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1 Introduction

The canonical evolutionary game theory model of Maynard Smith and Price (1973) plays an important

role in biology, economics, political science, and other fields. Its equilibrium concept, an evolutionarily

stable strategy (ESS) describes evolutionary outcomes in environments where populations are large and

matching is typically random.1 Since an ESS is a refinement of Nash equilibrium, it obviously cannot

explain any behavioral departure from purely self-serving behavior in the one-shot Nash sense. In

particular it cannot account for cooperative behavior in say, a prisoners’ dilemma, or shed light on

altruism more generally, nor can it account for any other non-Nash behaviors such as spite (Hamilton,

1970; Alger and Weibull, 2012) or costly punishment (Fehr and Gächter, 2000).

In order to explain such deviations from Nash behavior, evolutionary game theory turned to models

with a finite number of agents hence departing from the first of the mentioned conditions of Maynard

Smith and Price (1973). Thus in Schaffer (1988), the finite set of individuals have “market power” and

can influence average fitness, while in the model preferred by Maynard Smith (1982) – namely repeated

games – a few agents, usually just two, can perfectly monitor and record each others’ past actions and

condition their strategies hereupon (in evolutionary theory, the repeated games approach is usually

referred to as direct reciprocity). Both of these frameworks have led to an enormous body of research

in economics and game theory (see e.g. Alós-Ferrer and Ania, 2005; Leininger, 2006; Samuelson, 2002;

Vega-Redondo, 1997, and references therein).

While evolutionary game theorists turned to finite populations, evolutionary biologists more broadly

devoted as much – if not more – attention to a departure from the second basic condition of May-

nard Smith and Price (1973), namely the assumption that matching is random. When matching is

non-random — possibly indirectly so due to prolonged interaction of individuals in separated groups

(Maynard Smith, 1964) — the fitness of an individual will depend on the group he is assigned to, and

so different groups will on average meet with varying reproductive success (Bergström, 2002; Kerr and

Godfrey-Smith, 2002). Thus non-random matching invariably leads to group selection whereby one can

trace the evolutionary success of certain types of groups and not just their constituent individuals (we

return to this topic in a moment). Take the prisoners’ dilemma. Matching is assortative if after each

round of play cooperators have higher probability of being matched to other cooperators than to defec-

tors. This is often a highly realistic assumption corresponding for example to situations where a large

group of individuals cannot perfectly monitor each others’ past behaviors but receive some “reveal-

ing signals” about opponents’ types and exert some influence on who they are matched to (Maynard

Smith, 1964; Wilson, 1975, 1977). Non-random matching also results if matching depends on the geo-

graphical location of individuals (Eshel, Samuelson, and Shaked, 1998; Nowak and May, 1992; Skyrms,

2004); or if (genetically) similar individuals match assortatively as in models of kin selection (Hamilton,

1964; Alger and Weibull, 2010). When matching is non-random a variety of different groups will gen-

1Intuitively, random matching means that an individuals’ type has no influence on what type of individual he is likely to
be matched to.
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erally coexist at any given moment in time. For example in the prisoners’ dilemma, some groups will

consist of defectors only, some of cooperators only, and some will be mixed. Thus the average fitness

will differ across groups, as will the fitness a specific type of individual obtains if he is placed into dif-

ferent groups. It follows that evolutionary pressure takes place not just at the individual level but also

at the group level even though individuals are ultimately the fitness bearing entities.2

Now, the existing literature on non-random matching is usually informal and/or deals only with

special cases (typically two types who are matched pairwise and assortatively). As a basis for this pa-

per’s main results, we begin in section 2 by laying out a unified model in a general and self-contained

manner. Compared to existing literature, we add value by setting up a model that allows for arbitrary

matching rules (ways to match populations into groups), any number of strategies, arbitrary group

sizes, and any possible payoff structure in the group stages (i.e., any possible underlying symmetric

normal form game, see section 2.1). For any reader who is unfamiliar with – or confused by – the ex-

isting literature, it is our hope that section 2 will provide an easily accessible point of entry. The most

substantial of the mentioned generalizations is that we allow for arbitrary matching rules. Indeed, this

is what allows us to show (section 2.4) that group selection models based on prolonged interaction in

what Maynard Smith (1964) calls “haystacks” (see also Wilson, 1975 and Cooper and Wallace, 2004),

can be recast as models of group selection based directly on non-random matching (e.g. Bergström,

2003; Kerr and Godfrey-Smith, 2002). Intuitively, this is not all that surprising from the individualist

perspective described above: What at the end of the day matters is whether individuals are matched

randomly with each other or not. Precisely how any departure from random matching comes about is

secondary to the fact that as soon as matching is non-random, different groups with different average

fitness levels will exist and this is ultimately what group selection is all about. In fact, we shall from now

on make this viewpoint explicit by not separating models of non-random matching from other models

of group selection.

A key thing to notice about the model of section 2 is that it is not a game theoretic model. In the

terminology of biologists it is a model of evolutionary theory, not a model of evolutionary game theory.

More specifically, it is a dynamical model of selection where attention is devoted to steady states of the

associated replicator dynamics. This is of course in sharp contrast to the random matching case where

Nash equilibrium and ESS play central roles and allows the powerful machinery of game theory to be

applied.3 The first substantial contribution of the present paper is to fill the resulting gap in the litera-

ture. Specifically, we are going to ask what game theoretic equilibrium concepts form group selection’s

2As shown by Kerr and Godfrey-Smith (2002), one may with equal formal correctness think of selection taking place at
the individual or the group level. This difference in perspective has been (and is) the topic of a heated debate in evolutionary
biology, a key reference here being the book “Unto Others” by Sober and Wilson (1999). As explained in section 2 we are going
to take a so-called “individualist” perspective in this paper, and will not go into the more philosophical aspects of the levels
of selection controversy.

3For example an ESS is a refinement of Nash equilibrium with the crucial property that any asymptotically stable state
of the evolutionary (replicator) dynamics is an ESS (Weibull, 1995, chapter 3). Thus when one studies the set of ESSs, “bad”
equilibria have been removed which not surprisingly leads to stronger results. We return to the precise relationship between
steady states, Nash equilibrium, and ESS in greater detail, in section 4.
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natural parallels to Nash equilibrium and ESS. This leads to two new equilibrium concepts, namely a

Nash equilibrium with group selection (NEGS) and an evolutionarily stable strategy with group selec-

tion (ESSGS). These concepts turn out to be intuitive once the underlying evolutionary game, which

we call a group selection game, is understood. Interestingly, this game turns out to be novel even from a

game theoretic perspective: As in standard imperfect information games, agents make decisions with-

out knowing with certainty the strategies pursued by opponents – all they know is the distribution of

the opponents’ strategies, or to put it in the evolutionary terminology, the probabilities of ending up

in any of the different kinds of groups. Crucially, these probabilities depend on the actual strategies

pursued by the agents. For simplicity, imagine a large group of individuals, all of whom has a choice

between two strategies, “honesty” (H) or “deception” (D). Agents must commit to a strategy before be-

ing allocated into equal-sized groups where they execute these strategies (equivalently, they choose

their actions with imperfect knowledge about opponents’ actions). Given a specific matching rule (a

given way to divide a population with a given fraction of H- and D-types into groups of equal size) and

given that agents know the population-wide composition into H and D types, each agent can calcu-

late the probabilities of ending up in any specific kind of group as a function of the specific strategy

chosen (H or D).4 In a NEGS, individuals’ optimal choices precisely lead to the population-wide com-

position into H and D types which formed the basis of their decisions in the first place. The concept of

an ESSGS simply adds a “non-invasion” criterion to this Nash/fixed point criterion precisely as is the

case with random matching (Maynard Smith and Price, 1973). Note that a NEGS interchangeably can

be viewed as a mixed strategy pursued by all individuals or as a vector that gives the fractions of each

type in equilibrium. In the previous case, a NEGS or an ESSGS may be, say (0.9, 0.1)meaning that each

individual in the population will be honest with probability 90 % and deceptive with probability 10 %.

With an infinite population size, this of course implies that 90 % of the population will be honest, and

10 % deceptive at any given moment in time. Intuitively, in a NEGS the deceptive individuals’ purpose

is to keep the honest individuals in check (and vice versa): without a sufficiently large population of

deceivers, the benefit of choosing to deceive will outweigh that of being honest because deceptive in-

dividuals will face a relatively small chance of being matched to another deceiver even though matching

is assortative.

After defining group selection games and proving equilibrium existence, we turn to the relationship

with the dynamic evolutionary model of section 2. Thus in theorem 6 – which together with the “sec-

ond welfare theorem of evolution” described below forms this paper’s main contribution – we prove

that any NEGS is a steady state for the replicator dynamics, that any (Lyapunov) stable steady state for

the replicator dynamics is a NEGS, and that any ESSGS is an asymptotically stable state of the replicator

dynamics. These results extend existing results on Nash equilibrium and ESS (Hofbauer and Sigmund,

1998; Maynard Smith and Price, 1973; Weibull, 1995) to settings with non-random matching, and show

4Obviously, the number of possible group compositions depends on the group size as well as the number of strategies.
With two strategies and groups of size two, any individual can end up in precisely two different kinds of groups – one where
the opponent is of the same type and one where he is not.
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that NEGS and ESSGS are important new evolutionary game theory concepts. Immediately, a long list

of research questions report themselves in that one could attempt to “transfer” over to group selec-

tion models all of the existing results from evolutionary game theory. We shall leave the bulk of this

for future research, for example we are not going to go into topics related to neutrally stable strate-

gies, asymptotically stable sets, doubly symmetric games or the fundamental theorem of natural se-

lection (for these “textbook” issues see the monographs of Hofbauer and Sigmund, 1998 or Weibull,

1995). Instead we are going to focus in section 6 on a question which in some sense “ignited” this

whole literature. The point of the prisoners’ dilemma is that Nash equilibrium – and with it evolution-

ary models based on random matching – may easily fail to produce outcomes that maximize average

payoff/welfare in the population.5 The question from the group selection point of view then becomes:

What types of (non-random) matching will, if any, lead to optimality? Our main result in this regard

(theorem 7) might be called the “second welfare theorem of evolutionary theory” telling us that any

outcome that is optimal will in fact be a NEGS under some matching rule. In a number of standard

games (hawk-dove, stag hunt, prisoners’ dilemma) we proceed to characterize these matching rules

and in doing so gain an understanding of when evolution in a specific situation (for a fixed matching

rule and payoff structure) is likely to lead to an evolutionary optimum or not. To give an example,

we show that in the Hawk-Dove case even low levels of assortativity (in the “constant index” sense of

Bergström, 2003) may still lead to the evolutionary optimum if a Dove who meets a Dove receives only

a “modest” gain from changing to the Hawk strategy.

The structure of the paper is as follows: Section 2 describes the general group selection model

and section 3 defines group selection games, NEGS and ESSGS. Section 3 also contains some some

basic results on existence and the relationship between NEGS and ESSGS. Section 4 contains our main

theoretical results discussed above. Section 5 contains a number of examples, and section 6 discusses

the fitness/welfare issues with basis in the aforementioned “second welfare theorem”. Finally, section

7 concludes.

2 Group Selection in Evolutionary Theory

In this section we present a unified model of non-random matching based group selection. The model

is closely related to Kerr and Godfrey-Smith (2002) and Bergström (2003) both of which consider non-

random matching as the primus motor of group selection, and both of which adopt an “individualist

perspective” that assigns fitness to individuals rather than the groups they form.6 While their analysis

restricts attention to two strategies/types and certain relatively restrictive types of closed form group

5In the language of welfare analysis, the outcome does not maximize utilitarian social welfare. This, of course, also
implies a break-down of Pareto optimality.

6As shown by Kerr and Godfrey-Smith (2002), one can formally recast such models so that groups become the fitness
bearing entities (so the two frameworks are formally equivalent). The group-based fitness perspective is strongly advocated
in the famous book “Unto Others” by Sober and Wilson (1999). See also Maynard Smith (1998) and Okasha (2005) for more
on this issue.
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formation rules, we allow for any number of strategies and, more importantly, arbitrary rules of group

formation (called matching rules in what follows). The latter is crucial when in Section 2.4 we go on to

show that any trait-group model — where matching is random but groups are isolated for prolonged

spells in what Maynard-Smith calls “haystacks” — can be recast within our setting with non-random

matching in such a way that the equilibria/steady states and dynamics, remain the same. This obser-

vation substantially extends the scope of our general results, and it also dispels the notion that group

selection models based on non-random matching are somehow not “true” models of group selection

(certainly, any difference will be at most a question of interpretation and terminology — any result

about observables, i.e., dynamics and equilibria will remain the same).7

Briefly, the model can be summarized as follows: At each date there is a large set of individuals,

formally the continuum I = [0, 1]. At the beginning of each period, the agents are allocated into groups

of the same finite size n ∈N. This happens in accordance with what we call a matching rule (formally

defined in subsection 2.2) which is a function that maps the type frequency of the set of agents into

the distribution of group types.8 After the n-sized groups are formed, the individuals in each group

face a symmetric normal-form game (section 2.1). In accordance with the basic premise of evolution-

ary game theory, agents are hard-wired to follow the same strategy as the parent (‘like begets like’).

Thus an individual who is fathered by a parent who executed strategy j , say, in the previous round will

mechanically execute strategy j in his group game, regardless of the resulting payoff/composition of

individuals in the specific group he is drawn into. The payoff determines the fitness, i.e., the (expected)

number of children the agent will send on to the next round.9 Finally, after the group game stage, a

new generation is born with the relative proportion of each type determined by the success (fitness)

this type’s strategy enjoyed across the different groups. The above process then repeats itself leading to

a new generation and so on. The evolutionary outcome of this group selection process is a steady state

of the resulting replicator dynamical system as described in section 2.3.

Note that – apart from our insistence that the group games can be seen as normal form games (a

perspective that is alien to the existing literature) – the model is entirely non-game theoretic.

2.1 The Underlying Normal Form Group Games

Our description begins with the underlying normal form game that agents face in the group stages.

Although in evolutionary models, individuals act purely mechanically and play the strategy inher-

ited from the parent, they nonetheless participate in a standard normal form game and receive pay-

7It is also worth mentioning that from a more technical perspective, our model is crafted so that the main structure of the
traditional evolutionary game theory model (e.g. Weibull, 1995) is retained. This both makes the connection with standard
replicator dynamics transparent and paves the way for our analysis in subsequent sections.

