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Abstract 

The method of instrumental variables (IV) and the generalized method of moments 

(GMM), and their applications to the estimation of errors-in-variables and simultaneous 

equations models in econometrics, require data on a sufficient number of instrumental variables 

that are both exogenous and relevant. We argue that, in general, such instruments (weak or 

strong) cannot exist.     
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1. Introduction    

Researchers are becoming increasingly aware that there are often serious problems with 

the use of instrumental-variable based techniques -- both instrumental variable (IV) estimation 

and versions of generalized methods of moments (GMM) that use instrumental variables 

(Murray, 2006). A valid instrument must be uncorrelated with the errors in an equation -- that is, 

it must be exogeneous -- and correlated with the explanatory variable -- that is, it must be 

relevant (Staiger and Stock, 1997; Murray, 2006; Greene, 2008, p. 316; Westoff, 2013, pp. 603-
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05). In this connection, Pratt and Schlaifer (1988) pointed out that, without knowing what the 

errors represent, it is not possible to decide whether the exogeneity condition is correct. They 

also noted that the condition is “meaningless” if the errors are included in an equation to 

represent the net effect (on the dependent variable) of variables excluded from the equation
1
. 

This paper may be seen as an extension of the argument made by Pratt and Schlaifer (1988) to 

the general case of IV estimators and, in particular, to explain why much IV estimation is 

plagued by either irrelevant instruments or instruments which fail the exogeneity condition. As 

pointed out by Murray (2006, p. 114), an instrument can be so weakly correlated with the 

troublesome variable that the instrument has little relevance
2
.  

In this paper we argue that the difficulties associated with instruments should not be 

surprising. Specifically, we show that valid instruments cannot exist in the presence of any 

model mis-specification. Such mis-specification can arise -- indeed, is very likely to arise -- from 

a variety of influences, including omitted variables, measurement errors, and incorrect functional 

forms. To generate cases in which instruments could exist, the model being estimated would 

have to be correctly specified; any error component of such a model would have to be a white 

noise process that it is independent of the instruments. 

As Pratt and Schlaifer (1988) make clear, our interpretation of the residual in an equation 

is crucial here. There are two possible extreme interpretations. One interpretation is embedded in 

the classical regression model, which includes a residual that is simply assumed to be a white 

noise error process with a given distribution. The alternative view is that the residual is generated 

by all the misspecification in the model; a perfectly specified model would have no residual. We 
                                                      
1
 Pratt and Schlaifer (1988) go on to state that the exogeneity condition may be satisfied for certain ‘sufficient sets’ 

of excluded variables. However, the point we make here is that it cannot hold for the excluded variables (in the Pratt 

and Schlaifer sense -- meaning that, in principle, there are variables that should be in the equation, but are omitted; 

these are the excluded variables referred to by Pratt and Schlaifer). 
2
 Additionally, it is extremely difficult to verify if an instrument is uncorrelated with the error term in the equation 

being estimated. For a discussion, see Kennedy (2008, pp. 144-45). 
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would argue that the second interpretation is always more relevant in practice and it is this 

interpretation which gives rise to the problem with instrumental variables outlined below. 

We would also stress that we are certainly not arguing that, in light of the problems 

associated with IV estimation, for a return to standard OLS, with its well-known problems. We 

simply show that instrumental variables do not adequately deal with these problems. There is 

also a reasonably large literature on conducting inference in IV regressions with poor 

instruments; this literature includes, Cheng and Liao (2013), Conley, Hansen and Rossi (2012), 

Di Traglia (2014) and Guggenberger (2012). However, this is often assuming that at least IV 

yields consistent estimates. We argue that this is not the case and, in general, IV is not a 

consistent estimator so the accuracy of the inference made is highly questionalble. 

The remainder of this paper consists of three sections. Section 2 presents a general 

representation of model mis-specifications. We show why errors in an equation can arise. If a 

real-world relationship were completely known, there would be no role for a substantial error 

term. However, incomplete knowledge of real-world relationships is a basic component of 

estimated relationships. We show how correctly specified models involve time-varying 

coefficients (TVCs), for which instruments cannot exist because, under a TVC set-up, the error 

terms contain the explanatory variables. Section 3 provides a simple example that illustrates our 

argument. Section 4 concludes.   

