Figure 4 chows that
ifr > 7; allglobally optim al solutions lie on both curves whereas, ifr< 7;
there are ncom e Jevels for which the no-gambling solution is sub-optim al.

W e have established the follow g resul.

Theorem 2 Thereisa > 0 such that, ifr6 “and ; “j< *; there is

range of lnaom e evels for which the no-gam bling solution is sulb-optim al.

C . Pure gambling

Th this subsection, we ck at the two-period prablan s studied by Bailey et

al. who com pared the no-gambling solution w ith pure gam bling ie. w ithout
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Inter-tem poral substitution, and ckhin ed that the form er would be preferred
weakly ifr= 7).

When r= 7, we @an carry out the com parison In Figure 2. The budget
Iine coincides with the optin al Cv-indi®erence curve in the central square
o that the puregambling solution is found at the intersection of the Indif-
ference curve and the 45 lhe (ont D 1 the  gure). Unlss this curve
passes through (C;¢) or (¢;¢), it Hesbelow the v-ind®erence curve w ith the
sam e utility level by Obsarvation 1, n which case D is preferabl to the
no-gam blng solution. Hence, unless incom e happens to satisfyy (5), pure
gam bling s strictly preferred to borrow ng and saving™ .

W hen r 6 7; the results are ambiuous. Tn F Qure 6 we have drawn Cv-
and v-nd®erence curves for the sam e utility Jevel as well as two possble
budget Ines passing through the point D, where the Cv-indi®erence curve
crosses the 45° Ine. For BB, pure gam blng is preferable to borrow Ing and
saving whereas, for BB, the converse is true. Thdeed, as the budget line
through D rotates clockw ise begihnhg at a ow angle w ith the horizontal
axis, it starts by crossihg the corregpondng v-ind ®erence airve. Then, after
reachig a critical sbpe, where it is a tangent, it ceases to cross the v-
hd®erence curve. This continues until a seoond tangency point is reached
after which the v-ind®erence aurve is crossed again. This m eans that there
willbe nterest rates rp and 1y > 1p ) such that, ifrp < r< n,, then pure

18



gam blng is preferred to borrow Ing and saving whereas, ifr< rp orr> 1y,

preferences are reversed®? .

III.M ore than two periods

The results of the previbus section extend to more than two periods.
W hen ncan e lies between ¢ and ¢ and the rates of nterest and tin e prefer-
ence are equal there will still be a dem and for gambles. In particular, the
no-gam bling solution of CPT , orT > 2, is suboptin alprovided incom e does
not @Il In a nite st of exceptional values. H owever, this set grow s expo-
nentially larger as the num ber of periods ncreases, or exceptional ncom e
levels corregpond to a consum ption pattem equal to either ¢ or' ¢ m each of
the T periods. This leads to 27 ;| 2 such oam e Jevels between ¢ and c.
Furthem ore, as T hcreases the exoceptional values 11 In the interval (c;c)
and the perperivd valie of the optin al no-gambling solutin®® approaches
Cv. This accords with the Intuition behind the analysis of Baiky et al
Them ore periods are available, them ore cbsely the consum er can replicate
the gam ble which m oves her from v onto Cv using a feasble pattem of de-
term inistic consum ption. Such a conclusion suggests that the dem and for
gam bles w flldisappear if the num ber ofperiods isallow ed to becom e In nite.
Con m ation of this suggestion m ay be found i a detailed analysis of the
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n nite horizon case carried out in Farrelland Hartley 6].

The conclusions of the previbus section aloo extend to m ore than two
periods when the rates of hterest and tin e preference d®er. Provided
this df®erence is not too great, the optin al solution of the determ nistic
equivalent of C PT entails consum ption at a level between ¢ and ¢ b som e
period fora range of hcom es. Em pbyhg the standard construction we™ nd
that the optin al solution of C PT regquires the consum er to gam bk in that
period. Hence, there willbe a range of lncan es for which the no-gam bling
solution is sub-optin aland a dem and for gam bleswillpersist forT > 2. By
contrast w ith the result when nterest and tim e preference rates are equal,
this dan and doesnot go away as the num ber of periods approaches in nity.
For a range of lncom es, consum ersw ill dem and gambles even if the number

of periods is unlin ited.

