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1 Introduction

In contests, agents exert effort to increase their chance of winning a monetary prize, capturing a

patent, or defeating their enemies. The study of contests dates back to Loury (1979) and Tullock

(1980) and forms a large and active research area. Contests have been used to analyze R&D rivalry

(patent races), various types of rent-seeking behavior, financial institutions, market share compe-

tition, conflicts, and a number of other strategic interactions. For a long list of applications and

further references see Skaperdas (1996), Nti (1997), and Corchón (2007). For a recent contribution

to the literature see Kolmar and Wagener (2013).

Szidarovszky and Okuguchi (1997) prove the existence of a unique pure strategy Nash equilib-

rium in the standard case where one of the contenders always wins the prize. Exploiting methods

from the literature on aggregative games, Cornes and Hartley (2005) give a very simple proof of

the same result. Nti (1997) derives comparative statics results for symmetric contests, allowing for

the possibility that the agents win the prize with probability less than 1. This possibility has merit

since a contests where no agent necessarily wins is equivalent to a patent race (Loury (1979)).1

Acemoglu and Jensen (2013) provide comparative statics results that apply to asymmetric con-

tests and asymmetric patent races but their results, at least when taken at face value, require pay-

off functions to be differentiable which rules out situations where the contest success function

is not continuous at the origin. Just like Cornes and Hartley (2005), Acemoglu and Jensen (2013)

explicitly exploit the aggregative games structure of contests and patent races.2

The existing literature leaves open two question both of which are addressed in this paper.

• Firstly, does the existence and uniqueness result of Szidarovszky and Okuguchi (1997) and

Cornes and Hartley (2005) extend to situations where there is a positive probability that no

agent wins the prize. In particular, does this result extend to patent races in the spirit of

Loury (1979)?

• Secondly, can comparative statics results similar to those of Acemoglu and Jensen (2013) be

established when contest success functions are discontinuous at the origin?

The answer is in the affirmative in both cases: the comparative statics results in Acemoglu and

Jensen continue to hold when contest success functions are discontinuous; and the existence and

uniqueness of standard contests continues to hold when there is a positive probability that no

agent wins the prize (in particular, in patent races).

The structure of the paper is as follows: In Section 2 the model and basic assumptions are

introduced and discussed. Section 3 derives backward reply functions and proves existence and

uniqueness of equilibrium. Finally, Section 4 contains the comparative statics results.

1This relationship is further elaborated on in Section 2, see also Nti (1997).
2For a general discussion of aggregative games see Jensen (2010).
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2 Models of Contests and Patent Races

Consider a contest with I ∈N agents fighting for a prize. Agent i ∈I ’s payoff function is,

πi (si , s−i ) =Vi ·
hi (si )

R +
∑I

j=1 h j

�

s j

� − ci (si ) ,(1)

where si ∈ Si = [0, s̄i ] ⊆ R+denotes effort, ci : R+ → R+ is the agent’s cost function, and Vi > 0

his individual valuation of the prize.3 The functions h1, . . . , hI : R+ → R+ and the constant R ≥ 0

determine the contest success functions hi (si )
R+

∑I
j=1 h j (s j )

, i ∈ I , which map a given profile of efforts

s = (s1, . . . , sI ) into the agents’ winning probabilities.

Two classical references are Tullock (1980) and Loury (1979). Loury considers the case of a

symmetric patent race with hi (si ) = h (si ), h a concave and strictly increasing function, ci (si ) =
R si where R > 0 is the interest rate which also affects the agents’ probability of winning the race

(Loury (1979), p.399; see also the paragraph prior to Theorem 2 in this paper). Patent races may

be viewed as contests where a non-strategic agency (the house in gambling terminology) has a

certain probability of winning the prize. Indeed when R > 0, the probability that no contender

wins the prize is 1 −
∑

i hi (si )
R+

∑

i hi (si )
> 0 and this is then also the probability that the house wins. In

contrast, contests a la Tullock have R = 0 and ci (si ) = si . Tullock considers symmetric rent-seeking

games with hi (si ) = s k
i , k ∈ (0, 1], i = 1, 2. The more general specification of contests with risk-

neutral agents has again ci (si ) = si , but allows hi (si ) to be arbitrary concave and strictly increasing

functions.4 For an axiomatization of various contest success functions including that of Tullock

(1980) and the logit function of Hirshleifer (1989) returned to below, see Skaperdas (1996). Here

we allow for all of the previous cases and their asymmetric extensions as long as the following

standard assumption is satisfied:

Assumption 1 For all i ∈ I : hi : R+→ R+ and ci : R+→ R+ are twice continuously differentiable

and strictly increasing. Furthermore, zero effort implies zero likelihood of winning the prize, i.e.,

hi (0) = 0.