 

 

2. A General Representation of Correct Model Specification  
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In general, economic theory suggests relationships between variables, but it does not 

usually give clear guidance as to the correct functional form or the complete set of variables that 

are relevant. For example, consider an economic variable, denoted by *

ty , and its complete set of 

determinants, denoted by 
*

jtx , j = 1, …, tL . Here the total number tL  of determinants may be 

time dependent and is definitely unknown. Typically, data on *

ty  and on a subset K - 1 of the tL  

determinants are available. The remaining tL  - K + 1 determinants are omitted from the model 

either because they are unobserved or for some other reason. Moreover, these data may contain 

measurement errors. Let ty  = *

ty  + 0tv  and 
jtx  = 

*

jtx  + 
jtv , j = 1, …, K – 1, where the variables 

without an asterisk are observable, the variables with an asterisk are unobservable true values , 

and v s are measurement errors. The theoretical relationship is 

          
* * *

1( ,..., )
tt t t L ty f x x      (t = 1, …, T)                                                                                      (1) 

with unknown functional form,  no knowledge of some of the arguments of 
* *

1( ,..., )
tt t L tf x x , and 

with no need for an error term. In other words, we do not have any omitted determinant of *

ty  in 

equation (1). Equation (1) is a mathematical equation. To distinguish it from a regression 

equation, we do not call 
* *

1 ,...,
tt L tx x  the regressors or explanatory variables but call them the 

determinants of 
*

ty  or “the arguments” of the function 
* *

1( ,..., )
tt t L tf x x . We call the arguments 

* *

1 1,,...,t K tx x   the included determinants and the arguments 
* *,...,

tKt L tx x  omitted determinants, since data 

on the latter arguments are not available.  

Our objective is to obtain a consistent estimate of the partial derivatives of y
*
 with respect to x

*
j, 

j=1…K-1 at each point in time. 

Without mis-specifying the relationship in (1), we can write  
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1

* * *

0

1

tLK

t t jt jt gt gt

j g K

y x x  


 

                                                                                                (2) 

where for = j or g, 
t  = 

*

*

t

t

y

x




 and 

0t  = 
* *

1

tL

t t ty x


 ,  the time profiles of the 
t ’s  

coefficients are determined by the correct functional form of model (1). Since the correct 

functional form is unknown, these time profiles are also unknown.
3
 Allowing the coefficients of 

equation (2) to vary freely defines an infinite class of functional forms, which surely 

encompasses the correct (but unknown) functional form of (2) as a special case. A main benefit 

of model (2) is the certainty that the infinite class of functional forms will encompass the correct 

functional form. Thus, the unknown functional form problem is solved. 

We warn that if spline-, cubic-spline-, P-spline-, or any other-type restrictions are 

imposed on the functional form of model (1), then it can have an incorrect functional form; for 

examples of spline- and cubic-spline-type restrictions, see Greene (2008, p. 111) and Judge, 

Griffiths, Hill, Lutkepohl and Lee (1985, p. 803). A main benefit of model (2) is the certainty 

that the infinite class of functional forms will encompass the correct functional form. This 

notion, that a time varying coefficient model can exactly represent an unknown nonlinear 

functional form was first proved by Swamy and Mehta (1975) and subsequently confirmed by 

Granger (2008) 

Clearly, the explanatory variables of (2) can be correlated with each other, leading to the 

well-known problem of multicollinearity. In particular, the K – 1 observable determinants (the 

*

jtx ’s) in equation (2) can be correlated with the tL  - K + 1 omitted determinants (the 
*

gtx ’s). To 

assume otherwise would, in the words of Pratt and Schlaifer (1988), be a “meaningless” 