IV . R epeated gam bling

Although a positive dem and for gambling is predicted for Friedm an-
Savage utility functions, when r 6 7, expected utility-theory still has dif-
Taulty I explanhing repeated gambling. For a Friedm an-Savage utility fime-

tin, gamblesw illbe dan anded 1 atm ost one period n CPT both for nite
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orin niteT. For T = 2, the fact that the budget Ine has sbpe ; (1 + 1)
whilst the Cv-nd®erence curves have slope ; (1 + “) I the central square
m eans that the gotim al solution cannot lie in the central square and this
rules out gambling in both periods. For general T, the result follows from

the ™ rst-order conditions for the determ histic equivalent of CP” :

U—l+ L Te

1+ r

Ccv)c) = 6)

fort= 1;2;:::where | isamultplier. Ifr 6 °, there can be at m ost one
value of t for which the right hand side of (6) is egqual to the slope of Cv in
the Interval (¢;c). Hence,c < ¢ < ¢ bratm ostone twhich, by the standard
construction, leads to a dem and for gam bles In at m ost one period. Even
when r = 7, although there can be optim al solutions involving gam bling in
every period, the gotim al solution isnotunigue and there will typially (eg.
for a Friedm an-Savage utility fuinction) be altemative optim al solutions that
entailgam bling in at m ost one period.

Th contrast to these theoretical results, perdodic gam blng behavior seem s
to be w idegpread. For exam ple, participants in ottery gam es typically pur-
chase a gn all num ber of tickets each week rather than m akihg a JArge pur-
chase In a shgle week. The mability of the m odel to account for repeated
gambling is a serious problan that can only be avoided by m odifying the

obctive finction or the consraint (or both). The atter nvolves dropping

21



the assum ption of a perfect m arket or borrow ng and saving and we now
chow that an nterest rate wedge can account for a dem and for gam blng in

every period.

A .A modelw ih an in perfect m arket

W esuppose thatry and 1, K 13 ) are theborrow ing and lendng rates, re-

soectively. The consum er's optin ization problan w ith m arket Bilure, which

we cshallwrite CM FPT , can then bewritten:

X vy
max E ETEE——
@+ ")t
=1 8
% L+ m)We+ V' + Xei Cy)
< ijt+yn+XtiCt' 0
subject to W=
g L+n)We+ v+ Xej Co)
FWe+ Vi+ Xej Ce> 0
fort= 1;:::;T
and Wi=0;Wrgs1, O

where W  represents accum ulbted wealth (or, ifnegative, debt) at thebeghn-
ning of period t.

W e will apply the m ethod of Section I by rst noting that, shce v is
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strictly mcreasihg and 1, < 1y , the equation forW «, 1 can be replhced w ith

Wer = QA+ m)We+ v+ Xei Cp), and

We1 + @Q+1m)Wet+ v+ Xej Co),

w ithout changing the set of optim al solitions of CM FPT .

Since the obfctive function can be regarded as a concave function of

ear, we can apply Jensen 's hequality™ and argue as bebre that an optin al

solition of CM FPT problan can be obtained by soing the determ inistic

equvalent:
X oy )
m ax —(1 L )t
gt 9
3

S Wy 0t m) et v o) 2
subEct to ort= 1;:::;T

Wer s+ @+ 1) @Wet ¥V @) i
and wi1=0;wrs1, O
blowed by the standard construction to cbhtahn a solution to CM FPT .

To illustrate the application of this result, consder Figure 7 n which we
have drawn a budget Ine B;B; or CM FP? whith has a kink at D where it
crosses the 45 lne and a sbpe of ;| (1+ 15 ) below and ; (1+ 1,) above
D.Then D is the optin al solution of CM F P? provided the slope of the Cv-

hd®erence curve lies betwemn the slopes of the two sections of the budget
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Ine whith requires 13, -+ ~ - 13 . W e have established, for T = 2, the

follbw Ing theoram which is proved for general T n the appendix.

Theorem 3 Ifn - =+ 1 and vly") < Cvy”), then %;:::;v°) isan
optim al solution of the determ nistc equivalent of CM FPT and aorresoonds

t© gam bling in every period.

fr > * [or > 1], the optinal solution of CM FP?, is the same as in
Section Twih r= 1, orr= 1 ]. In thiscase (and orgeneralT ) there will
be atm ost one period of gam blng.

W e note that the solutions referred to In Theoram 3 predict gam bling
or borrow Ing and saving hbut not both in each period. A m ore sophisticated
m odel is required to explan both borrow ing or saving and gam bling in every,

or at least m ore than one, perdiod.