Note that under Assumption 1, payoffs are not well-defined when R = 0 and s = (0, . . . , 0). The

contest literature’s convention is to set the probability of winning the price equal to 1
I in this situ-

ation, and so define πi (0) = Vi
1
I − ci (0) when R = 0. If all agents j ∈I \{I } choose s j = 0, it is clear

from the fact that ci is continuous that it is not optimal for agent i to also choose si = 0. Hence

s = (0, . . . , 0) cannot be a Nash equilibrium under Assumption 1 when R = 0. In order to also rule

out the trivial equilibrium s = (0, . . . , 0)when R > 0, we impose the following boundary condition:5

3Note that strategy sets are assumed to be compact. This is for technical convenience. If one insists on having
Si = R+, compactness of strategy sets can instead be derived as a condition that must necessarily hold in equilibrium
by assuming, for example, that for all s−i ∈RI−1

+ , πi (·, s−i ) strictly decreases for si ≥ s̄i .
4Note that unit marginal costs ci (si ) = si results when agents are risk-neutral, win the prize with probabilities pi (s )≡

hi (si )
∑I

j=1 h j (s j )
, i ∈ I , and the status quo has value Ii . Indeed, an agent’s expected payoff is then pi (s )[Vi + Ii − si ] + (1−

pi (s ))[Ii − si ] = pi (s )Vi + Ii − si which is (1) with ci (si ) = si once the strategically irrelevant term Ii has been removed.
5Note that Assumption 2 is implied by Assumption 1 when R = 0 (specifically, from the fact that hi is strictly increas-

ing).
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Assumption 2 For all i ∈I , Vi h ′i (0)>R c ′i (0).

To see that s = (0, . . . , 0) cannot be an equilibrium when R > 0 and Assumption 2 holds, consider

the marginal payoff of agent i :

Dsi
πi (si , s−i ) =Vi h ′i (si ) ·

R +
∑I

j=1 h j

�

s j

�

−hi (si )
�

R +
∑I

j=1 h j

�

s j

�

�2 − c ′i (si ) .(2)

Thus Dsi
πi (0, . . . , 0) =Vi h ′i (0)

1
R −c ′i (0)which under Assumption 2 is strictly positive. Hence it is not

optimal for agent i to choose si = 0 when everyone else also chooses to exert zero effort.

The key assumption for our results imposes the curvature condition of Acemoglu and Jensen

(2013),

Assumption 3 For all i ∈I :
h ′′i (si )
h ′i (si )

≤
c ′′i (si )
c ′i (si )

for all si ∈ Si .(3)

Note that if ci is linear, Assumption 3 says that hi must be concave. If hi is linear, Assumption

3 requires ci to be convex. In the setting of Tullock (1980) mentioned above we have,

πi (si , s−i ) =V ·
s k

i
∑I

j=1 s k
j

− si ,(4)

Hence (3) holds since k ≤ 1. In logit contests,

πi (si , s−i ) =V ·
h (si )

∑I
j=1 h (s j )

− si ,(5)

(3) holds because h is concave. But in general, concavity of hi and convexity of ci are not necessary

for (3) to be satisfied. Hirshleifer (1989) proposes taking hi (si ) = e k si (k > 0) in the logit case which

defines a convex function hi . In this situation, (3) will be satisfied if, for example, ci (si ) = e l si where

l ≥ k .

3 Backward Replies, Existence and Uniqueness

The analysis in this paper is based on backward reply functions (Selten (1970), Novshek (1985),

Kukushkin (1994), Acemoglu and Jensen (2013)). For a strategy profile s , define the aggregate as

Q =
∑

i hi (si ). Given this definition, we may write the marginal payoff of agent i (see (2)) as a

function of Q and the agent’s own strategy si :

Ψi (si ,Q )≡Vi h ′i (si ) ·
R +Q −hi (si )

(R +Q )2
− c ′i (si ) ,(6)

When the payoff function is pseudo-concave in si , it is clear that si is an interior optimizer for

agent i if and only if Ψi (si ,Q ) = 0 and Q =
∑

j h j (s j ). We may, however, also think of Q ∈ R as an
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independent variable and given Q look for solutions to Ψi (si ,Q ) = 0. Any such solution is called a

backward reply.