                                                      
3
 It is possible to represent any functional form exactly by a time varying parameter model. We refer to this 

representation as the Swamy theorem, see Swamy and Mehta (1985). Granger (2008) provided confirmation of this 

theorem, although he attributed the proof to Halbert White. 
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assumption. The mathematical relationship between each omitted determinant and the observed 

determinants are considered  

          

1
* *

0

1

K

gt gt jgt jt

j

x x 




            (g = K, …, tL )                                                                          (3) 

where 
0gt  is a portion of 

*

gtx  remaining after the effects of the 
*

jtx ’s have been removed from 

*

gtx . Since we do not have data on the tL  - K + 1 
*

gtx  variables, we can eliminate them from 

equation (2) by substituting equation (3) into (2), which gives  

          
1

* *

0 0

1

( )
t tL LK

t t gt gt jt gt jgt jt

g K j g K

y x     


  

                                                                          (4)  

Note that equation (4) shows *

ty  as a function of K – 1 included determinants and the 

remainders of the excluded variables -- i.e., what remains after subtracting the effects on the 

excluded variables of the K – 1 observable determinants. Equation (4) accounts for both the 

unknown functional form (since it is derived from equation (2)) and the full set of (time-varying) 

determinants of *

ty  in (1). Thus, (4) solves both the unknown functional form and omitted 

determinants problems.. It does not, however, account for measurement errors. In this 

connection, consider model (4) again. It is not in a form that can be estimated. Such a form is 

derived below.  

In terms of the observable variables, equation (4) can be written as  

          
1

0

1

K

t t jt jt

j

y x 




                                                                                                                 (5)    

In the presence of (3) and measurement errors, m 

odel (5) coincides with model (2) if     

          0t  = 0t  + 0

tL

gt gtg K
 

  + 0tv                                                                                           (6) 



7 

 

          jt  = ( )(1 )
tL jt

jt gt jgtg K
jt

v

x
  


    ( j = 1, …, K-1)                                                           (7)  

According to Pratt and Schlaifer (1988), the term 0

tL

gt gt

g K

 


  in (4) can be treated as an error 

term. With this treatment we can use the usual regression terminology from this point on. 

To recapitulate, we have begun with (1). To solve the unknown functional form problem, 

(1) is replaced with (2). To solve the excluded variables problem without making meaningless 

assumptions, (3) is introduced and inserted into (2) to obtain (4). After introducing measurement 

errors at the appropriate places in (4), it is replaced with (5).
4
 In this derivation, no 

approximations and no meaningless assumptions are made. The terms on the right-hand side of 

equations (6) and (7) provide crucial information. Equation (4) shows that the 
0gt ’s, in 

conjunction with the 
*

jtx ’s, are at least sufficient to determine *

ty . This is the proof Pratt and 

Schlaifer (1988, pp. 34 and 50) offer to show that the second term on the right-hand side of 

equation (6) is a function with the correct functional form of certain  ‘sufficient sets’ of excluded 

variables They warn against adding an arbitrary error term to a linear or nonlinear function of the 

*

jtx ’s and assuming that the 
*

jtx ’s are independent of the error term.  

The interpretation of the terms on the right-hand side of equation (7) and their 

implications are as follows:  

 The term jt  is equal to 
* */t jty x    (if *

ty  is a continuous function of 
*

jtx ) and 

corresponds to the bias-free effect of 
*

jtx  on *

ty  , as can be seen from (2). The right sign 

of jt   is provided by economic theories. The correlation between *

ty  and 
*

jtx  is spurious 

                                                      
4
 For the derivation, see Swamy and Tavlas (2007).  
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if 
jt  = 0. Even though these bias-free effects are economically very meaningful, they 

cannot be estimated using any of the conventional econometric techniques. 

 The term 
tL

gt jgtg K
 

  measures omitted-variables bias. Note that each term in this sum 

is the product of two coefficients - - the effect of the excluded variable 
*

gtx  on *

ty  (i.e., 

gt ) and the effect of the included variable 
*

jtx  on the excluded variable 
*

gtx  (i.e., 
jgt ). 

Omitted-variable biases can exist as long as the error terms are present in econometric 

models.  