V . C onclusion

Tt has not been our ntention in this study to deny the explanatory power
of non-expected utility theories of decision-m aking or that gambling m ay of-
fer direct consum ption valie. R ather, we have explorad the extent to which
expected utility theory with non-concave utility functions can account or

gamblng i an hter-tem poral settihg and have dem onstrated that the the-
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ory can explBnh a desire or gam blhg even when capialm arkets are perfect
and utility functions are separable. O ur argum ents have not exploited the
fact that intra-period preferences are the sam e for all periods and we ex-
pect broadly sim ilar conclusions to hold for m ore general preferences over
consum ption stream s provided wem ahtah nterperiod ssparability.
However, when the rates of Interest and tin e preference d®er, it is opti-
m alto gam ble in atm ostone period. Even when these rates are equal, con-
sum ersw illprefer to gam ble atm ost once, weakly if fair gam bles are avaibble
and strictly if only unfair gambles can be bought. One way to account for
repeated gam blng usihg expected utility theory is to nvokem arket failure as
in the precedng section'® . An altemative approach is to pem it hterperiod
Interactions. This could change the results substantially. For exam ple, if
preferences I one period are positively relhted to previous consum ption, as
n Becker and M urphy's m odel of rational addiction R], repeated gam bling
ispossble. Nevertheless, it would seam unlikely that habituation is the sole
explnation forrepeated gambling. An an pircal study of otto participation
by Farrell et al.[/] nds evidence of habi—form ation, but is extent is an all
and appears hadeguate as a com plete m odel of repeated purchase of otto

tickets.
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Appendix

Proof of Theoram 3

W ewillshow that the proposed solution satis es the K uhn-Tudker condi-
tions which, given the concave objective finction and lnear constraints are
necessary and sut cint oroptin ality. W e are thus assum ing d®erentiability
ofv (and therefore ofCv).

W e can elim hate the constraint w1 = 0 in the determ inistic equivalent
of CMFPT by substitution. Write A, , 0R, , 0] for the Kuln-Tudker
m ultiplier associated w ith the upper [low er] constraihthaving w1 on its keft
hand sde 1 the resulthng problan and ' | 0 for the multiplier associated

withwry1 . 0. The optim ality conditions at the proposed solution can be

written
CvP ) . -
m = @+ m)A+ @+ n)A fort= 1;:::;T;
Al +A.; = A+ m)A+ U+ )i fort= 2;::5T;
A+ A, =

W e aloo have the requiram ent that any m ultplier asociated w ith a non-
binding constraint must be zero, but, at the proposed solution wy = ¢¢¢=
wrs1 = 0; 20 all constraints bind. Ik is readily veri ed that the optin ality
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conditions are satis ed fwe set

- (i 1) EvIPE®)

t (o m)@+ )EL
5 = i DkevPy”)
A, = :

s i m)@+ !
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H owever, it can be show n that ifenough consum ersw ith dentical prefer—
ences dam and an unfair gam ble they w illbe abl to ncrease their mdiidual
expected utilities by betting w ith each other.

W e also assum e that either v is de ned for all ¢ or there isa m Inin um
acceptable consum ption level which we ™ x arbirarily at 0) atwhich v ap-
proaches ; 1 : This assum ption, m ade for expositional convenience, avoxs
comer solutions which com plicate but do not substantially m odify cur con-
clusions.

3For the standard Friedm an-Savage finction, the set of ¢ forwhich v(c) <
Cv(c) is a connected set. The results n the paper do not depend on this
property ; the argum ent extends to the general ;case.

“Thisassum ption avoids thick' hd®erence curves i the subsequentanal-

ysis.

doing 0 has no e®ect on our conclisions.
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®Fom ally, this is an application of Jensen's hequaliy.

A Tthough the curves drawn have a section bowed away from the orgh,
this is not necessarily the case for all hdi®erence curves. M athem atica Note-
bocks contaihing com plkte nd®erence m aps and other diagram s (hcluding
the baisL introduced below ) based an speci ¢ functional form sare avaibble
from the authors.

A though we have drawn L asa bounded, symm etric curve (lus the 45
lne) only the symm etry is a universal property. It is quite possible for L to
vary wdely In shape and even be unbounded.

Haowever, not all polnts on L are no-gam blhg solutions. The 45* lne
is alvays part of the cus but, where the nd®erence curve is concave to
the origin as it crosses this Ine, the second order conditions arenot satis ed.
Even pointswhere the second order conditions are satis edm ay beonly ocal
maxim a.

W e establish this and the Pllow ing theoram using graphicalm ethods
assum ing a Friedm an-Savage utility function. The result can be general-
ized W ih an extended set of exceptional values) to functions w ith several
non-aoncave segm ents and to m ore than two periods, ushg a m ore form al
argum ent, which we an it. Proofs are availabl from the authors on request.

HBailky et al. inplicitly assum ed (5) 1 their argum ent.

PIfr= 1 orn ;the consum er is nd®erent between the altematives.
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BIe. the optin alno-gambling objctive fimction divided by F L+
yit

¢ onvexity of the feasble region is essential. If thiswere false, we could
use gambls to T Il h' indentations n the fEasible set thersboy potentially
hcreasng the value of the objective function.

B see alo the suggestion by Dowell and M cLaren (] that i their m odel
an hdividual unabl to borrow aganst iture eamings m ay repeatedly ac-

cumulte sm all sum sw ith which to wager.
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