8Our concept of a matching rule is closely related to a construction due to Kerr and Godfrey-Smith (2002, p.484) who,
however, consider only the case of two strategies (the extension to any number of strategies is non-trivial as will become
clear).

9A different explanation of fitness that is more plausible in economic contexts is to think of it as the number of agents
copying one’s behavior because it is more successful: More successful behaviors will have more followers in the next round
of play.
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offs/fitnesses accordingly. We need to make this game theoretic aspect clear to set the stage for this

paper’s main results.

Let n ∈ {2, 3, . . .} denote the group size so that N = {1, . . . , n} is the set of players in a group. A group

game is a symmetric normal form game G =<N , M , A > where M = {1, . . . , m } is the set of pure strate-

gies and A : M ×M n−1 → R is the payoff function over pure strategies that all players share (since the

game is symmetric). The set of all n-player, m -strategy symmetric normal form games is denoted by

Gn ,m . Note that by symmetry, A(y i , y −i ) = A(y i , ỹ −i )where y i ∈M is any pure strategy for player i , and

y −i , ỹ −i ∈M n−1 are pure strategies of i ’s opponents where ỹ −i is any permutation of y −i . A (symmet-

ric) Nash equilibrium for G is defined in the usual way as a vector σ∗ ∈ Sm ≡ {σ ∈ Rm
+ :

∑m
j=1σj = 1}

such that A(σ∗, (σ∗, . . . ,σ∗))≥ A(σ, (σ∗, . . . ,σ∗)) for allσ ∈Sm .10

It is convenient to write the previous payoff structure in a way that makes explicit reference to

the group structure. Call an individual who executes pure strategy j ∈ M a type j individual. Due

to symmetry, the payoff to such a type j individual depends only on the number of opponents in his

group who play each of the m strategies (as opposed to which opponents follow what strategies). Next

imagine that this type j individual finds himself in a group, group i say, consisting of n i
1 individuals of

type 1, n i
2 individuals of type 2, and so on up to n i

m .11 In this situation, the individual’s payoff will be

equal to A(j , j opp)where j opp ∈M n−1 is any vector of opponents’ strategies which contains n i
1 strategy

1 entries, . . . , n i
j−1 strategy j − 1 entries, n i

j − 1 strategy j entries, n i
j+1 strategy j + 1 entries, . . . , n i

m

strategy m entries. Crucially, we can write the payoff A(j , j opp) simply as A
(n i

1,...,n i
m )

j or even as A i
j where

i is the index of the specific group the individual finds himself in (as long as we keep record of the group

composition n i = (n i
1, . . . , n i

m ) of group i ).

In this way, we can capture all of the information we need about the normal form game in a se-

quence (A i
j ) where j = 1, . . . , m and i = 1, . . . ,γn ,m . Here γn ,m is the number of different n-sized groups

that can be formed with m different pure strategies.12 From combinatorics we know that γn ,m precisely

equals the number of multisets of cardinality n with elements taken from a set with cardinality m (see

Aigner, 2007, p. 15), i.e.

γn ,m =
(n +m −1)!
n !(m −1)!

. (1)

For example, γ2,2 = 3 since three different groups can be formed if the group size equals 2 and there

are 2 possible strategies (these groups are, respectively, one where both are of type 1, one where both

are of type 2, and one where the individuals follow different strategies).

10Letting σi ∈ Sm ≡ {σ ∈ Rm
+ :
∑m

j=1σj = 1} denote a mixed strategy for player i and σ−i ∈ Sn−1
m denote a mixed strategy

profile of player i ’s opponents, it is easy to see that A(σi ,σ−i ) =
∑

y∈M n A(y i , y −i )
∏

k∈N σ
k
y k .

11Note that since the individual himself is counted here, we necessarily have n i
j ≥ 1 (there is at least one of the individual’s

own type). Of course we must also have
∑

k n i
k = n and each n i

k must be non-negative.
12Of course, we must be a little careful here because some of these are not really properly defined. Specifically, A i

j is not

well-defined unless n i
j ≥ 1. But building this explicitly into the notation leads to unwarranted complications.
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2.2 Group Formation

We now turn to the question of how groups are formed out of each generation’s individuals. The key

concept is that of a matching rule which generalizes what Kerr and Godfrey-Smith (2002, p. 484) call a

“rule of group assembly” to more than 2 pure strategies (the concept is also related to Bergström, 2003,

as returned to below).

A population state is the frequency distribution of the different types in the population, i.e., a vector

x = (x1, . . . ,xm ) ∈ Sm where x1 is the fraction of 1-strategists in the population, x2 is the fraction of 2-

strategists in the population, and so on.13 A group state similarly represents the group frequencies and

so is a vector g = (g 1, g 2, . . . , g γn ,m ) ∈ Sγn ,m where g 1 is the fraction of all groups that is of type 1, g 2 the

fraction of type 2 groups, and so on up to group γn ,m which it is recalled is the number of different

n-sized groups it is possible to form when there are m different strategies (section 2.1).

A matching rule is simply a function that maps a population state x∈Sm into a group state g∈Sγn ,m .

So, intuitively, a matching rule describes how any given population is allocated into groups.

Definition 1. (Matching Rules) A matching rule is a function f : Sm → Sγn ,m that maps any population

state x ∈ Sm into a group state f(x) ∈ Sγn ,m . The set of matching rules in a population with m strategies

and group-size n is denoted by Fn ,m .

It is natural — but not necessary for any of our results — to impose consistency on matching rules

by demanding that the fraction of j -type individuals allocated into the different groups equals the frac-

tion x j of individuals of type j that are actually present in the population. Since the proportion of

j -type individuals in an i -type group by definition is
n i

j

n , the fraction of individuals that are of type j

and in i -type groups will, for any given group state g, be
n i

j

n g i . Hence, across all groups the fraction of

the population that is of type j is
∑γn ,m

i=1

n i
j

n g i . This number must then equal x j for every individual to

be allocated to one (and only one) group:

γn ,m
∑

i=1

n i
j

n
f i (x) = x j , for j = 1, . . . , m (2)

If we define supp(j ) to be the set of group types that contain at least one j -strategist, (2) can be

expressed equivalently as:
∑

i∈supp(j )

n i
j

n
f i (x) = x j , for j = 1, . . . , m (3)

When a matching rule satisfies (3), we say that it is consistent. While our main examples of match-

ing rules below are consistent, a very important special case of our setting, namely haystack/trait-group

models (Cooper and Wallace, 2004; Maynard Smith, 1964; Wilson, 1975) generally does not lead to con-

sistent matching rules (see Section 2.4).

13Here Sm is the unit (m −1)-simplex i.e. Sm =
n

x∈Rm
+ |
∑

j∈M x j = 1
o

.
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Recall that
n i

j

n f i (x) is the fraction of the total population that is of type j and is allocated to a group

of type i under the matching rule f. When x j > 0 we may divide this by the fraction x j of the population

that is of type j in order to get the fraction of j -type individuals that is allocated to a group of type i :

w i
j (x)≡

n i
j

nx j
f i (x) (4)

This may be compared with Bergström (2003) who studies group selection (again in the special case

n =m = 2), and who takes the w i
j ’s as fundamentals instead of the matching rule. More specifically,

Bergström (2003) considers the difference w 1
1 −w 2

1 and calls this difference the ‘index of assortativity’.

We return to the index of assortativity in example 1.3 below where we also show how one gets from a

model based on a constant index of assortativity our formulation with matching rules.

We finish this subsection by presenting a number of concrete examples of matching rules. We shall

be calling on these repeatedly throughout the rest of this paper.

Example 1.

1. Complete segregation. Different strategies do not mix. All individuals are allocated into groups

with only individuals of the same type and thus all groups contain a single type of individuals

each (n individuals that follow the same strategy). The group types that have n individuals of the

same type get a non-negative frequency whereas all other kinds of groups get a frequency of zero.

Due to the consistency requirements for matching rules, we get that the group type that contains n

j -types should get a frequency of x j . So, formally, the matching rule for complete segregation is the

following.
f i (x) = x j , if n i

j = n

f i (x) = 0 , otherwise.
(5)

e.g. When n =m = 2 the matching rule for complete segregation take the form:

f 1(x1,x2) = x1 f 2(x1,x2) = 0 f 3(x1,x2) = x2.

2. Random matching. Let us define the opponent profile of a type j individual in a type i group to

be the vector ν i
j = (ν

i
1 , . . . ,ν i

j , . . . ,ν i
m ) ≡ (n

i
1, . . . , n i

j − 1, . . . , n i
m ) that shows how many opponents of

each type a type j individual faces when she is drawn into a group of type i . Obviously, individuals

of different types that face the same opponent profile will be in groups of different types. We will say

that matching is random when the (ex ante) probability of an individual (conditional on her type)

to end up facing a specific opponent profile is independent of her type. If this is the case, then the

frequencies of group types will follow a multinomial distribution (see for example Lefebvre, 2007,

p. 22):14

14To show that the property described above holds for the matching rule of equation (6), let us consider a group of type i
with n i

j ≥ 1 for some j ∈M . Notice that a j -type in that group has n i
1 type 1 opponents,. . . , n i

j − 1 type j opponents, . . . , n i
m
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f i (x) =
n !

∏

j∈M n i
j !

∏

j∈M

x
n i

j

j . (6)

Notice that for m = 2, the random matching rule becomes

f i (x1,x2) =
n !

n i
1!(n −n i

1)!
x

n i
1

1 x
n−n i

1
2 .

That is it boils down to the binomial distribution (see Kerr and Godfrey-Smith, 2002, p. 484).

3. Constant Index of Assortativity.

Bergström (2003) studies 2-person prisoner’s dilemma population games by using the ‘index of

assortativity’ which he defines as “the difference between the probability that a C-strategist meets

a C-strategist and the probability that a D-strategist meets a C-strategist”. In terms of notation

used in this paper (with x1 and x2 denoting the proportion of cooperators and defectors in the

population respectively), this means that the index of assortativity at a state (x1,x2)will be:

α(x1,x2) =w 1
1 (x1,x2)−w 2

2 (x1,x2) =
f 1(x1,x2)

x1
−

f 2(x1,x2)
2x2

.

Bergström goes on to analyze prisoners’ dilemma games under “assortative matching” rules that

have a constant index of assortativity α for all values of x. As one easily verifies, the matching rule

corresponding to a constant index of assortativity α is:

f 1(x) = x1 (1− (1−α)x2)
f 2(x) = 2(1−α)x1x2

f 3(x) = x2 (1− (1−α)x1) .

In the case of α = 0 the rule coincides with the random matching rule and in the case of α = 1 it

coincides with the complete segregation rule (for both of these statements we of course need n =

m = 2, i.e., two players and two strategies).

4. “Almost” Constant Index of Dissociation.

It is not possible to extend the previous constant index of assortativity rule to α < 0, i.e., to dis-

sociative matching without violating consistency of matching rules (i.e., condition (3) of Section

2.2). Indeed, if such a “constant index of dissociation” rule is imposed, the matching rule would

necessarily violate (3) when x is close to 0 or to 1.15 So to consider constant index of dissocia-

tion matching rules, one must either consider matching rules that are not consistent (which, as

mentioned already in Section 2.2 will not upset any of our results), or else one must “tweak” the

type m opponents. So the opponent profile for a j strategist in a type i group will be ν = (n i
1, . . . , n i

j − 1, . . . , n i
m ). Indeed, the

probability of a type j individual (conditional on her type) to end up in group with opponent profile ν = (ν1, . . . ,νm ) is given

by: w i
j (x) =

n i
j

nx j

n !
∏

k∈M n i
k !

∏

k∈M x
n i

k
j =

(n −1)!
∏

k∈M νk !

∏

k∈M x νk
k . i.e. it is independent of the individual’s strategy j .

15More specifically, this happens for x ∈ (0, −α
1−α )∪ (

1
1−α , 1)when α∈ [−1, 0).
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construction slightly near the boundary. An example of the latter is the following matching rule

with β ∈ [0, 1] being the ‘index of dissociation’

f(x) = ( f 1(x), f 2(x), f 3(x)) =

=











(0, 2x1, 1−2x1) ,x1 ∈
h

0, β
1+β

i

(x1(1− (1+β )x2), 2(1+β )x1x2,x2(1− (1+β )x1)) ,x1 ∈
�

β
1+β , 1

1+β

�

(1−2x2, 2x2, 0) ,x1 ∈
h

1
1+β , 1

i

2.3 Group Selection Models

At this point we have defined all of the key ingredients of a group selection model: A set of agents

I = [0, 1], the normal form group game G =< N , M , A > (here N = {1, . . . , n} and M = {1, . . . , m } where

n is the group size and m the number of strategies/types), and the matching rule f : Sm → Sγn ,m which

in each period allocates the newborn generation into groups (recall from section 2.1 that γn ,m is the

number of different n-sized groups that can be formed from m different strategies).

Given the tuple < I .G .f >, we are now in a position to describe the dynamical system that con-

stitutes the evolutionary model of group selection. The standard solution concept in group selection

models as defined is that of a steady state which we now proceed to discuss.

Let xt ∈ Sm denote the (population) state at date t (the vector of frequencies of the different types

at the given date, see subsection 2.2). At date t , the population is allocated into groups according to

the matching rule f, hence f(xt ) ∈ Sγn ,m is the resulting group frequency distribution. Regardless of

which group an individual of type j ends up in, he will mechanically follow the strategy of his type (as

inherited from the parent) and fitness will be distributed accordingly. Now recall from equation (4) of

section 2.2 that w i
j (x) =

n i
j x j

n f i (x) is the fraction of j -type individuals that is allocated to groups of type

i under the matching rule f when the population state if x and x j > 0. From section 2.1 we know that

the payoff/fitness of a j -type who finds himself in a group of type i is A i
j . The average fitness of a type j

individual at date t is consequently
∑

i∈supp(j )w
i
j (x

t )A i
j . This average fitness will be denoted by πj (xt ),

and if we substitute for w i
j (x

t ) it is clear that this is given by:

πj (x)≡
∑

i∈supp(j )

n i
j

nx j
f i (xt )A i

j (7)

Since πj (x) is the average fitness of a j -type, the average fitness of all types in the population will be:

π̄(x) =
m
∑

j=1

x jπj (x) (8)

All that now remains is to describe how these fitnesses determine the next generation. At this point

we have deliberately avoided saying whether time is to be thought of as discrete or continuous. In fact,

10



we are going to describe both, since both play important roles in the existing literature.