 The term ( )( ( / ))
tL

jt gt jgt jt jtg K
v x  


   measures measurement-errors bias.

5
 These 

biases exist whenever estimates of some theoretical variables are used as explanatory 

variables.  

 The explanatory variables of model (5) are correlated with their own coefficients because 

the measurement-error bias component of jt  is a function of jtx .  

 Model (5) can be mis-specified if the omitted-variable and measurement-error bias (or 

simply, the specification bias) components of its coefficients in (7) are ignored
6
.  

Having derived the model in (5), which explicitly includes all these forms of biases, it is 

now possible to show why valid instruments cannot be found for this model. Combining 

equations (5)-(7) into one gives 

1

0 0 0

1

( )(1 )
t

t

L K
L jt

t t gt gt t jt gt jgt jtg K
g K j jt

y x
x


      




 

       
                                               (8) 

                                                      
5
 The minus sign in the expression reflects the fact that the second parenthetical term on the right-hand side of (7) is 

one minus the ratio ( / )jt jtv x .   

6
 Discussion of the terms in equation (7) are provided in Hall, Swamy, and Tavlas (2012) and Swamy, Hall, and 

Tavlas (2015). 
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We illustrate the problem with IV by considering three cases. 

Case I. (Linear models) By adding and subtracting a constant parameter model we get 

 

1 1

0 0 0 0 0

1 1

( ) (( )(1 ) )
t

t

LK K
L jt

t j jt t gt gt t jt gt jgt j jtg k
j g K j jt

y x x
x


          

 


  

            
 (9) 

where the last two terms in (9) become the error term in the model. The problem with 

instrumental variables in this context now becomes apparent; we need to find a variable that is 

both correlated with xjt , but uncorrelated with the error term, which itself contains xjt. Such a 

variable almost certainly cannot exist. We extend this proof to nonlinear models in Case III 

below.     

Case II. (Linear errors-in-variables model without the error in equation)  If  

tandgjallforjgtgt ,00  
        (10) 

and 

0,..., 1j jt for j K   

         (11) 

equation (10) implies that there are no omitted variables and (11) implies that the true model has 

a linear functional form. Under (10) and (11), (9) reduces to an errors-in-variables model and the 

error term becomes just 0t  - 
1

1

K

jt jj
 



 . For IV estimation of such a model, we need 

instruments that are relevant and uncorrelated with the errors (exogenous). Assumptions (10) and 

(11) are highly restrictive and, in effect, amount to the assumption that the model is perfectly 

specified and that there are no excluded variables. Hence, this extreme case rules out Pratt and 

Schlaifer’s case where the included variables are independent of the excluded variables, as there 
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are none. The error term is then purely an identifier, in the Pratt and Schlaifer sense. However we 

would argue that this case can never occur in the real world. 

Case III. (Nonlinear models). Note that Cases I and II do not cover nonlinear models. To 

complete our proof of the nonexistence of valid instruments, we need to consider the (realistic) 

nonlinear case where model (5), with its coefficients satisfying equations (6) and (7), holds. A 

natural method of identifying the coefficients of model (5) without mis-specifying its functional 

form is to decompose these coefficients into their respective components in (6) and (7). To 

perform this decomposition, we assume that  

          
1

0

1

p

jt j jh ht jt

h

z   




      (j = 0, 1, …, K-1)                                                                    (12) 

where the htz ’s are observable, 1 1,( | ,..., )jt t p tE z z   = 0, j = 0, 1, …, K – 1, all t, and the 
jt ’s may 

be serially and contemporaneously correlated. It is assumed that in model (5), the 
jtx ’s are 

conditionally independent of their own coefficients given the htz ’s. Changes in policy variables, 

shift variables representing structural changes in the jt  and lagged changes in the jtx ’s can be 

used as the htz ’s, as in Hall, Swamy and Tavlas (2012).  