Consider now the following definition from Acemoglu and Jensen (2013):

Definition 1 (Uniform Local Solvability) Agent i ∈ I satisfies the uniform local solvability con-

dition if Ψi (si ,Q ) = 0⇒Dsi
Ψi (si ,Q )< 0 for all si ∈ Si , and Q > 0.

As shown under slightly more general conditions in Acemoglu and Jensen (2013), the payoff

functions in (1) satisfy the uniform local solvability condition when Assumption 3 holds. To see

why, calculate,

Dsi
Ψi (si ,Q ) =Vi h ′′i (si ) ·

R +Q −hi (si )

(R +Q )2
− c ′′i (si )−Vi

(h ′i (si ))2

(R +Q )2
.

When Ψi (si ,Q ) = 0, this derivative reduces to,

Dsi
Ψi =

h ′′i (si )
h ′i (si )

c ′i (si )− c ′′i (si )−Vi ·
(h ′i (si ))2

(R +Q )2
.

Dividing both sides by c ′i (si )> 0, we immediately see Dsi
Ψi < 0 when Assumption 3 holds.

That Dsi
Ψi (si ,Q )< 0 for all si and Q implies that when we fix Q , the function Ψi (si ,Q ) is strictly

decreasing in si at any zero, i.e., at any si with Ψi (si ,Q ) = 0. Since it is also continuous, it follows

that there exists at most one backward reply for any given Q > 0. We may therefore define the

backward reply function,

si = bi (Q )⇔Ψi (si ,Q ) = 0.(7)

Given the individual backward reply functions (bi )i∈I we can then define the aggregate back-

ward reply function:

z (Q ) =
∑

i

hi (bi (Q )).(8)

Note that z will be continuous when Q > 0 (this follow from the implicit function theorem).

Note also that the current treatment ignores both the problems related to possible boundary so-

lutions and the question of whether in fact z is well-defined on an appropriate domain. Both are

serious concerns. But both are treated in detail in Acemoglu and Jensen (2013), in particular it

is shown there that we do not need to worry about boundary solutions under the uniform local

solvability condition.

Definition 2 An equilibrium aggregate is a fixed point of the aggregate backward reply function,

i.e., a Q ∗ ≥ 0 such that

z (Q ∗) =Q ∗.

IfQ ∗ is an equilibrium aggregate, then (bi (Q ∗))i∈I is a Nash equilibrium for the original game. Con-

versely, if (s ∗i )i∈I is a Nash equilibrium, then
∑

i hi (s ∗i ) is an equilibrium aggregate. Thus there is a

one-to-one correspondence between equilibrium aggregates and Nash equilibria of the contest.
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Lemma 1 Let Assumptions 1-3 be satisfied. Then there exist QH >QL > 0 such that

z (Q )>Q for all Q ∈ (0,QL ) and z (Q )<Q for all Q >QH .

Proof. The existence of QH follows immediately from the compactness of the strategy sets. Also,

when R > 0 the existence of QL follows immediately from the fact that z (0) is well defined, z is

continuous continuous, and bi (0)> 0 for all i by Assumption 2. In the following we therefore only

need to establish the existence of QL in the case where R = 0.

Consider Q > 0 and let s̃i =
hi (si )

Q . Since hi is strictly increasing by Assumption 1, we may define

b̃i by,

s̃i = b̃i (Q )⇔Vi
Q (1− s̃i )

Q 2
−

c ′i (h
−1
i (Q s̃i ))

h ′i (h
−1
i (Q s̃i ))

= 0 .(9)

If there exists QL > 0 such that b̃i (Q ) ≥ 1 for all Q <QL we are clearly done since then z (Q ) =
∑

i hi (bi (Q )) ≥ I Q > Q whenever Q > 0. So consider from now on the case where this is not so.