Beginning with the discrete time version, the well-known replicator dynamics equations

(Hammerstein and Selten, 1994; Taylor and Jonker, 1978; Weibull, 1995, pp. 122-4), formalize the (sensi-

ble) notion that at time t+1 the proportion of the population that is of type j must equal the proportion

of type j individuals at date t times the relative fitness of a type j individual.

Definition 2. The discrete time replicator dynamics of the group selection model < I ,G , f > is given by

the equations:

x t+1
j = x t

j

πj (xt )
π̄(xt )

for all j ∈M . (9)

where πj and π̄were defined in equations (7) and (8), respectively.

Turning next to the continuous-time case, the definition becomes (see Hofbauer and Sigmund,

1998, p. 67; Weibull, 1995, p. 72):

Definition 3. The continuous time replicator dynamics of the group selection model < I ,G , f > is given

by the equations:

ẋ j = x j (πj (x)− π̄(x)) for all j ∈M . (10)

where πj and π̄were defined in equations (7) and (8), respectively.

Definition 4. A steady state of a group selection model < I ,G , f > is a rest point of any of the dynamical

systems (9) or (10)

Clearly the steady states are the same whether time is continuous or discrete. Different notions of

stability such as Lyapunov and asymptotic stability are defined as usual in either case, and the associ-

ated steady states (if any) are said to be Lyapunov stable, asymptotically stable, and so on. Since any

uniform population state – i.e., any state where all individuals are of the same type – will be a steady

state, it is clear that stability must be considered or else the model will have no predictive power. Since

stability analysis is very difficult, especially in cases with more than two strategies, the group selection

model as presented is generally quite difficult to analyze.

2.4 Relationship with Trait-group Models

In this section, we briefly consider the group selection models in Maynard Smith (1964), Wilson (1975)

and Cooper and Wallace (2004). As in the model described in the previous sections, the population of

individuals is split into groups in these models and interaction in each group determines the number

of offspring of different types that will enter the population of individuals in the next period, etc. The

11



difference is that assortativity does not stem from the matching process, but from prolonged interac-

tion within groups (called “haystacks” in Maynard Smith, 1964, and trait-groups in Wilson, 1975).16,17

Following from now on closely Cooper and Wallace (2004), consider a population of individuals who

can be of two types. To facilitate comparison with this paper’s main model, we assume a contin-

uum population, so at any moment in time a proportion x1 ∈ [0, 1] will be of type 1 and a proportion

x2 = 1−x1 ∈ [0, 1] of type 2. At the “dispersion phase”, the population is split into trait-groups consist-

ing of two individuals each. These groups are formed randomly (using the random matching rule of

example 1.2). The two individuals in a group proceed to execute the strategy that their type dictates

and get payoffs in fitness terms according to a symmetric normal-form matrix (A i
j ) (see section 2.1).

The fitness of each individual determines the number of children it will send to the next generation.

The trait-group’s offspring is at this point “pooled” and dispersed but, crucially, the offspring are not

pooled with the offspring of all the other groups as in the model of section 2.3. Instead, the trait-groups

remain separated for T > 1 generations, so the second generation of a specific trait group is split into

subgroups consisting of offspring of that trait group only (again the dispersion is pairwise and random).

This second generation of subgroups proceed precisely as before to execute their type strategies, pro-

duce offspring according to the matrix (A i
j ), and in this way the trait-group’s third generation is born.

The process repeats itself until, after T generations the trait-group’s combined offspring is finally re-

turned to the aggregate population. The aggregate population is then again randomly matched into

new trait-groups, and so on.

The described model is called a T -period trait-group model. A steady state is defined in the usual

way as a population state x= (x1,x2) with the property that if the initial proportions of the types are x1

and x2 = 1− x1, respectively, then at any future date these will be the proportions of the two types in

16Maynard Smith (1964) studies the evolution of an altruistic gene in a structured population environment. In his model,
each group (called a haystack) originates from a single fertilized female who gives birth to her children in the haystack. A
proportion r of females mate with males from their own haystack while the rest 1− r mate at random. The species under
consideration is assumed to be a diploid (each individual carries two genes, one from the mother and one from the father)
and so, it obeys Mendel’s laws of inheritance. As the altruistic gene a is assumed to be recessive and the egoistic gene A
dominant, haystacks will be consisting solely of altruistic individuals only if the female that gave birth to its population was
of type a/a and was fertilized by a father of the same type. In all other cases, haystacks will have non-altruistic members
(of either type A/A or A/a ). It is also assumed that after the prolonged interaction that takes place within the haystacks,
any haystacks that start off with any non-altruistic individuals will lose the a gene through selection. So, just before the
dispersal phase, all haystacks will be either of type a or of type A i.e. there will be no haystacks with mixed populations. The
result is that A haystacks end up with smaller populations than those a haystacks. Thus, the haystack structure together with
the parameter r lead to increased assortativity and altruistic behavior can evolve under some conditions depending on the
number of haystacks and the factor by which an a type haystack population outnumbers an A-type one.

17Wilson (1975) derives a condition under which a trait would be selected for. His model assumes a population that
spends most of its life separated in trait-groups that cannot affect one another. All individuals are assumed to have the same
“baseline” fitness. Now, there are some individuals (donors) that have a specific trait (it can be altruism, aggressiveness, or
any other kind of trait), the rest of them do not have the trait but are assumed to be otherwise identical to donors. Each donor
gets an amount of fitness f d (which can be negative) because he has the trait and also gives an amount of fitness f r (again: it
can be negative) to all individuals in his trait-group independently of their type.

The condition Wilson gets includes f d , f r , the trait-group size (which is assumed to be uniform across trait-groups although
Wilson mentions that this is not what drives the result) and the distribution of the donors in the trait groups. The main result
is that as assortativity (variance of the proportion of donors in each trait-group) increases, more altruistic traits are being
selected for.
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the aggregate population also.

As we now proceed to show, whether assortativity stems from matching (as in our preferred model),

or from prolonged interaction in groups (as in the models of Maynard Smith, 1964, Wilson, 1975, and

Cooper and Wallace, 2004) is of no consequence in the sense that for any model of the second variety

one can reconstruct the steady states and dynamics with a model from the former.

Theorem 1. Consider a T -period trait-group model with a symmetric payoff matrix (A i
j ). Consider also

the normal form game G with payoff matrix (A i
j ). Then there is a matching rule f such that the dynamics

and steady states of the group selection model < I ,G , f> coincide with the dynamics and steady states of

the trait-group model.

A detailed proof is provided in the Appendix. Here we provide a sketch in the 2-player, 2-strategy

case stressing what the matching rule associated with a specific trait-group model actually looks like.

Consider a T -period trait-group model with payoff matrix (A i
j ). We remind the reader that A i

j indi-

cates the payoff that a j -type individual receives when found in an i -type group. As this is a 2-player,

2-strategy model, there are three group-types: group-type 1 which contains two individuals of type 1,

group-type 2 which contains one individual of type 1 and one individual of type 2, and group-type 3

which contains two individuals of type 2.

We are tracking the evolution of the population between two consecutive dispersion phases. In

order to do that we need to calculate the expected fitness (number of descendants) that an individual

of each type will get at the end of the T periods whereby the trait-groups remain separated from each

other. To that effect, we use a law-of-large-numbers argument and we calculate the distribution of

groups across all trait-groups at the T -th period. This makes us able to calculate the expected fitness

for starting individuals (individuals in the original population at the dispersion phase) of each of the

types in trait-group model. We also calculate the expected payoffs for the group selection model with

a matching rule given by

f i (x) =

∑3
k=1 rk (x)g k

i
∑3

l=1

∑3
k=1 rk (x)g k

l

where r1(x) = x 2
1 , r2(x) = 2x1x2 and r3(x) = x 2

2 are the components of the random matching rule r(x) (see

example 1.2). The various g k
i are only dependent on the particular payoff matrix (A i

j ) and the number

of generations T that the individuals spend in their respective trait-groups isolated from the rest of the

population and are, thus, given for any trait-group model. They express the (expected) proportion of

i -type groups that are found in a trait-group whose first-generation parents were a pair of type j at the

pair-matching stage of generation T .

Then, we take advantage of the symmetry of the replicator dynamics i.e. that two processesA and

B have the same dynamics iff

πAj (x)

πAk (x)
=
πBj (x)

πBk (x)
for all x∈Sm and j , k ∈M .
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Finally, we show that the two payoff structures satisfy the condition mentioned above. It follows

that the dynamics of the trait-group model will be the same as those of the group selection model

< I , f,G >. And, so, the steady states of the two models will coincide too.

3 Group Selection Games

In the previous section we described in full detail what we think is a natural unified model of group

selection capturing both group selection based directly on non-random matching (e.g. Bergström,

2003; Kerr and Godfrey-Smith, 2002), and haystack/trait-group models (e.g. Cooper and Wallace, 2004;

Maynard Smith, 1964; Wilson, 1975). Except when we described the group games in section 2.1, we

made no mention of game theory — in fact the only reason we did mention this was because we need

it in this section. In this section we are going to shift the perspective entirely to a game theoretic one.

The basic underlying object of study will remain the same: We have a continuum I = [0, 1] that is now

referred to as the set of players, we have an underlying normal form game G ∈ Gn ,m as described in

section 2.1, and we have a matching rule f ∈ Fn ,m as described in section 2.2. But the “story” will be

very different. All three together will define a game which we call a group selection game:

Definition 5. (Group Selection Games) A group selection game is a tuple< I ,G , f>where I is a contin-

uum of players, G ∈Gn ,m is a symmetric normal form game, and f∈Fn ,m is a matching rule.

Here is the structure of the game: As mentioned, there is a continuum I = [0, 1] of agents. These

are identical, in particular they have the same finite set of pure strategies M = {1, . . . , m } given from

the normal form game G . The game is symmetric, so we can conveniently summarize a (pure) strategy

profile by its frequency distribution x = (x1, . . . ,xm ) ∈ Sm where the j ’th coordinate is the fraction of

the players whose strategy is j ∈ {1, . . . , m }. The individual player takes x as given and being infinites-

imally small his own choice of strategy will not affect the relative proportions expressed in x. Now, in

one description, the game has two stages: In the first stage, players choose their strategies and in the

second stage they are allocated into groups of the same finite size n ∈ {2, 3, . . .}where they execute their

strategies.18 What is crucial here is that agents do not know with certainty which group they will end

up in when they choose their strategies. However, because the structure of the game is known (com-

mon knowledge), an agent will know the rule according to which agents are allocated into groups, and

so will be able to calculate the probability of ending up in any particular type of group after a specific

strategy is chosen. This brings us back to (4) of section 2.2. Recall from that section that if x j > 0 then

w i
j (x) is the fraction of type j individuals that are allocated into groups of type i under the matching

rule f (and the state x):

18From a game theoretic perspective, it is much more natural to think of this as a situation involving uncertainty (a type of
Bayesian game). But the imperfect information perspective actually turns out to be non-standard because probabilities are
endogenously determined.
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w i
j (x) =

n i
j f i (x)

nx j
(11)

The case where x j = 0 is returned to in a moment. It is clear that from an expected payoff point-of-

view, w i
j (x) is the ex-ante probability a j -strategist has of being “drawn” into group i . It follows that the

expected payoff to strategy j will equal,

πj (x) =
∑

i∈supp(j )

w i
j (x)A

i
j , (12)

where we remind the reader that A i
j is the payoff received from playing strategy j in a group of type i

(section 2.1); and supp(j ) is the set of groups that contain at least one j -strategist (section 2.2). Com-

paring with section 2.3, this expected payoff precisely coincides with the average fitness to a type j

individual in the (deterministic) evolutionary group selection model.

Now, for the previous two definitions it is required that x j > 0. The definition of the w i
j ’s in (11)

and so the definition of the πj ’s in (12) are extended to the boundary of Sm (bdj (Sm ) = {x ∈ Sm : x j =

0}) by taking w i
j (x) = limx̃ j ↓0

n i
j f i (x̃)

nx̃ j
whenever x ∈ bdj (Sm ). Evidently, we need to assume that these

limits exist for these extensions to be well-defined (featured in theorem 2 below).19 Note that the limit

limx j ↓0
f i (x̃)
x̃ j

, if it exists, is precisely the j ’th partial (upper) derivative of f i , ∂ +j f i (x). Hence w i
j (x) =

n i
j

n
∂ +j f i (x)when x j = 0.

Finishing now the description of the game, players are allowed to choose mixed strategies, i.e., their

strategy set is Sm = {y ∈Rm
+ :
∑

j∈M y j = 1}. The expected payoff to a mixed strategy y∈Sm is then y·π(x)
where π(x)≡ (π1(x), . . . ,πm (x)). Note that if all players choose the same mixed strategy y, the state x will

necessarily be equal to y. Thus the definition of an equilibrium follows naturally:

Definition 6. (NEGS) Let < I ,G , f> be a group selection game. A strategy x∗ ∈Sm is a Nash Equilibrium

with Group Selection (NEGS) if:

x∗ ·π(x∗)≥ y ·π(x∗) for all y∈Sm . (13)

The average payoff (the welfare) at a NEGS x∗ is denoted by π̄(x∗) = x∗ ·π(x∗).

Intuitively, agents in a group selection game take the matching rule’s payoff effects into account,

and integrate into their optimal choices the fact that different choices of strategies are associated with

different probability distributions over opponents’ strategies. In a NEGS, these probabilities are “self-

fulfilling” in the sense that agents’ ex-post decisions lead to the ex-ante probabilities upon which the

19Note that from a formal point of view, this is actually not acceptable because the game will not be well-defined if the

expected payoffs are not well-defined. In a previous version of this paper we took instead w i
j (x) = lim supx̃ j ↓0

n i
j f i (x̃)

nx̃ j
which

is always well-defined. This, however, tends to lead to confusion. Hence the present slight violation of mathematical rigor.
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decisions are based. In the following sections we shall see that this concept has a very close relationship

with the steady states of the canonical group selection model (section 2.3). The remainder of this sec-

tion is devoted to showing that the NEGS concept is well-founded, and strengthening the equilibrium

concept.

Our first result states that any group selection game has an equilibrium when certain regularity

conditions are satisfied by the matching rule. Note that the differentiability requirement trivially will

be satisfied if the matching rule is differentiable at the boundary of Sm :

Theorem 2. Let < I ,G , f > be a group selection game and assume that f is continuous and that the

(upper) partial derivatives ∂ +j f i (x) exist whenever x j = 0 (for all j ∈M and i ∈ supp(j )). Then < I ,G , f>

has a NEGS.