We cannot be sure that the equation obtained by substituting equation (12) into equation 

(5) will have the correct functional form. The only way we can be so sure is by letting p tend to 

infinity so that jt  converges in probability to zero. It is possible to push jt  as low as desired 

with a high probability just by adding additional jtz ’s on the right-hand side of equation (12); it 

does not matter if some of the jtz ’s are redundant in the sense that their coefficients in (12) are 

zero. Equation (12) with infinitely large p and without jt  can explain all the variation in jt  in 
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terms of observable variables. Substituting such an equation into (5) gives an equation with the 

correct functional form.    

Inserting equation (12) into equation (5) gives  

          
1 11 1

00 0 0 0

1 1 1 1

( )
p pK K

t h ht j jh ht jt t jt jt

h j h j

y z z x x     
  

   

                                                      (13) 

This is an estimable form of model (5).
7
  

Now if we were to estimate a fixed coefficient IV version of (5) such as t

k

j

jtjt xy   




1

1

0  

then the error term in this equation becomes. 

    





















1

1

1

1

1

1

1

1

1

1

000000 ))(()(
p

h

K

j

p

h

K

j

k

j

jtjjthtjhjththt xzz     (14) 

 

 The instrumental variables that are correlated with the jtx ’s of the IV equation above, but not 

with the error terms of model (14), almost surely do not exist because thise error terms also 

involve the 
jtx ’s. Therefore, IV estimation is not possible. It is sometimes claimed that lagged 

values of the variables in a model provide natural instrumental variables in many time-series 

settings. The mere fact that the value of , 1j tx   was determined before the value of jt   should not 

lead one to conclude that , 1j tx   is necessarily independent of jt . The variable , 1j tx   may well 

have been influenced by a forecast of a variable represented in jt or both , 1j tx   and jt  may have 

been affected by some third variable, as shown by Pratt and Schlaifer (1988, p. 47). Of course, if  

, 1j tx   were independent of the error then this would imply that it was no longer relevant.

  

 

                                                      
7
 Good approximations to the minimum variance linear unbiased estimators of the  ’s and the best linear unbiased 

predictors of the  ’s can be obtained by applying an iteratively rescaled generalized least squares method to model 

(13). The consistency of these estimators can be established by letting T go to  and letting p go to   more 

slowly than T. For further discussion, see Swamy and Tavlas (2007). 
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3. A Simple Example 

 Consider a simple example where the only misspecification is measurement error in the 

independent variable. Assume that we have a perfectly fitting relationship in the true variables: 

𝑌∗ = 𝛽𝑋∗           (15) 

where the measured value of X is given by 

𝑋 = 𝑋∗ + 𝜈           (16) 

Then, the model we estimate is  

𝑌∗ = X  −              (17) 

where   is an error term. There are two ways we can demonstrate the problem with IV applied 

to (17). First, we may consider the issue from a TVC perspective and we write an exact version 

of (15) as 

𝑌∗ = 𝛽𝑡𝑋           (18) 

Then, if we apply a fixed parameter model to this equation, we get 

𝑌∗ = ** X  +  ( t  −  ** )𝑋         (19) 

The last term is the error term in (17). We can see that almost surely no valid instruments can 

exist for X since X is also in the error term. We can also show the same problem from a more 

conventional perspective. If we perform a fixed parameter regression, then we can rewrite (17) as 

𝑌∗ = 𝛽1𝑋 + (𝛽𝑋∗ − 𝛽1𝑋)         (20) 

where the term in brackets in (20) is the error term in (17). We again can see that the error term 

contains the same variable that we are trying to instrument. Thus, almost surely no valid 

instrument can exist. 

 

4. Conclusion 
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 The instrumental variables that are correlated with the 
jtx ’s of model (5), but not with the 

error terms of model (13), do not, in general, exist because these error terms also involve the 
jtx

’s.  These arguments help explain why practical work with IV methods is plagued by several 

problems. We would argue that a much better way forward in terms of practical estimation rests 

on avoiding incorrect functional forms and recognition of the potential sources of omitted-

variable and measurement-error biases which are present in (5). By accounting for these sources 

of biases, we are able to show that (i) the unknown functional form give rise to TVCs, and, (ii) in 

this TVC set-up, instruments almost surely cannot exist. 
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