There will then exist a sequence (Q n ) with Q n ↓ 0 so that for all n , b̃i (Q n ) < 1. Consider a con-

vergent subsequence limm→∞ b̃i (Q nm ) = ŝi . Evidently ŝi ≤ 1. Under Assumptions 1-3,
c ′i (h

−1
i (z ))

h ′i (h
−1
i (z ))

is

increasing in z and therefore limz↓0
c ′i (h

−1
i (Q s̃i ))

h ′i (h
−1
i (Q s̃i ))

< +∞. Hence we must have ŝi = 1 in order for (9)

not to be violates for some m . So in fact b̃i (Q nm ) ↑ 1. Since this applies to the limit point of any

convergent subsequence, we have b̃i (Q ) ↑ 1 as Q ↓ 0 (in particular, b̃i (·) is continuous from above

when we set b̃i (0) = 1). Hence for any ε > 0 we can find a QL so that Q < QL ⇒ b̃i (Q ) ≥ 1− ε.

Equivalently hi (bi (Q ))≥Q −εQ and so z (Q ) =
∑

i hi (bi (Q ))≥ I Q −εI Q = (I −ε)Q >Q .

Theorem 1 Let Assumptions 1-3 be satisfied. Then there exists a unique pure strategy Nash equi-

librium s ∗ = (s ∗1 , . . . , s ∗I ), and this equilibrium is non-trivial, i.e., s ∗ 6= (0, . . . , 0).

Proof. Existence follows from Lemma 1 and the mean value theorem. That s ∗ 6= (0, . . . , 0) whether

the equilibrium s ∗ is unique or not was established in-text in the paragraphs before and after equa-

tion (2). To prove uniqueness, we exploit the share function of Cornes and Hartley (2005). Let

s̃i =
hi (si )

Q , substitute into (6) and set equal to zero:

Vi ·
R +Q −Q s̃i

(R +Q )2
−

c ′i
�

h−1
i (Q s̃i )

�

h ′i (h
−1
i (Q s̃i ))

= 0(10)

Write s̃i = b̃i (Q ) if and only if the previous equation is satisfied. Our objective is to show for all

i , b̃i is non-increasing in Q in the neighborhood of any equilibrium aggregate Q =Q ∗, while for

at least one i , b̃i must in be strictly decreasing in Q at Q ∗. Since it then follows that
∑

j b̃ j (Q ) is

strictly decreasing at any equilibrium aggregate Q ∗, i.e., when
∑

j b̃ j (Q ∗) = 1, there can be at most

one equilibrium aggregate. Equivalently, there is at most one Q ∗ such that z (Q ∗) =
∑

j bi (Q ∗) =
Q ∗. Since Q ∗ uniquely determines the equilibrium efforts s ∗i = bi (Q ∗), i = 1, . . . , I , this implies the

conclusion of the Theorem.
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That b̃i is non-increasing implies that if Q and s̃i satisfy (10), then we cannot increase Q and

weakly increase s̃i and still satisfy (10). To see that this is indeed true, note first that
c ′i (h−1

i (Q s̃i ))
h ′i (h

−1
i (Q s̃i ))

is

non-decreasing in Q s̃i under Assumption 3 and therefore weakly increases when Q and/or s̃i are

increased. Next consider
R +Q −Q s̃i

(R +Q )2
=

R +Q (1− s̃i )

(R +Q )2
(11)

Clearly, this term is strictly decreasing in s̃i (here and below we need only consider s̃i ≤ 1 and

Q > 0 where the latter is because Q = 0 cannot be an equilibrium aggregate). To see that (11) is

non-increasing in Q under the condition of the Theorem differentiate w.r.t. Q :

(1− s̃i )(R +Q )2−2(R +Q )(R +Q (1− s̃i ))
(R +Q )4

So (11) is non-increasing in Q if and only if:

(1− s̃i )(R +Q )2−2(R +Q )(R +Q (1− s̃i ))≤ 0⇔ (1− s̃i )(R +Q )−2(R +Q (1− s̃i ))≤ 0⇔

(1− s̃i )(R −Q )−2R ≤ 0

This inequality clearly holds if R = 0. If R > 0 there are two cases. Either Q ≥ R , in which case

(1− s̃i )(R −Q )− 2R ≤ −2R < 0. If Q < R , (1− s̃i )(R −Q )− 2R < (R −Q )− 2R = −R −Q < 0. So in all

cases, b̃i (Q ) is non-increasing when Q is an equilibrium aggregate. In fact, since for at least one

agent we must have s̃i < 1 in equilibrium, the previous inequalities must be strict for at least one

agent i which implies that b̃i is strictly decreasing for that agent. This finishes the proof.