Proof. See Appendix.

Notice that all matching rules in Example 1 satisfy the conditions of Theorem 2.

Probably the most commonly used solution concept in evolutionary game theory is that of an evo-

lutionarily stable strategy or ESS (Maynard Smith and Price, 1973). As Maynard Smith (1982, p. 14) puts

it: “If I is a stable strategy, it must have the property that, if almost all members of the population adopt

I , then the fitness of these typical members is greater than that of any possible mutant; otherwise, the

mutant could invade the population and I would not be stable.”

In the literature, ESS is usually defined in games with random matching and in the special case

when n = 2 (see Hofbauer and Sigmund, 1998, p. 63). An appropriate generalization of the ESS concept

to include non-random matching and any number of strategies is the following.

Definition 7. (ESSGS) Let < I ,G , f > be a group selection game. A strategy x̂ ∈ Sm is an Evolutionarily

Stable Strategy with Group Selection (ESSGS) if for each y∈Sm \ {x̂}, there exists ε̄y > 0 such that

x̂ ·π(εy+(1−ε)x̂)> y ·π(εy+(1−ε)x̂) for all ε∈ (0, ε̄y). (14)

As Maynard Smith’s quote suggests, the central idea behind the ESS (and therefore the ESSGS) con-

cept is that of non-invasion. This means that a (monomorphic) population where all individuals use

an ESSGS x̂ cannot be successfully invaded by a small but measurable (of measure ε up to ε̄y) group of

individuals using any other strategy y∈Sm in the sense that in the new population – composed of 1−ε
x̂-strategists and ε y-strategists – the individuals using the ESS will get higher expected payoff than the

invaders (the y-strategists). This is exactly what condition (14) expresses.

The ESSGS concept is a strengthening of the NEGS concept, just as the traditional notion of an ESS

is a strengthening of Nash equilibrium:

Theorem 3. Let < I ,G , f > be a group selection game with f satisfying the assumptions of Theorem 2.

Then any ESSGS is a NEGS.
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Proof. By way of contradiction, let us assume that some x̂ ∈ Sm is an ESSGS but not a NEGS. Then,

there exists some y ∈ Sm such that (y− x̂) ·π(x̂) > 0. But from the definition of an ESSGS, there must

exist some ε̄y ∈ (0, 1) such that for all ε ∈ (0, ε̄y), (y− x̂) ·π(εy+ (1− ε)x̂) < 0. By continuity therefore

(y− x̂) ·π(x̂)≤ 0. A contradiction.

We finish this section with an alternative characterization of an ESSGS which invokes the notion of

local superiority (see for example Weibull, 1995, p. 45) defined as follows.

Definition 8. (Local Superiority) A strategy x̂ ∈ Sm is called locally superior if there exists a neighbor-

hood U of x̂ such that for all y∈U \ {x̂}
x̂ ·π(y)> y ·π(y). (15)

Proposition 4. A strategy x̂∈Sm is an ESSGS if and only if it is locally superior.

Proof. The proof is essentially identical to that of Proposition 2.6 in Weibull (1995, pp. 45–46). There

are only two changes that need to be made: (i) The score function now is f (ε, y) = (x̂−y) ·π(εy+(1−ε)x̂)
and (ii) now there is not necessarily “at most one ε” for which f (ε, y) = 0. This is because the payoff

function is not necessarily bilinear (that is π is not necessarily linear). In the case where there is more

than one such ε, we can set ε0 =min{ε ∈ (0, 1]| f (ε, y) = 0}. Now everything is in place and the result

carries through.

4 Group Selection and Evolutionary Game Theory

In evolutionary models with random matching, there is a clear and well-known connection between

dynamic models of the replicator type and game theoretic concepts such as Nash equilibrium and

evolutionarily stable strategies (Hofbauer and Sigmund, 1998). The main purpose of this section, and

indeed the main theoretical contribution of this paper, is to show that the previous section’s notions of

a Nash equilibrium and evolutionarily stable strategy with group selection (NEGS and ESSGS, respec-

tively) are for evolutionary models of group selection what Nash equilibria and ESS are for evolutionary

models with random matching. Precisely, we are going to show that any Nash equilibrium under group

selection (NEGS) is a steady state of the corresponding evolutionary dynamical system (the replicator

dynamics).20 Furthermore, we are going to prove that any stable steady state of the replicator dynamics

(be it Lyapunov or in theω-limit sense) will be a NEGS. These results directly parallel known results on

models with random matching (see e.g. Theorem 7.2.1. in Hofbauer and Sigmund, 1998). Finally, we

will prove that any ESSGS is asymptotically stable for the associated replicator dynamics.21 Again, this

result transfers a well-known result from the random matching case over to models with non-random

matching/group selection (see e.g. Proposition 3.10. in Weibull, 1995).

20Since the evolutionary dynamics have the same steady states in discrete and continuous time, this statement obviously
applies to either.

21Note that, just as in the standard case with random matching, the stability statements refer to continuous time replicator
dynamics only.
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It should be noted that all of this section’s results also apply to trait-group models since by Theorem

1, such models can be recast as non-random matching models with the same dynamics and therefore,

of course, the same set of (stable) steady states.

Before turning to the main results, the following observation clarifies the exact relationship be-

tween our results and the mentioned results on random matching. Precisely, our results generalize

existing ones, since as we now proceed to show, if matching is assumed to be random (example 1.2) in

a group selection game, one precisely recoups the traditional Nash Equilibrium concept:

Theorem 5. Let < I ,G , f > be a group selection game under random matching. Then the set of Nash

equilibria with group selection coincides with the set of symmetric Nash equilibria in the underlying

normal form game G . Likewise, when matching is random the set of evolutionarily stable strategies with

group selection coincides with the set of evolutionarily stable strategies.

Proof. See Appendix.

Theorem 5 shows that NEGS unifies the treatment of models with or without random matching in

evolutionary game theory. In particular, theorem 6 implies as special cases Theorem 7.2.1. in Hofbauer

and Sigmund (1998) and Proposition 3.10. in Weibull (1995). But of course, the more interesting cases

arise when matching is not random.

Theorem 6. Let< I ,G , f> be a group selection game and assume that f satisfies the assumptions of The-

orem 2 and consider the evolutionary steady states of the associated dynamical systems (9)-(10). Then,

1. Any NEGS is a steady state of the discrete time replicator dynamics (9) as well as the continuous

time replicator dynamics (10).

2. If x∗ is theω-limit of an orbit x (t ) of the replicator dynamics (10) that lies everywhere in the interior

of Sm , then x∗ is a NEGS.

3. If x∗ is Lyapunov stable for the replicator dynamics (10), then x∗ is a NEGS.

4. Assume that f is of class C 1. Then if x∗ is an ESSGS, it is asymptotically stable under the replicator

dynamics (10).

Proof.

1. Let x∗ ∈Sm be a NEGS, I (x)≡ {j ∈M |x j > 0} and O(x)≡ {j ∈M |x j = 0}. Then, from (13) we get for

all y∈Sm :
∑

j∈M y jπj (x∗)≤
∑

l ∈I (x∗)x
∗
l πl (x∗)+

∑

q∈O(x∗)x
∗
qπq (x∗). Hence:

∑

j∈M

y jπj (x∗)≤
∑

l ∈I (x∗)

x ∗l πl (x∗) (16)

Now let p = arg maxj∈M πj (x∗) and r = arg maxl ∈I (x∗)πl (x∗). Clearly,
∑

l ∈I (x∗)x
∗
l πl (x∗) ≤ πr (x∗) ≤ πp (x∗)

where the second inequality holds because I (x∗)⊆M . Hence for all y∈Sm :
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∑

j∈M

y jπj (x∗)≤
∑

l ∈I (x∗)

x ∗l πl (x∗)≤πr (x∗)≤πp (x∗) (17)

Taking y= (0, . . . , 0, 1
︸︷︷︸

p -th

, 0 . . . , 0), we get πp (x∗)≤
∑

l ∈I (x∗)x
∗
l πl (x∗)≤πr (x∗)≤πp (x∗) which obviously

implies that
∑

l ∈I (x∗)x
∗
l πl (x∗) = πr (x∗). But this is only possible if πj (x∗) = πk (x∗) for all j , k ∈ I (x∗), and

this in turn implies that πj (x∗) = x∗ ·π(x∗) for all j ∈ I (x∗). From equation (10), we therefore get ẋ ∗j = 0

for all j ∈M , i.e., x∗ is a steady state.

2. Assume that x (t )∈ intSm converges to x∗ and that x∗ is not a NEGS. That x∗ is not a NEGS means

that there exists a j with ej ·π(x∗) =πj (x∗)> x∗ ·π(x∗). Hence (πj (x∗)− x∗ ·π(x∗))≥ ε > 0 for some ε > 0.

Since x (t ) converges and πj is continuous on the interior, (πj (x (t ))−x∗ ·π(x (t ))→ 0 as t →∞. This is a

contradiction. Note that at the boundary, this holds because we have defined the πj ’s so that they are

continuous onto the boundary. If we had not done that, the claim would in general be false for a vector

x∗ on the boundary. This same problem does not arise with random matching/in the usual replicator

dynamics setting because the payoff functions trivially are continuous. This shows exactly why our

“continuous extension to the boundary” is the right thing to do.

3. Precisely as in the previous proof and by continuity of theπ’s we get that if x∗ is not an NEGS then

there exists an ε> 0 such that for all x in a neighborhood of x∗: (πj (x )−x ·π(x ))≥ ε> 0. For such x , the

component x i increases exponentially which contradicts Lyapunov stability.

4. Following Weibull (1995, pp. 95–100), we will use Lyapunov’s direct method to prove the propo-

sition. What we need is to find a scalar function H that is defined on a neighborhood Q of x∗ which has

the following properties: (i) H is continuously differentiable on Q , (ii) H (x∗) = 0, (iii) H (y) > 0 for all

y∈Q \ {x∗} and (iv) Ḣ (y) = d
d t H (y)< 0 for all y∈Q \ {x∗}.

Let us consider the set Qx∗ ≡ {y∈Sm |I (x∗)⊆ I (y)} i.e. the set of all states that assign positive weights

to all the pure strategies that x∗ assigns positive weights. Obviously, x∗ ∈ Qx∗ and Qx∗ is an open set

(in the topology induced from Rm ). So, Qx∗ is a neighborhood of x∗. We will show that the function

Hx∗ : Qx∗→R defined by

Hx∗ (y) =
∑

j∈I (x∗)

x ∗j log

�

x ∗j
y j

�

satisfies all of the above conditions (i–iv) i.e. that it is a strict local Lyapunov function on Qx∗ .

First of all, it is easy to verify that (i) Hx∗ is continuously differentiable onQx∗ and that (ii) Hx∗ (x∗) = 0.

Now, as x∗ is an ESSGS, we know that there exists a neighborhood U of x∗ such that condition (14) holds

for all y ∈U . We will consider the restriction of Hx∗ on the set U ∩Qx∗ , a neighborhood of x. The next

step is to show that Hx∗ is strictly positive on U ∩Qx∗ . As the function − log(·) is convex, we get from

Jensen’s inequality:

Hx∗ (y) =
∑

j∈I (x∗)

x ∗j

 

− log

 

y j

x ∗j

!!

≥− log







∑

j∈I (x∗)

x ∗j

 

y j

x ∗j

!






≥− log







∑

j∈M

y j






= 0
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Now, in the case where I (x∗) = I (y), the first inequality is strict (because of the log’s strict concavity) and

in the case where I (x∗)( I (y), the second inequality is strict. In any case, we will always have that (iii)

Hx∗ (y)> 0 for all y∈U ∩Qx∗ \ {x∗}.
The last step is to show that Ḣx∗ is negative for all y∈U ∩Qx∗ \ {x∗}. Indeed:

Ḣx∗ (y) =
∑

j∈I (x∗)

∂j Hx∗ (y)ẏ j =−
∑

j∈I (x∗)

x ∗j
y j

ẏ j

and using equation (10), we get:

Ḣx∗ (y) =−x∗ ·π(y)+ π̄(y) = (y−x∗)π(y)

which we know is negative because of (14). So, the final condition (iv) is satisfied.

Remember from the discussion at the end of section 2.3, that the evolutionary/replicator dynamics

model has limited predictive power without accompanying stability analysis (e.g., any uniform pop-

ulation state will be a steady state). This places high demands on the analyst because models with

non-random matching lead to complicated non-linear dynamical systems whose stability properties

are non-trivial to analyze. As we shall see in the following sections, our new game theoretic concepts

(NEGS and ESSGS) to a large extent overcome these problems. The reason is the previous theorem

which ensures that when we look at the set of NEGS we select all steady states for the replicator dynam-

ics that are (Lyapunov) stable, in particular we capture any steady state for the replicator dynamics that

is also an ESSGS.

5 Some Examples

In this section we analyze a number of group selection games with 2 players and 2 strategies under

different matching rules. We apply a method that allows us to graphically portray matching rules and

makes the process of finding NEGSs and ESSGSs as simple as finding the intersections of two curves.22

We also provide comparative statics results for the class of matching rules with a constant index of

assortativity. We restrict ourselves to analysis of consistent matching rules (see section 2.2) throughout

this section.

5.1 Hawk-Dove/Chicken

A game often analyzed in the literature of both economics and biology is the Hawk-Dove (HD) game.23

Players in this game have two available pure strategies: Hawk (H) and Dove (D). In our formalization,

a Hawk-Dove game is a 2× 2 game with A2
2 > A1

1 > A2
1 > A3

2.24 The payoff matrices of three Hawk-Dove

games are depicted in Table 1.

22The method is described in the Appendix in detail.
23Economists usually refer to this game as Chicken rather than Hawk-Dove.
24As a convention in what follows and without loss of generality we will assume that A1

1 ≥ A3
2.
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D H
D 50, 50 40, 80
H 80, 40 0, 0

(a) A2
1+A2

2 > 2A1
1

D H
D 50, 50 40, 60
H 60, 40 0, 0

(b) A2
1+A2

2 = 2A1
1

D H
D 50, 50 20, 60
H 60, 20 0, 0

(c) A2
1+A2

2 < 2A1
1

Table 1: The payoff matrices of three Hawk-Dove games.

In this game, there are three Nash Equilibria: Two asymmetric ones in pure strategies (H , D) and

(D, H ) and a symmetric one in mixed strategies where both players play Dove with probability pD =
A2

1−A3
2

A2
1+A2

2−A1
1−A3

2
and Hawk with probability pH =

A2
2−A1

1

A2
1+A2

2−A1
1−A3

2
. In the group selection game the state will be

summarized by x which indicates the proportion of the population that follows D.

Equilibria of the Group Selection Game

Now, in order to find the NEGS and ESSGSs of the PD game, we follow the methodology proposed in

the Appendix. The equilibrium curves of the games in Table 1 are shown in Figure 1.

0

1

0 1

φ

x

Equilibrium Curve 1
Equilibrium Curve 2
Equilibrium Curve 3

Figure 1: Equilibrium curves of the HD games in Table 1.

Random Matching As expected, the unique equilibrium of the group selection game under the Ran-

dom Matching rule yields the unique symmetric Nash equilibrium of the game where a proportion

x ∗ = A2
1−A3

2

A2
1+A2

2−A1
1−A3

2
of the population play D.

Complete Segregation Under complete segregation, there is a unique equilibrium of the group se-

lection game x ∗ = 1 where the whole population follows D.
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Constant Index of Assortativity Under a constant index of assortativity rule (see Appendix), the group

selection game has a unique equilibrium given by:

x ∗ =







A1
1−A3

2
1−α +A2

1−A1
1

A2
1+A2

2−A1
1−A3

2
if 0≤α< A2

2−A1
1

A2
2−A3

2

1 if
A2

2−A1
1

A2
2−A3

2
≤α≤ 1

(18)

The equilibrium-finding process is shown in Figure 2 for constant index of assortativity rules for

different values of α. The comparative statics results are summarized in Figure 3.

0

1

0 1

φ

x

Equilibrium Curve
Random Matching (α=0)

α=0.2
α=0.4
α=0.6
α=0.8

Complete Segregation (α=0)

Figure 2: NEGS with a constant index of assor-
tativity in a Hawk-Dove game.

0

1

0
A2

2−A1
1

A2
2−A3

2
1

x∗

α

ESSGS

Figure 3: NEGS as a function of the index of
assortativity in a Hawk-Dove game.

In the HD game, strategies x ∈ [0,
A2

1−A3
2

A2
2+A2

1−2A3
2
) cannot be equilibria of the group selection game under

any (consistent) matching rule due to constraint (31) onφ.

Welfare

In order to conduct welfare analysis, we use the methodology described in the Appendix. The isogrowth

diagram of a Hawk-Dove game is shown in Figure 4. The comparison of equilibrium welfare in the

group selection game and the normal form game is shown in Figure 5. Notice that the equilibrium

welfare curve is not defined for x ∈ [0,
A2

1−A3
2

A2
2+A2

1−2A3
2
) as these states can never be attained as equilibria of

the group selection game. In all HD games, the level of equilibrium welfare is strictly increasing with

the proportion of Doves in the population and thus, maximum equilibrium welfare is obtained when

the equilibrium state is x = 1 i.e. when the whole population follows D.

Now, in the case where A2
1+A2

2 ≤ 2A1
1, maximum equilibrium welfare coincides with the maximum

expected payoff players using symmetric strategies can get in the normal form game (which is attained

when both players play D with certainty).

In the case where A2
1+A2

2 > 2A1
1, the normal form game maximum expected payoff (under symmet-

ric strategies) is obtained if both players play D with probability p ∗D =
A2

1+A2
2−2A3

2

2(A2
1+A2

2−A1
1−A3

2)
. However, when a

matching rule that makes x = p ∗D an equilibrium is implemented, equilibrium welfare is reduced below

A1
1. This is because the proportion of Hawk-Dove pairs – which are efficient in the utilitarian sense – is

reduced in favor of more Hawk-Hawk and Dove-Dove pairs which are not as efficient.
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Figure 4: Isogrowth diagram for a HD game.

A3
2

A2
1

A1
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2
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1−2A3
2
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x

Equilibrium Welfare
Normal Form Game Welfare

Figure 5: Equilibrium welfare and normal
form payoff for a HD game.

5.2 Stag Hunt

Another game with interesting insights on social behavior is the Stag Hunt.25 In our notation a SH game

will have values A1
1 > A2

2 ≥ A3
2 > A2

1. The payoff matrices of three SH game are depicted in Table 2.

S H
S 100, 100 0, 70
H 70, 0 60, 60

S H
S 100, 100 0, 70
H 70, 0 70, 70

S H
S 100, 100 0, 80
H 80, 0 70, 70

Table 2: The payoff matrices of three SH games.

The game has three Nash equilibria, all symmetric. Two of them are in pure strategies (S,S) and

(H,H) and one in mixed strategies where both players play S with probability pS =
A3

2−A2
1

A1
1+A3

2−A2
1−A2

2
and H

with probability pH =
A1

1−A2
2

A1
1+A3

2−A2
1−A2

2
. Also, we require that A2

2+A3
2 > A1

1+A2
1 so that even though the pure

strategy equilibrium (S,S) is payoff dominant (i.e. it yields higher payoffs for both players), the pure

strategy equilibrium (H,H) is risk dominant (i.e. if we assume that players are not sure which strategy

their opponent will follow and assign equal probabilities to the two strategies, then the expected payoff

from playing H exceeds the expected payoff from playing S).26

The importance of the Stag Hunt is that it shows that although the efficient outcome (S,S) is a Nash

equilibrium, it may not always be selected. More than that, it has been shown that in some stochastic

evolutionary models the risk dominant outcome occurs with probability 1 (Young, 1993) and that in

global games, the risk dominant outcome is the only one that survives iterative elimination of domi-

nated strategies when noise tends to vanish (Carlsson and Van Damme, 1993). So the literature suggests

that in several environments it is the risk dominant rather than the payoff dominant outcome that pre-

vails. We show that in our model this inefficiency can be amended under matching rules with high

enough assortativity.

25For an extensive analysis see Skyrms (2004).
26See Carlsson and Van Damme (1993).
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Equilibria of the Group Selection Game

The equilibrium curves of the games in Table 2 are shown in Figure 6.

0

1

0 1

φ

x

Equilibrium Curve 1
Equilibrium Curve 2
Equilibrium Curve 3

Figure 6: Equilibrium curves of the SH games in Table 2.

Random Matching As before, under the Random Matching rule, as expected, we get that there are

three NEGS in the group selection game that coincide with the three Nash equilibria of the normal

form game: two stable ones (ESSGSs) at x = 0 and x = 1 (where the whole population follows H and

S respectively) and a NEGS which is not an ESSGS where a fraction of the population x = A3
2−A2

1

A1
1−A2

1+A3
2−A2

2

follows S.

Complete Segregation Under the complete segregation matching rule, there is only one NEGS where

the whole population follows S (x = 1) and it is also an ESSGS.

Constant Index of Assortativity Under a matching rule with a constant index of assortativity α we

have two cases depending on the value of α:

• if α ≤ A3
2−A2

1

A1
1−A2

1
we have three NEGS: two NEGS that are also ESSGSs where everybody follows H

(x = 0) or S (x = 1) and a NEGS which is not an ESSGS where a proportion of the population

x =
A3

2−A1
1

1−α +A1
1−A2

1

A1
1+A3

2−A2
1−A2

2
follows S

• if α >
A3

2−A2
1

A1
1−A2

1
there is only one NEGS that is also an ESSGS where the whole population follows S

(x = 1).

The equilibrium-finding process is shown in Figure 7 for constant index of assortativity rules for

different values of α. The comparative statics results are summarized in Figure 8.

As in the case of the Hawk-Dove game, in the Stag Hunt there are some states that cannot be at-

tained as equilibria under any matching rule. At these states, namely x ∈
�

A1
1−A2

1

2A1
1−A2

1−A2
2

, 1
�

, the dynamics

will tend to lead the population towards x = 1 where they all follow S under any matching rule. So, if
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Figure 7: NEGS with a constant index of assor-
tativity in a SH game.
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x∗

α

ESSGS
NEGS (not ESSGS)

Figure 8: NEGS as a function of the index of
assortativity.

it happens that the system reaches one of these states, then it will be eventually brought to the state

where the whole population uses the efficient strategy S.

Risk Dominance Notice that there is a value α∗ = (A
2
2−A2

1)−(A
1
1−A3

2)
(A2

2−A2
1)+(A

1
1−A3

2)
for which the basin of attraction of

the ESSGS at x = 1 is greater than that of the ESSGS at x = 0 iff α ∈ (α∗, 1]. We can interpret that as

follows: Assume that players in the population do not know whether each of the other players is going

to play S or H and so, using the principle of insufficient reason, they ascribe equal probabilities (equal

to 0.5 each) to each other player following S and H.27 Then, if α∈ (α∗, 1] the expected payoff for a player

following S is higher than his expected payoff when he follows H and so, given the aforementioned

beliefs, it is a best response for all of them to follow H, leading to the state being x = 1. Conversely

when α∈ [0,α∗).

So, in the terms described above, we can have a notion of risk dominance in the group selection

game. Of course – having assumed that A2
2+A3

2 > A1
1+A2

1 as is usually done in Stag Hunt games – in the

case where α = 0, it is always the case that the risk dominant equilibrium is the one where the whole

population follows H (x = 0).

Welfare

The isogrowth diagram of a Stag Hunt game is shown in Figure 9. The comparison of equilibrium

welfare in the group selection game and the normal form game is shown in Figure 10. Notice that the

equilibrium welfare curve is not defined for x ∈
�

A1
1−A2

1

2A1
1−A2

1−A2
2

, 1
�

as these states can never be attained as

equilibria of the group selection game. The maximum level of welfare is obtained when the equilibrium

state is the one where everybody follows S (x = 1) and it coincides with the maximum expected payoff

players using symmetric strategies can get in the normal form game.

27See also Carlsson and Van Damme (1993).
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Figure 9: Isogrowth diagram for a SH game.
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Figure 10: Equilibrium welfare and normal
form payoff for a SH game.

5.3 Prisoner’s Dilemma

As a final application, we leave arguably the most analyzed game in the literature and which has served

as the canonical way to model altruistic behavior: The Prisoner’s Dilemma (PD). The two players in-

volved in the game have two possible (pure) strategies each: Cooperate (C) or Defect (D). In our nota-

tion, a PD game is a game with A2
2 > A1

1 > A3
2 > A2

1. The payoff matrices of three PD games are shown in

Table 3.

C D
C 40, 40 0, 100
D 100, 0 20, 20

(a) A2
1+A2

2 > A1
1+A3

2

C D
C 60, 60 0, 70
D 70, 0 40, 40

(b) A2
1+A2

2 < A1
1+A3

2

C D
C 60, 60 0, 80
D 80, 0 20, 20

(c) A2
1+A2

2 = A1
1+A3

2

Table 3: The payoff matrices of three Prisoner’s Dilemma games.

In any PD game, there exists a unique pure strategy Nash equilibrium (D,D) as defection strictly

dominates cooperation. The outcome is far from optimal as there is an obvious Pareto improvement if

we move to (C,C).

Equilibria of the Group Selection Game

The equilibrium curves the Prisoner’s Dilemma games of Table 3 are shown in Figure 11.

Random Matching Under random matching, φ(x ) = 2x (1−x ). Out of the three conditions (32), (33)

and (34), only (33) is satisfied for any PD game and this agrees with what we expected as the NEGS

under random matching should coincide with the Nash Equilibrium i.e. all follow D (x = 0). It’s easy to

check using condition (37) that the NEGS at x = 0 is also an ESSGS.
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Figure 11: Equilibrium curves of the PD games in Table 3.

Complete Segregation Under complete segregation, φ(x ) = 0 and so, only condition (34) is satisfied.

Thus, the unique NEGS is x = 1, i.e. pure cooperation. This state is also an ESSGS.

Constant Index of Assortativity In the case of a ‘constant index of assortativity’ rule, φ(x ) = 2(1−
α)x (1 − x ) (see example 3 in section 2.2). Depending on the value of α, we get all three cases. As

intuition would suggest, the higher the assortativity, the higher the level of cooperation in equilibrium.

1. If A2
1+A2

2 > A1
1+A3

2, then there is a unique equilibrium given by:

x ∗(α) =















0 if α≤ A3
2−A2

1

A1
1−A2

1
A1

1−A3
2

1−α +A2
1−A1

1

A2
2−A3

2+A2
1−A1

1
if

A3
2−A2

1

A1
1−A2

1
<α<

A2
2−A1

1

A2
2−A3

2

1 if α≥ A2
2−A1

1

A2
2−A3

2

.

2. If A2
1+A2

2 < A1
1+A3

2 then

(a) if α<
A2

2−A1
1

A2
2−A3

2
, there is a unique equilibrium at x ∗ = 0 (all play D),

(b) if α>
A3

2−A2
1

A1
1−A2

1
, there is a unique equilibrium at x ∗ = 1 (all play C),

(c) if α= A2
2−A1

1

A2
2−A3

2
or α= A3

2−A2
1

A1
1−A2

1
, there are two equilibria: one at x ∗1 = 0 and one at x ∗2 = 1 and

(d) if
A2

2−A1
1

A2
2−A3

2
< α <

A3
2−A2

1

A1
1−A2

1
, there are three equilibria: one at x ∗1 = 0, one at x ∗2 =

A3
2−A1

1
1−α +A1

1−A2
1

A1
1+A3

2−A2
1−A2

2
and

one at x ∗3 = 1.

3. If A2
2+A2

1 = A3
2+A1

1 then

(a) if α<
A2

2−A1
1

A2
2−A3

2
, there is a unique equilibrium at x ∗ = 0 (all play D),

(b) if α>
A2

2−A1
1

A2
2−A3

2
, there is a unique equilibrium at x ∗ = 1 (all play C) and

(c) if α= A2
2−A1

1

A2
2−A3

2
, there is a continuum of equilibria. Actually, any x ∈ [0, 1] is an equilibrium.
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The equilibrium-finding process for all three cases is shown in Figure 12 for constant index of as-

sortativity rules with different values of α. The comparative statics results are summarized in Figure

13.
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Figure 12: NEGS with a constant index of assortativity in three different cases of PD games.
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Figure 13: NEGS as a function of the index of assortativity for three different cases of PD games.