As discussed in the Introduction, Szidarovszky and Okuguchi (1997) and Cornes and Hartley

(2005) establish all of the conclusion of Theorem 1 in the case where R = 0. The proof of unique-

ness in Theorem 1 follows the basic strategy of Cornes and Hartley (2005) in using share functions

which are very effective in dealing with uniqueness issues in aggregative games.

4 Comparative Statics

Contests and patent races are neither games of strategic complements or strategic substitutes.

They are, however, aggregative which provides enough structure to develop robust comparative

statics results.6 The most general results available in the literature for the class of games consid-

ered in this paper are due to Nti (1997) and Acemoglu and Jensen (2013). Nti’s results apply to sym-

metric equilibria in symmetric games (in particular, agents must be identical) where ci (si ) = si for

all i . Acemoglu and Jensen (2013) provide results for asymmetric contests and rent seeking games,

but their setting requires payoff functions to be everywhere differentiable. As discussed in Section

2, this is violated when R = 0 at the point s = (0, . . . , 0). The Theorem that follows next can be

viewed as an improved version of Proposition 3 in Acemoglu and Jensen (2013) which allow for

the discontinuous payoffs of many contests. The critical “fix” is in this connection Lemma 1.

6For the state-of-the-art in games that are not aggregative and also do not exhibit strategic complements see Roy
and Sabarwal (2010) and Monaco and Sabarwal (2015).
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Definition 3 There is a positive shock to agent i ∈I , if the agent’s payoff functionπi (s ) =Vi
hi (si )

R+
∑

j h j (s j )
−

ci (si ) changes to π̃i (s ) = Ṽi
h̃i (si )

R̃+
∑

j h̃ j (s j )
− c̃i (si )where Dsi

π̃i (s )≥Dsi
πi (s ) for all s ∈ S.

A simple example of a positive shock to agent i is an increase in his valuation of the price from

Vi to Ṽi . Indeed, one clearly has

Ṽi

∂ hi (si )
R+

∑

j h j (s j )

∂ si
− c ′i (si )≥Vi

∂ hi (si )
R+

∑

j h j (s j )

∂ si
− c ′i (si )

If ci is replaced with c̃i where c̃ ′i (si )≤ c ′i (si ), i.e., if the agent experiences a pointwise decrease

in marginal costs, then this is also a positive shock to agent i . A decrease in R will be a positive

shock for all agents i ∈ I both when the cost function is held fixed and when R enters the costs

function as in Loury (1979), ci (si ) = R si .7 It is also possible to consider changes in the functions

hi but the issue will not be pursued here.

Theorem 2 Consider a contest with payoff functions (1) and suppose that Assumptions 1-3 are sat-

isfied. Then:

1. The equilibrium aggregate is increasing in any positive shock to one or more of the agents (e.g.,

a decrease in R , an increase in Vi for one or more agents, or a pointwise decrease in marginal

costs c ′i (si ) for one of more agents).

2. Entry of an additional agent increases the equilibrium aggregate.

3. If at the corresponding equilibrium s ∗ with aggregate Q ∗ =
∑

i hi (s ∗i ), agent i is an absolute

favorite to win in the sense that,

hi

�

s ∗i
�

�

R +
∑

i hi (s ∗i )
� ≥

1

2
,(12)

then agent i ’s equilibrium effort increases in any of the situations of 1 and 2. Conversely, if,

hi

�

s ∗i
�

�

R +
∑

i hi (s ∗i )
� <

1

2
,(13)

then the changes in parts 1 and 2 decrease agent i ’s effort provided that the shock does not

affect this agent directly (e.g., corresponding to a decrease in another agent’s marginal costs,

or entry of an additional agent).

Proof. Taking Lemma 1 into account, both 1 and 2 are direct consequences of the results in Ace-

moglu and Jensen (2013) because we may restrict Q to an interval [QL − ε,QH + ε], ε > 0 and

QL − ε > 0 where the discontinuity at the origin is irrelevant. The proofs will not be reproduced

7Note that the payoff of an agent in Loury is in fact V
R

hi (si )
R+

∑

j h j (s j )
− si (see equation (7) on page 399 of Loury (1979)).