Risk Dominance In the case where A2
1+A2

2 < A1
1+A3

2 (where two ESSGSs exist for certain values of α),

the risk dominant equilibrium (in the sense introduced in 5.2) is the one where all play D (x = 0 when

α < α∗ = (A2
2−A2

1)−(A
1
1−A3

2)
(A2

2−A2
1)+(A

1
1−A3

2)
and the one where all play C (x = 1) when α > α∗, as was the case in the SH

game.

Notice that unlike the HD and the SH games, in a PD game, all states can be attained as equilibria if

an appropriate matching rule is selected.

Welfare

The isogrowth diagrams of three Prisoner’s Dilemma games are shown in Figure 14. The comparison

of equilibrium welfare in the group selection game and the normal form game for each of the three

cases is shown in figure 5. The maximum level of welfare is obtained when the equilibrium state is

the one where all cooperate (x = 1) and it coincides with the maximum expected payoff players using
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symmetric strategies can get in the normal form game when A2
1 + A2

2 > 2A1
1 > A1

1 + A3
2. In the case

where A2
1 +A2

2 > 2A1
1 the maximum value of welfare in the normal form game is obtained when both

players play C with probability pC =
A2

1+A2
2−2A3

2

2(A2
1+A2

2−A1
1−A3

2)
. However, when this state is implemented as an

equilibrium in the group selection game, it does not grant the players such high expected payoffs as the

frequency of (C,D) or (D,C) pairs is not high enough. The implementation of an assortative matching

rule can make the state an equilibrium but this happens at the expense of obtained payoff at that state.

Also, if we restrict ourselves to equilibrium payoffs, then the payoff obtained at x = A2
1+A2

2−2A3
2

2(A2
1+A2

2−A1
1−A3

2)
is no

longer the optimal payoff. Once again, utilitarian optimality is achieved when x = 1 (all cooperate) is

implemented as an equilibrium.
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Figure 14: Isogrowth diagrams for three PD games.
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Figure 15: Equilibrium welfare and normal form payoff in three PD games.

6 Group Selection and the Fitness of Populations

Group selection can explain behavioral traits such as altruism or cooperation which cannot arise in

Nash equilibrium and so cannot be favored by natural selection if matching is random (see theorem 5).

Importantly, such departures from egoism may be superior to the outcomes under random matching in

the sense that the average fitness may be higher. The classical example here is of course the prisoners’
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dilemma where the outcome of random matching yields lower average fitness than outcomes with

assortative matching (see section 5.3 and also Bergström, 2002). In this section we are going to discuss

these issues drawing on both the abstract results and the concrete examples of the previous sections.

As will become clear, our new concepts (NEGS and ESSGS) allow us to push the discussion substantially

forward in comparison with existing literature.

First, we need to define the concepts involved. Recall from section 2 that the average fitness π̄(x) at

a population state x∈Sm is given by π̄(x) =
∑m

j=1 x jπj (x) (equation (8)). In the context of a group selec-

tion game< I ,G , f>, we referred instead to this as the average payoff or the welfare (see equation (12)).

Since average fitness in the evolutionary model is obviously equal to average payoff in the (evolution-

ary) game theory model, and since by theorem 6 we know how the various equilibrium/steady state

concepts relate to each other, we need not differentiate between them in what follows. Accordingly, we

use the term average fitness exclusively from now on. Average fitness at a population state x will from

now on be denoted by π̄f(x) so as to explicitly mention the matching rule. This allows us to easily com-

pare average fitnesses under different matching rules for a fixed underlying payoff structure/normal

form game G (e.g., prisoners’ dilemma or hawk-dove).

Now as was already mentioned, random matching – or for that matter any other specifically given

matching rule f – may not maximize average fitness in a NEGS x∗. The prisoners’ dilemma was already

mentioned above, but in the previous section we saw that the observation remains valid in other stan-

dard 2 by 2 games such as hawk-dove and stag-hunt; and it also remains valid if instead of NEGS we

focus on ESSGS. Thus, evolution under non-random matching certainly does not imply fitness maxi-

mization. The interesting next question therefore is whether for a fixed underlying normal form game

there exists some matching rule given which average fitness will be maximized in NEGS; and if the an-

swer is yes, to characterize these matching rules in concrete situations. Thus in the prisoners’ dilemma,

random matching is inferior in average fitness terms, but as we saw in section 5.3, a rule such as com-

plete segregation will lead to equilibria where everybody cooperates and so to average fitness maxi-

mization. When discussing this topic it is important to understand that when f is varied, not only does

the set of NEGS (and ESSGS and also, the set of steady states of the replicator dynamics) change – the

average fitness π̄f(x)will also change at any given population state x. So if some population state maxi-

mizes welfare but is not a NEGS at some matching rule f1, it could be a NEGS at another matching rule

f2 but no longer maximize welfare! Any sensible discussion must therefore consider the joint selection

of a population state and matching rule as captured by the following definition.

Definition 9. (Evolutionary Optimum) Let G be a normal form game. A population state x∗ ∈ Sm to-

gether with a matching rule f∗ ∈ Fn ,m is said to be an evolutionary optimum if π̄f∗ (x∗) ≥ π̄f(x) for all

(x, f)∈E= {(x, f)∈Sm ×Fn ,m : x is a steady state of 〈I ,G , f〉}.

Intuitively, a population state x∗ and a matching rule f∗ form an optimum if they lead to maximum

average fitness of the population among all population state/matching rule combinations that satisfy

the steady state restriction. Note that the restriction to steady states is entirely natural here: Any pop-
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ulation state that is not a steady state under some matching rule would immediately be “destroyed” by

natural selection.28 Given these definitions, we can now answer the previous question:

Theorem 7. Let (x∗, f∗) be an evolutionary optimum. Then there exists a matching rule h ∈ Fn ,m which

satisfies the assumptions of theorem 2, such that x∗ is a NEGS under h, and such that (x∗, h) is an evolu-

tionary optimum (in particular, π̄h(x∗) = π̄f∗ (x∗)).

Proof. See Appendix.

Theorem 7 can be thought of as the “second welfare theorem of evolution” telling us that any evo-

lutionary optimum can be “decentralized” in the evolutionary environment through some matching

rule.29 That this should be so is easy to see in simple cases, but it is in general a surprising result. In

most standard games (including the ones considered in this paper), there is a premium on coordina-

tion/uniformity, and so what is needed in order to reach an evolutionary optimum is a sufficiently high

level of assortativity. In games where there is a premium on agents in a group being different – e.g., due

to specialization – it will instead be a sufficiently high degree of dissociation that leads to evolution-

ary optimality. It is not obvious that Theorem 7 should hold in the latter case, to say nothing of cases

that are neither assortative or dissociative. To illustrate with some concrete examples, consider first the

Hawk-Dove model of section 5.1. As was shown in that section, the Hawk-Dove model has a unique

evolutionary optimum, namely the state where all individuals are doves (since this state is uniform, it

will be a steady state of the replicator dynamics under any matching rule). As was also shown in section

5.1, the doves only outcome is not a NEGS for all matching rules, however.30 Specifically, (18) shows

that only when matching is sufficiently assortative will a uniform population of doves be a NEGS.31

Intuitively, what happens when this “assortativity threshold” is crossed is that hawks become so likely

to end up with other hawks that it is not worthwhile playing hawk even if the population of hawks is

infinitely small. What all of this shows is that as predicted by theorem 7, the evolutionary optimum

(doves only) will be a NEGS for some matching rule. But unless the environment is such that matching

is sufficiently assortative, evolution will not lead to the evolutionary optimum. In a real-world situa-

tion where a specific matching rule and a specific payoff structure is in effect, this of course implies

that evolution can easily produce a mixed population of hawks and doves. But it is interesting that

evolution may in fact lead to the evolutionary optimum even without recourse to the extremities of

either complete segregation or direct reciprocity. Furthermore, equation (18) tells us exactly which pa-

28Note in this connection that any uniform population state is a steady state (in fact, any uniform population state is a
steady state under any matching rule).

29If in Definition 9 matching rules are required to be consistent, one can show that the “decentralizing” matching rule of
Theorem 7 can be chosen to be consistent also.

30Compare with direct reciprocity where the doves only outcome is always supported – along with any other payoff in the
maximin set of the associated normal form game – as a subgame perfect Nash equilibrium in the infinitely repeated game
(see e.g. Rubinstein, 1979).

31In fact, this population state will be an ESSGS for such levels of assortativity, and so cannot be invaded by hawks even
in the highly demanding sense of an ESSGS (in particular, it will be asymptotically stable for the replicator dynamics), see
section 5.1 for details.
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rameters account for the relationship between the level of assortativity in matching and evolutionary

optimality. For example, less assortativity is needed if A2
2 − A1

1 is “small” which simply means that a

Dove facing a Dove will gain relatively less from switching to Hawk (A1
1 is the payoff to a Dove facing a

Dove, and A2
2 is the payoff to a Hawk facing a Dove).

Another illustration is provided by the Stag Hunt model of section 5.2. As we saw in that section,

the Stag Hunt model has multiple NEGS for “low” levels of assortativity: Two uniform population states

(everyone hunts for hare, everyone hunts for stag), and a mixed population state. For “high” levels of

assortativity, only the state where everyone hunts for stag is a NEGS. The evolutionary optimum is for

everyone to hunt for stag (and again this evolutionary optimum is supported by any matching rule

since it is uniform). Thus the evolutionary optimum is a NEGS for all levels of assortativity which

means that the prediction of theorem 7 bears out in a particularly strong way. But only if assortativity

is sufficiently high will the evolutionary optimum be the unique NEGS, and so – just as in the Hawk-

Doves model – evolution may not lead to the evolutionary optimum in a real-world situation with a

specific matching rule and specific payoffs.32

7 Conclusion

This paper had two main purposes. Firstly, to extend the existing machinery of evolutionary game the-

ory to include models of group selection; and secondly, to use the new concepts developed to discuss

the relationship between different kinds of selection and the fitness of populations. Two new equilib-

rium concepts were proposed, Nash equilibrium with group selection (NEGS) and evolutionarily stable

strategy with group selection (ESSGS). These equilibrium concepts contain as special cases the stan-

dard ones; indeed when matching is random, the set of NEGS is just the symmetric Nash equilibria

and the set of ESSGS is the evolutionarily stable strategies (theorem 5). We proceeded to show in our

main theoretical result (theorem 6) that NEGS and ESSGS are for models with arbitrary matching rules

what Nash equilibrium and ESS are for models with random matching. In particular, any stable steady

state of the replicator dynamics is a NEGS and any ESSGS is an asymptotically stable steady state. As

in the standard random matching setting, these results form the theoretical foundation upon which

evolutionary game theory rests; hence our concepts extend the traditional game theoretic framework

to models with group selection. As for the fitness of populations, our main result is the “second welfare

theorem” of evolution (theorem 7) which states that any evolutionary optimum will be a NEGS under

some matching rule.

32Concerning the situation with multiple NEGSs, the standard way to “resolve” multiplicity in the evolutionary setting
would be to think of this as a situation with path-dependence so that, depending on initial conditions, a society may end up
either as one where everyone hunts for hares or everyone hunts for stags (as mentioned, the mixed NEGS is not an ESSGS).
From our game theoretic perspective, it is however more natural to employ a suitable selection criterion (see the discussion
in section 5.2, where we saw that a global games approach will actually favor the hares only outcome for “low” levels of
assortativity because this is the risk-dominant outcome (Carlsson and Van Damme, 1993).
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We also showed (theorem 1) that models with structured populations, such as the haystack and trait-

group models, can be captured by appropriately defined matching rules. This makes the dynamics and

equilibrium analysis of such complicated models considerably easier as one can then simply apply the

concepts of NEGS and ESSGS in a straightforward manner.

From an applied point of view, the great advantage of the game theoretic approach is the additional

structure it imposes compared to dynamic models of the replicator type. In particular, the analysis

becomes simpler and the results become more powerful. Recall that all uniform population states

(all individuals employing the same strategy) are steady states for the replicator dynamics. In fact,

the set of steady states includes everything that is “evolutionarily feasible” (and a good way to think of

this set is in fact as evolutionary models’ parallel to the feasible set of an exchange economy). This of

course makes stability analysis absolutely critical in the dynamic setting – the problem being that such

stability analysis is not straight-forward in group selection models where the replicator dynamics forms

a complex non-linear dynamical system.33 In contrast, we saw in section 5 that the set of NEGS and

ESSGS can be computed with great ease in group selection games, and equally importantly, the game

theoretic formulation allows for abstract analysis and the derivation of general results. An example of

such a general result is theorem 5 which states that with random matching, the set of NEGS coincides

with the symmetric Nash equilibria in the underlying normal form game which intuitively means that

random matching precisely corresponds to “self-serving” behavior in general. Such a result would be

impossible to establish within the traditional group selection framework of section 2. The “second

welfare theorem” of evolution (theorem 7) is another example of this.

Often, matching is a geographical phenomenon (think of viruses, neighborhood imitation amongst

humans, or trait-group models as studied in section 2.4), or a reflection of individuals’ limited ability

to monitor other individuals (see the introduction for further details). But when matching rules corre-

spond to institutions or conventions, not explaining how they come about misses half the story. A clear

weakness of existing group selection models – including the results in this paper – is in this connection

that the matching rules are taken as given. An obvious topic for future research would be to model the

evolution of the matching rules (i.e., to endogenize them). Consider monitoring: If individuals gain an

advantage by increasing their ability to monitor (by increasing their intelligence and memory), we can

see how matching rules will over time evolve to be less and less random (typically more and more as-

sortative). This then would be a true endogenous description of matching (institutions, conventions).

The simplicity of the game theoretic framework presented in this paper should definitely put such a

theory of matching rules within reach.

33Thus, consider for example the discrete time replicator dynamics of equation (9) in the often-studied case with two
strategies. Unlike in models with random matching where the π’s are linear, in models with non-random matching these
coefficients will depend on the population state through the matching rules in an often very complicated way. This of course
makes even local stability analysis a daunting task.
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Appendix

Proofs

Proof of Theorem 1

Proof. We will restrict our attention to 2×2 games but similar extensions will hold for games with more

strategies and/or players.

As the population is evolving in two different time modes (one related to dispersion phases and an-

other one related to generations within trait-groups), we choose to use t to denote dispersion phases

and τ to denote generations within the trait-groups. Our aim is to identify how the population evolves

from one dispersion phase to the next. Intuitively, that would relate more to discrete-time dynamics

but one can extend that to continuous time if the time scale of that evolutionary changes need to occur

is large enough. In what follows, we calculate the fitness of each type of individual. The relevant dy-

namic equations (either discrete- or continuous-time) will determine the evolution of the population

thereafter.