Multiplying with R — which does not alter the optimal decision — leads to the functional form considered here.
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here. 3. Consider first the case where the shock does not affect agent i . We already know that Q

increases in equilibrium. Applying the implicit function theorem toΨi (si ,Q ) = 0 at an equilibrium,

we get that d si
dQ =−

DQΨi (s ∗i ,Q ∗)
Dsi
Ψi (s ∗i ,Q ∗) . Since Dsi

Ψi (s ∗i ,Q ∗)< 0 by the uniform local solvability condition and

Q is increasing in the positive shock, the first claim follows immediately when DQΨi (s ∗i ,Q ∗) ≥ 0.

Since,

DQΨi (si ,Q )≡Vi h ′i (si ) · [−(R +Q )−2+2hi (si )(R +Q )−3](14)

It is seen that DQΨi ≥ 0 if and only if:

2hi (si )(R +Q )−3 ≥ (R +Q )−2⇔ hi (si )≥
1

2
(R +Q )

which in turn is equivalent to the condition of the theorem.

When DQΨi < 0, the increase in Q ∗will lead to a decrease in agent i ’s strategy by the exact same

argument.

If the shock affects agent i , it will in the first of the two cases lead to a further increase in si and

so the conclusion that si increases remains the same. In the second case, this is not so and it is

therefore necessary to assume that the shock does not affect agent i directly.

Note that when R = 0, condition (12) simply says that the agent will win the contest with at least

50 % probability. In the two-agent setting, Dixit (1987) refers to such a agent as a favorite. When

R > 0, the interpretation remains the same in two-agent contests with a house that wins with prob-

ability R
R+

∑

i hi (s ∗i )
. With more than two agents, (12) says that the agent must be the favorite to win

when pitched again everyone else including the house. This is what is meant by the term abso-

lute favorite. So what 3 of Theorem 2 tells us is that an absolute favorite will actively defend her

position by increasing her effort given any change in the game that leads to an overall increase in

effort (and hence would lead to a decrease in her probability of winning if her effort remained the

same). In particular, she increases her effort if another agent enters the game or another agent

experiences a decrease in marginal costs, or another agent’s valuation of the prize increases. Con-

versely, a agent who is not more likely to win than everybody else combined is “cowed” and lowers

her effort and probability of winning the prize when, for example, another agent’s marginal costs

decrease or another agent’s valuation of the prize increases.

5 Conclusion

This paper contributes to the literature on contests by establishing existence, uniqueness, and

comparative statics results for asymmetric contests and patent races. The results exploit the fact

that contests are aggregative games, and mathematically the proofs follow closely Cornes and

Hartley (2005) and Acemoglu and Jensen (2013).

Acemoglu and Jensen (2013) establish comparative statics results for aggregative games that

either exhibit strategic substitutes or satisfy a local solvability condition (see Definitions 7-8 in Ace-

moglu and Jensen (2013)). Contests are not games of strategic substitutes but they do satisfy the
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uniform local solvability condition (Definition 1 in the current paper or Definition 8 in Acemoglu

and Jensen (2013)). While Acemoglu and Jensen assume that payoff functions are differentiable,

the current results allow contest success functions to be discontinuous at the origin. As is clear

from this paper’s proofs, however, the extension is straight-forward. There is no doubt that one

can similarly extend Acemoglu and Jensen (2013) to other situations where payoff functions are

not everywhere differentiable (such as Cournot oligopolies with discontinuities at the origin, see

von Mouche and Quartieri (2012)). One could also use the weaker version of the local solvability

condition in Section 4.1.1 of Acemoglu and Jensen (2013) to derive comparative statics results for

contests under weaker conditions than the curvature condition imposed here (Assumption 3). In

particular, one can dispense with any differentiability conditions.

As for the existence and uniqueness results, the current paper’s extension of Cornes and Hart-

ley (2005) is again fairly straight-forward. Further extensions of the uniqueness part are likely to

meet with limited success however. In fact, it is doubtful whether one can even establish unique-

ness under reasonable conditions when contests are defined with general aggregators as in Ace-

moglu and Jensen (2013), Section 5.2.
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