At dispersion phase t , the original population which comprises of a proportion of x1 1-type indi-

viduals and x2 2-type individuals is being randomly drawn to form trait-groups of initial size 2. The

outcome is that there will be a proportion x 2
1 of type-1 trait-groups ({11}), a proportion 2x1x2 of type-

2 trait-groups ({12}) and a proportion x 2
2 of type-3 trait-groups ({22}). Each of these trait-groups will

evolve independently and in isolation of the rest of the trait-groups for T generations.

Now at each generation τ a (isolated) trait-group will have a population that comprises of N1 1-

type and N2 2-type individuals. These individuals are going to be drawn into pairs at each generation

where they will act according to their types and get payoffs. Obviously, out of N1+N2 individuals N1+N2
2

groups (pairs) can be formed. Let’s call κ the random variable that indicates how many of these groups

are of type 2. Then the number of groups of type 1 will be given by N1−κ
2 and the number of groups of

type 2 will be given by N2−κ
2 . The probability that κ type 2 groups will be formed by a population of N1

1-type and N2 2-type individuals is given by

F (κ; N1, N2) =

¨

N1!N2!(N1−κ−1)!!(N2−κ−1)!!
(N1−κ)!(N2−κ)!κ!(N1+N2−1)!! κ∈ {0, 1, . . . , min{N1, N2}}
0 otherwise

where

(2l −1)!!=







∏l
i=1(2i −1) if l ∈N+

1 if l = 0
0 otherwise

is an appropriate extension of the odd factorial.

Each of the pairs formed in the first stage (when drawn from the population) will be the first gener-

ation of a trait-group that will evolve separately from all other groups (pairs) for T generations.
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The evolution process of each of the trait-groups follows a stationary Markov chain. The state of the

trait-group at time t is a vector ωt = (ωt
1,ωt

2,ωt
3) that represents the number of pairs of each type in

the given trait-group. Let Amax =maxi∈{1,2,3}
∑

j n i
j A i

j be the maximum number of children that can be

obtained by a matched pair in a trait-group. Then, after T generations, a trait-group that began with 2

individuals cannot exceed a population of K =
�

Amax
2

�T
. So, the number of groups after T periods can-

not exceed K
2 . This means that the state space is finite and is Ω =

¦

(ω1,ω2,ω3)∈N3 : 0<
∑

i ωi ≤ K
2

©

.

We will let µ denote the cardinality of Φ. We can also impose an ordering � such that:

ω�ω′⇔







∑

i ωi <
∑

j ω
′
j or

∑

i ωi =
∑

j ω
′
j andω1 >ω

′
1 or

∑

i ωi =
∑

j ω
′
j andω1 =ω′1 andω2 >ω

′
2

This is a total order over Ω and thus it induces a ranking # of the elements of Ω. By #ω we will denote

the rank of stateω under�. Likewise #−1n will denote the n-th state according to the ranking induced

by �.

The only element of the Markov chain that we need to determine is the transition probabilities. So,

the probability that stateω′ will occur at period t +1 when we know that the trait-group was at stateω

at period t is given by:

P(ω′|ω) =

(

F
�

ω′2; N1(ω), N2(ω)
�

if (ω′1,ω′3) =
�

N1(ω)−ω′2
2 ,

N2(ω)−ω′2
2

�

0 otherwise

where N1(ω) = 2ω1A1
1 +ω2A2

1 and N2(ω) = 2ω3A3
2 +ω2A2

2 give the population of 1-type and 2-type

individuals in the trait-group at stateω respectively. We will callP the matrix that is defined as follows:

Pi j = P(#−1 j |#−1i ).

At each periodτ, let P(τ)∈Sµ denote the vector whose i -th entry gives the probability that the trait-

group is in state #−1i . As the Markov process is stationary, P(τ) will be given by P(τ) =P t P(0). Where

P(0) is the initial state of the trait-group i.e. P(0) ∈ {(1, 0, . . . , 0) , (0, 1, 0, . . . , 0) , (0, 0, 1, 0, . . . , 0)} as there’s

exactly one pair of individuals in each of the trait-groups in the beginning. In the interest of brevity, we

will call these vectors P1(0), P2(0) and P3(0) respectively. So, at the end of the T periods we will have

Pi (T ) =P T Pi (0) for i = 1, 2, 3. So after T periods have gone by, the expected number of type-i groups

that will be at a trait-group that contained one type-k group at time 0 will be:

g k
i =

µ
∑

l=1

Pk
l (T )(#

−1l )i

Actually, as we have a continuum of trait-groups, by using a law of large numbers we can say that the

distribution of group types in trait-groups will be (almost surely) exactly the one given by the above

formula.

We will calculate the average fitness that each starting j -type individual will get (i.e. the number

of descendants a j -type is expected to have) after T periods. A j -type individual that is drawn into
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a k type trait-group is expected to have
∑

i∈gsupp(k ) g
k
i

n i
j

n k
j

A i
j descendants. As the distribution of trait-

groups is given by the random matching rule r(x) = (r1(x), r2(x), r3(x)) = (x 2
1 , 2x1x2,x 2

2 ) and as a k -type

trait-group contains n k
j first-generation i -type individuals, we can calculate the average fitness of a

first-generation j -type individual by:

πj (x) =

∑

k∈supp(j ) rk (x)n k
j

∑

i∈gsupp(k ) g
k
i

n i
j

n k
j

A i
j

∑

k∈supp(j ) rk (x)n k
j

Where gsupp(k ) =
¦

i ∈ {1, 2, 3} |g k
i > 0

©

. Explicitly, for type-1 individuals, the average fitness is

x1 g 1
1 A1

1+x2

�

2g 2
1 A1

1+ g 2
2 A2

1

�

(19)

whereas for type-2 individuals, average fitness is

x2 g 3
3 A3

2+x1

�

2g 2
3 A3

2+ g 2
2 A2

2

�

. (20)

The system will follow the replicator dynamics (either the discrete-time version of equation (9) or the

continuous-time version of equation (10)) with fitness functions given by (19) and (20). We will show

that a group selection model with a matching rule given by

f i (x) =

∑

k∈gsupp−1(i ) rk (x)g k
i

∑3
l=1

∑

k∈gsupp−1(l ) rk (x)g k
l

(21)

has exactly the same dynamic behavior as the trait-group model. Actually, we can rewrite the above

matching rule as

f i (x) =

∑3
k=1 rk (x)g k

i
∑3

l=1

∑3
k=1 rk (x)g k

l

(22)

as g k
l = 0 for all k /∈ gsupp−1(l ).

In the group selection model < I , f,G >, the payoffs for type-1 individuals is given by (see equation

(12))
f 1(x)

x1
A1

1+
f 2(x)
2x1

A2
1

while the fitness for type-2 individuals is given by

f 2(x)
x2

A3
2+

f 2(x)
2x2

A2
2.

The key observation that makes it easy to show the result is that two models have identical dynam-

ics if they have identical fractions π1(x)
π2(x)

for all x ∈ S2. So, in order for the trait-group model to have the

same dynamics as the group selection model, it is sufficient for f(x) to satisfy:

x1 g 1
1 A1

1+x2

�

2g 2
1 A1

1+ g 2
2 A2

1

�

x2 g 3
3 A3

2+x1

�

2g 2
3 A3

2+ g 2
2 A2

2

� =
f 1(x)

x1
A1

1+
f 2(x)
2x1

A2
1

f 2(x)
x2

A3
2+

f 2(x)
2x2

A2
2
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It is easy to confirm that the above condition is satisfied for the matching rule given by (21). Also notice

that f satisfies f 1(x)+ f 2(x)+ f 3(x) = 1 and f 1(x), f 2(x), f 3(x)≥ 0 as well as the conditions of theorem 2.

Notice that f as calculated above would not necessarily be consistent as it may fail to satisfy con-

dition (3). As the trait-group model and the group selection model under f share the same dynamics,

they will also have the same steady states. It is also interesting to point out that the matching rule f

reduces to the random matching rule when T = 1 (in this case g k
k = 1 and g k

i = 0 for k 6= i ).

Proof of Theorem 2

Best reply correspondence The best reply correspondence (BRC) is a correspondence B : Sm ⇒ Sm

defined by:

B (x) =
�

y∈Sm :
�

∀ỹ∈Sm
�

Π(y, x)≥Π(ỹ, x)
	

and gives the mixed strategies an agent can follow so as to maximize his/her expected payoff given that

the state is x.

We also define the value function V : Sm →R that gives the maximum payoff an agent can achieve

at any given state. Formally: V (x) =maxy∈Sm Π(y, x).

Equilibrium

We intend to show that under some assumptions on f, an equilibrium state always exists. We will prove

the existence result by using Kakutani’s fixed point theorem. In order to do that, we need to show

that the BRC is convex-valued , nonempty-valued and upper hemicontinuous. These prerequisites are

proven in Lemmata 8 and 9.

Lemma 8 (Convex-valued BRC). For any group selection game under a matching rule

G =< I ,G , f> the best reply correspondence B is convex-valued.

Proof. We can identify three different cases for B (x):

• B (x) = ; and thus B is convex-valued at x.

• B (x) = {y∗} i.e. the best reply correspondence contains only one element at x and thus B is

convex-valued at x.

• B (x) contains at least two elements at x i.e. there exist y∗1, y∗2 ∈Sm such that

Π(y∗1, x)≥Π(y, x) for all y∈Sm

Π(y∗2, x)≥Π(y, x) for all y∈Sm
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which is possible only if Π(y∗1, x) = Π(y∗2, x) = L. Now, for all λ ∈ [0, 1] we have the following series

of equalities:

Π(λy∗1+(1−λ)y
∗
2, x) = (λy∗1+(1−λ)y

∗
2) ·π(x) =

=λy∗1 ·π(x)+ (1−λ)y
∗
2 ·π(x) = λΠ(y∗1, x)+ (1−λ)Π(y∗2, x) =

=Π(y∗1, x) = Π(y∗2, x) = L

So, for any y∗1, y∗2 ∈ B (x) we get that λy∗1 + (1−λ)y
∗
2 ∈ B (x) for all λ ∈ [0, 1] and thus B is convex-

valued at x.

Since these are the only possible cases, we can conclude that B is convex-valued in Sm .

Lemma 9 (BRC: Nonempty-valued and upper hemicontinuous). For a group selection game under a

matching rule G =< I ,G , f>, if

1. f is continuous on Sm and

2. the partial derivatives ∂j f i for all j ∈M and all i ∈ supp(j ) exist on bdj (Sm )

then the best reply correspondence B is non-empty valued and upper hemicontinuous.

Proof. From assumption 2 of the lemma, we get that the limits limx̃→x
f i (x̃)
x̃ j
= ∂j f i for all j ∈M and all

i ∈ supp(j ) exist on bdj (Sm ) and from the definition of πj (7), we get that

lim
x̃→x
πj (x̃) =πj (x) on bdj (Sm ).

So, πj are continuous on bdj (Sm ) and since all f i are continuous on Sm , πj are continuous on Sm \
bdj (Sm ) as sums of quotients of continuous functions. So, π is continuous on Sm and therefore, Π is

continuous on S2
m .

Now we can see that the conditions for Berge’s maximum theorem are satisfied: (i) Sm is compact

and (ii) Π is continuous. So, using Berge’s theorem, we get that the value function V is continuous on

Sm and that the best reply correspondence B is nonempty-valued, compact-valued, upper hemicon-

tinuous and has a closed graph on Sm .

The results needed are the nonempty-valuedness and upper hemicontinuity of B .

Now we have all that is needed in prove the theorem. From the results of Lemmata 8 and 9, we

know that B : Sm →Sm is a nonempty-valued, convex-valued, upper hemicontinuous correspondence

defined on the nonempty, compact and convex set Sm . So, the conditions for the application of Kaku-

tani’s fixed point theorem are satisfied. From Kakutani’s fixed point theorem, we get that there exists a

x∗ ∈Sm such that x∗ ∈ B (x∗)which means that there exists a x∗ ∈Sm such that

Π(x∗, x∗)≥Π(x, x∗) for all x∈Sm .

That is, G has an equilibrium.
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Proof of Theorem 5

Let us denote by yi ∈ Sm the (mixed) strategy used by player i in the normal-form game G and by

x−i ∈Sm the strategy used in the normal-form game G by all player i ’s opponents. Let also Pi (yi |x−i ) be

the expected payoff of player i in the normal-form game when he/she is using strategy yi and all of his

opponents use strategy x−i . Since G is symmetric, we have Pi (yi |x−i ) = Pj (yj |x−j ) for all i , j ∈N . So we

can write P(y|x) to express the expected payoff in the normal-form game of any player using strategy y

when all his opponents use the same strategy x.

A symmetric Nash equilibrium of game G is a strategy x∗ ∈Sm such that:

P(x∗|x∗)≥ P(y|x∗) for all y∈Sm .

So, for x∗ to be a symmetric Nash equilibrium, if every opponent of any given player i is using strategy

x∗, it must be a best response for player i to use the same strategy x∗ as well.

On the other hand, a strategy x∗ will be an equilibrium in game < I ,G , f> iff:

Π(x∗, x∗)≥Π(y, x∗) for all y∈Sm

Where Π(y, x∗) expresses the expected payoff of an individual using strategy y while the rest of the pop-

ulation is using strategy x∗. In order to prove the proposition, all we need to show is that

Π(y, x) = P(y|x) for all y∈Sm (23)

under the random matching rule. If we let ej be the probability vector that corresponds to pure strategy

j , then (23) boils down to

πj (x) = P(ej |x) for all j ∈M . (24)

Calculating πj (x). Let us denote by M i
−j the set of all strategies other than j represented in group

i and by Γ1
j the set of all groups that contain exactly one individual following strategy j . Formally

M i
−j =

�

k ∈M \
�

j
	

|i ∈ supp(j )
	

and Γ1
j = {i ∈ Γn ,m |n i

j = 1}. Calculating πj (x) under rn ,m yields:

πj (x) =
∑

i∈supp(j )

(n −1)!x
n i

j−1

j

(n i
j −1)!

∏

k∈M i
−j

x
n i

k
k

n i
k !

A i
j , x∈Sm \bdj (Sm ) (25)

πj (x) =
∑

i∈Γ1
j

(n −1)!
∏

k∈M i
−j

x
n i

k
k

n i
k !

A i
j , x∈ bdj (Sm ) (26)

Calculating P(ej |x). In general, all players use mixed strategies i.e. a randomization over the set of

pure strategies M . We will denote the pure strategy a player l ends up using after the randomization

process has taken place – i.e. the realization of player l ’s mixed strategy – as sl . The probability of
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a player ending up in a situation where his/her opponents follow (pure) strategies s−l ∈ M n−1 with

s−l = (s 1, . . . , s l−1, s l+1, . . . , s n ) will be denoted by p (s−l ). When all player l ’s opponents use the same

strategy x, those probabilities can be calculated to be:

p (s−l ) =
∏

k∈M

(xk )νk (s−l )

where νk (s−l )∈ {0, 1, . . . , n−1} is the number of player l ’s opponents using strategy k in the ordered set

s−l .

Let us fix player l ’s strategy (realization) to be sl = ej . Since the game G is symmetric, the payoff of

player l will not depend on the exact ordering in s−l but on the vector ν (s−l ) =
�

ν1(s−l ), . . . ,νm (s−l )
�

.

This means that different s−l s with the same ν (s−l )will yield the same payoff for player l . The number

of the different ν outcomes are elements is γn−1,m . Let us use κ ∈ Γn−1,m to index the different ν . By

abusing notation, we can calculate the probability of a specific νκ to occur as

p (νκ) =
(n −1)!
∏

k∈M ν
κ
k !

∏

k∈M

(xk )ν
κ
k . (27)

As player l is using strategy j , if he ends up in a situation where his/her opponents’ realizations

are κ, it is as if he ends up in a group i where n i
k = ν

κ
k for k 6= j and n i

j = ν
κ
j + 1. This group will be

in supp(j ) and we will write i = j Â κ and read: “i is the group that we get if we add an individual

who uses strategy j to a set of opponents whose realizations are κ. Notice that the probabilities in (27)

are independent of player l ’s choice of strategy. So, the probability of player l ending up in situation i

conditional on him using strategy j will be the same as the probability realization κ occurring. Using

the i - rather than the κ- indexing, we can rewrite (27) (abusing the notation once again) as:

p (i |j ) = p (j Â κ|j ) = p (νκ) =
(n −1)!x

n i
j−1

j

(n i
j −1)!

∏

k∈M i
−j

(xk )n
i
k

n i
k !

.

Now, in each of these cases i , player l gets a payoff of A i
j and his expected payoff is:

P(ej |x) =
∑

i∈supp(j )

p (i |j )A i
j =

∑

i∈supp(j )

(n −1)!x
n i

j−1

j

(n i
j −1)!

∏

k∈M i
−j

(xk )n
i
k

n i
k !

A i
j . (28)

In the special case where x ∈ bdj Sm , player l can be sure that he is the only one using strategy j and

thus, the only groups that get positive probability are the ones in Γ1
j which have n i

j = 1. So his/her

expected payoff is:

P(ej |x) =
∑

i∈Γ1
j

p (i |j )A i
j =

∑

i∈Γ1
j

(n −1)!
∏

k∈M i
−j

(xk )n
i
k

n i
k !

A i
j . (29)

By comparing equation (25) to (28) and equation (26) to (29), we can see that

πj (x) = P(ej |x)

and as we showed that for an arbitrary j , it holds for all j ∈M .
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Proof of Theorem 7

Let us define the following sets of group types:

E (x∗) = {i ∈ Γn ,m : supp−1(i )⊆ I (x∗)}

[M ] = {i ∈ Γn ,m : supp−1(i ) = {j } for some j ∈M }

E (x∗) consists of the group types that contain only individuals of types that are present in the popula-

tion at x∗. E ′(x∗)will denote its complement i.e. group types that contain at least one individual of one

of the types that are not present at x∗. [M ] consists of the groups types that contain only one type of

individuals. We will denote the group type that contains only individuals of type j by [j ]. Now we can

separate all group types in the following four categories:

• SP(x∗) = E (x∗)∩ [M ] is the set of all group types that contain a single type of individuals that are

present at x∗.

• SA(x∗) = E ′(x∗)∩ [M ] is the set of all group types that contain a single type of individuals that are

absent at x∗.

• M P(x∗) = E (x∗) \ [M ] is the set of all group types that contain more than one types of individuals

that are present at x∗.

• M A(x∗) = E ′(x∗) \ [M ] is the set of all group types that contain more than one types of individuals

and at least one of them is absent at x∗.

Let us define for any x∈Sm the following:

µ= arg min
j∈I (x∗)

x j

x ∗j

We construct h as follows:

• For all i ∈M A(x∗)we define h i (x) = 0.

• For all i ∈SA(x∗)we define h [j ](x) = x j .

• For all i ∈M P(x∗)we define h i (x) =
xµ
x ∗µ

f ∗i (x
∗).

• For all i ∈SP(x∗)we define h [j ](x) =
xµ
x ∗µ

f ∗[j ](x
∗)+x j −

xµ
x ∗µ

x ∗j .

It is easy to check that h is a matching rule as it satisfies definition 1 i.e. it is a function from Sm to Sγn ,m .

More than that it is also easy to see that h(x∗) = f(x∗) and so (x∗, h) is an evolutionary optimum. All we

have to do is to show that x∗ is a NEGS under h.

Now let us define A∗ =max(x,f)∈E π̄f(x). As (x∗, h) is an evolutionary optimum, it has to be that x∗ is a

steady state of the replicator dynamics under h. So:
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1. For all j ∈ I (x∗) it has to be that πh(x∗) = A∗ which is ensured by the fact that h(x∗) = f(x∗) and

2. there is no restriction for all j ∈O(x∗).

For x∗ to be a NEGS it must hold that:

x∗ ·πh(x∗)≥ y ·πh(x∗) for all y∈Sm .

Notice that from point 1. above, if x∗ ∈ intSm , it is a NEGS as y ·πh(x∗) = A∗ for all y ∈ Sm and the

proposition holds.

If x∗ ∈ bdSm , then all we need to do is show that πhj (x∗)≤ A∗ for all j ∈O(x∗). By definition,

πhj (x∗) =
∑

i∈supp(j )

n i
j

n
∂ +j h i (x∗)A i

j = ∂
+

j h [j ](x∗)A
[j ]
j +

∑

i∈M A∩supp(j )

n i
j

n
∂ +j h i (x∗)A i

j = A
[j ]
j

Finally, notice that under any matching rule the states e j = (0, . . . , 0 , 1,
︸︷︷︸

j−th

0, . . . , 0) are steady states and

the payoff of all individuals on these states is simply: π̄h(ej ) = A
[j ]
j . But as (x∗, h) is an evolutionary

optimum, we know that A
[j ]
j ≤ A∗ for all j ∈M . So, πhj (x∗)≤ A∗ for all j ∈M .

Finding all equilibria in 2× 2 games

In this section we provide a tool that makes it easy for one to find and visualize NEGSs and ESSGSs

in the 2× 2 case. By use of our method, we can easily identify equilibria of such games by looking for

intersections between two lines: one that depends on the payoffs (the equilibrium curve) and one that

depends on the matching rule in effect (the matching rule curve). An example is shown in Figure 16;

the equilibrium state is at the intersection of the two lines.

0

1

0 1

φ

x

Matching Rule Curve
Equilibrium Curve

Figure 16: Example of finding an equilibrium.

In what follows, we analyze games that have a payoff bimatrix of the general form presented in

Table 4. Without loss of generality, we will assume that A1
1 ≥ A3

2.
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Strategy 1 Strategy 2
Strategy 1 A1

1, A1
1 A2

1, A2
2

Strategy 2 A2
2, A2

1 A3
2, A3

2

Table 4: The general form of a 2×2 game. A1
1 ≥ A3

2.

The Matching Rule Curve

A matching rule for the 2×2 case, will be of the form f(x) =
�

f 1(x1,x2), f 2(x1,x2), f 3(x1,x2)
�

. Now notice

that under consistency, it can be easily described by only defining one of the three coordinates f i (x).

This is because in order for f to satisfy the equations in (3) (two linearly independent equations in our

example of 2 strategies), only one degree of freedom remains.34 We pick the value of f 2(x) – that ex-

presses the extent to which the two strategies get mixed with one another – to describe the matching

rule. Of course, because there are only two strategies available, the state can be summarized by the

proportion of individuals using Strategy 1 (the remaining individuals are clearly using Strategy 2). We

will use x to denote this proportion and thus to express the state.35 So any matching rule will be de-

scribed by a functionφ : [0, 1]→ [0, 1]. Under the consistency requirement in (3), the three coordinates

of f can be calculated to be:

f 1(x ) = x −
1

2
φ(x ) f 2(x ) =φ(x ) f 3(x ) = 1−x −

1

2
φ(x ). (30)

More than that, the conditions 0≤ f 1(x ), 0≤ f 2(x ) and 0≤ f 3(x )must be satisfied for all x ∈ (0, 1). From

these, we get that the valuesφ can take are restricted by:

0≤φ(x )≤ 2x for x ∈
�

0,
1

2

�

, 0≤φ(x )≤ 2(1−x ) for x ∈
�

1

2
, 1

�

. (31)

So any consistent matching rule in the case of 2-strategy, 2-person normal form games can be sum-

marized by a functionφ that satisfies (31).

It is now possible for us to draw diagrams that show what matching rules look like. Examples of

graphs of matching rules are given in Figure 17. A matching rule is summarized by a line that begins at

(0,0), assumes values ‘within’ the triangle bounded by (31) and ends at (1,0).

Under this formalization, the random matching rule will be given by

φ(x ) = 2x −2x 2

whereas the complete segregation rule is simply

φ(x ) = 0

34Equations (3) are in essence ‘balancing conditions’ similar to condition (2) in Alger and Weibull (2012). i.e. They ensure
that the number of 1-strategists that are matched to 2-strategists is equal to the number of 2-strategists that are matched to
1-strategists.

35Obviously, x1 = x and x2 = 1−x .
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0

1

0 1

φ

x

Random Matching
Constant Assortativity (α=0.3)

Other Rule

Figure 17: Examples of Matching Rule Curves.

. Another example would be the constant index of assortativity rule (Bergström, 2003) which can be

summarized by

φ(x ) = 2(1−α)x (1−x )

where α∈ [0, 1] is the index of assorativity.

The Equilibrium Curve

Under any matching rule,it is easy to show that an interior state x ∗ is an equilibrium iff:

π1(x ∗) =π2(x ∗)⇔

[(A2
2−A3

2)x
∗+(A1

1−A2
1)(1−x ∗)]φ(x ∗) = 2(A1

1−A3
2)x
∗(1−x ∗) (32)

and, looking for boundary equilibria, if φ is differentiable at 0 and at 1, for x = 0 to be an equilibrium,

it must be the case that:

π1(0)≤π2(0) ⇒ (A1
1−A2

1)
∂ φ

∂ x
(0)≥ 2(A1

1−A3
2) (33)

and for x = 1 to be an equilibrium, it must be the case that:

π1(1)≥π2(1) ⇒ (A3
2−A2

2)
∂ φ

∂ x
(1)≤ 2(A1

1−A3
2). (34)

Now, provided that there is actually some strategic interaction occurring between the two players,

i.e. either A2
2 6= A3

2 or A1
1 6= A2

1 (or both), then from condition (32) we get two cases:

• If A1
1 6= A3

2, then an interior state will be an equilibrium iff the value of φ for that state is equal to

the value of a function E for that given state. We will call this function the equilibrium curve of

the game and it is given by:

E (x ) =
2(A1

1−A3
2)x (1−x )

(A2
2−A3

2)x +(A
1
1−A2

1)(1−x )
. (35)

44



• In the case where A1
1 = A3

2, then the condition for an interior state to be an NEGS is:

(

φ(x ) = 0 or

x = A2
1−A1

1

A2
2−A3

2+A2
1−A1

1

(36)

Condition (36) says that any state for which the two strategies do not mix at all will be an equi-

librium state (obviously, as no strategy gets an advantage over the other) and, more importantly,

that the state
A2

1−A1
1

A2
2−A3

2+A2
1−A1

1
will be an equilibrium for all matching rules (as long as this value is

withing the boundaries (0,1).

Stability and the Equilibrium Curve If we assume that the matching rule is C 1, then we can easily

check that a state x will be an ESSGS iff
¨

φ(x ) = E (x ) and
∂ φ
∂ x (x )>

∂ E
∂ x (x )

(37)

Using the above analysis in conjunction with diagrams like the one in Figure 17 can help us spot

NEGS and ESSGSs very easily. All one has to do is to plot the matching ruleφ and the equilibrium curve

E on the same diagram. If the two lines meet at an interior state, then this state is a NEGS. If along with

that the equilibrium curve is above the matching rule to the left of the state and below it to the right of

the state, then the state is an ESSGS as well. Finally, for the states 0 and 1, one can say that in order for

one of these states to be a NEGS (ESSGS), then it has to be that the slope of the matching rule is greater

than (or equal to) the slope of the equilibrium curve at that state.

Welfare in 2×2 Games

In the case of 2× 2 games, by using the formalization introduced above, we can make equilibrium

welfare considerations. What we are interested in is to see how the different equilibria fare in terms of

welfare. For a 2× 2 game, the welfare at state x when the value of the matching rule at x is φ is given

by:

W (x ,φ) = A3
2+(A

1
1−A3

2)x +

�

A2
1+A2

2−A1
1−A3

2

�

φ

2
(38)

And as long as A2
1+A2

2 6= A1
1+A3

2, solving forφ, we get:

φ =
2(W −A3

2)

A2
1+A2

2−A1
1−A3

2

−
2(A1

1−A3
2)x

A2
1+A2

2−A1
1−A3

2

(39)

For any value of W , the above equation gives the set of points on the (x ,φ) plane that yield an average

payoff of W for the population. We will call such lines isogrowth lines as all points on each of these

lines leads to the same growth rate of the population (which is the same as the average payoff). Drawing

such lines can help us visualize what is really happening in terms of welfare under the various matching

rules. More than that, by combining the isogrowth lines with the equilibrium curves of different games,
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Figure 18: An example isogrowth diagram.

we can see which matching rules can lead to some (utilitarian) optimality. An example of an isogrowth

diagram is depicted in Figure 18. Finally, using the welfare function (38) along with the equilibrium

curve (35) we can calculate the equilibrium welfare in the group selection game and then compare

that to the expected payoff of a player in the normal form game. Such comparisons are carried out in

Section 5 for three classes of 2×2 games.
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