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Abstract

This paper investigates volatility spillovers between UK regional
job finding, job separation and vacancy rates. Employing a logis-
tic smooth transition vector autoregression (VAR) to model the large
nonlinear dynamic system, we use the methods of Diebold and Yil-
maz (2012) to decompose the forecast error variances. Our approach
is Bayesian. More specifically, we extend doubly adaptive elastic-net
Lasso (DAELasso) methods for VAR parameter shrinkage into a non-
linear framework to allow for the possible regime changes. We find that
for each variable, both the volatility spillovers to and from other vari-
ables are high, providing clear evidence for the close interdependence
between UK regional labour markets. The pivotal role of London in
generating and spreading changes in volatility is highlighted. Analy-
sis of net spillovers shows that, in general, shocks to job separation
rates tend to spread into job finding and vacancy rates. By contrast,
vacancy rates are usually at the receiving ends of shocks transmitted
from the job separation and finding rates. We further examine the
shock propagation mechanism in more detail, such as the differences
in spillovers between regions within the same regime, and that of the
same region but in different regimes. Finally, we draw inferences that
are of economic and policy importance.

JEL: C11, C32, C51, J63.
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1 Introduction

Recent years have witnessed a growing interest in empirically investigating

the worker reallocation process within the standard Diamond - Mortensen -

Pissarides search and matching framework (Diamond, 1982; Mortensen and

Pissarides, 1994; Pissarides, 1985, 2000). Most of the studies use descrip-

tive measures to capture the important features of the flows into and out of

unemployment, and hence evaluate how the changes in flow rates affect the

changes in unemployment rate (Hall, 2005; Fujita and Ramey, 2006, 2009;

Shimer, 2007; Elsby et al., 2009). More recently, noting that descriptive

measures are unable to account for the labour market response to various

shocks to the system, researchers have turned to VARs to examine the dy-

namics of workers’ job seeking (and employers’ recruiting) processes.

Among these, Fujita (2011) uses a structured trivariate vector autore-

gression (VAR) model consisting of inflow, outflow and vacancy rates to

evaluate whether the job separation or job finding rate plays the dominant

role in the dynamics of US labour market.1 Given that the mechanisms

underlying the job search/matching process can vary over time, Campolieti

et al. (2012) extend the research of Fujita (2011) by using time-varying

parameter vector autoregressions (TVPVAR) for data from North America

(the USA and Canada) and Europe (France, Spain and the UK). Instead of

focusing on the interrelationship between inflow, outflow and vacancy rates,

Canova et al. (2012) look into how inflow, outflow, and unemployment rates

react to technology shocks in a six-variable VAR model that consists of in-

1In this paper, we use inflow rate and separation rate interchangeably, outflow and job
finding rate interchangeably
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flows, outflows, vacancies, price for new equipment, labour productivity and

hours. These studies using VAR models for the labour market all focus

on aggregate data at national level. As a result, their findings can over-

look important nuances, and even be misleading, when the job creation and

destruction process at regional level is more of a concern.2

The interregional transmission of labour market shocks is an important

issue for a number of reasons. If such transmission is slow, then the pace of

economic growth will typically differ across space, and in extreme cases this

can mean that macroeconomic policies that are well suited to one part of the

country may not serve other parts so well. In the UK, there is currently some

concern that the transmission mechanism that has, in the past, ensured that

growth in leading regions trickles down to other areas, is either no longer

working well or is working much more slowly as the economy recovers from

the Great Recession (Townsend and Champion, 2014). This, then, is an

appropriate time to re-investigate the mechanisms, using newly developed

methods that allow more detailed analysis of the nature of transmission than

was heretofore possible.

This paper focuses on the complex interrelationships between unemploy-

ment inflow, outflow and vacancy rates of 11 UK regions. Altogether, we

have 33 variables that might be all interrelated. In order to avoid imposing

‘incredible’ restrictions in the sense of Sims (1972, 1980), we use an unre-

stricted VAR to model the complicated interlinkages between thirty-three

endogenous variables. This sets the paper apart from the available stud-

2Papers such as Garrett (2003), Abadir and Talmain (2002), Forni and Lippi (1997,
99) show that the statistical properties of aggregate data can be very different from that
of their disaggregate components.
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ies such as Burda and Profit (1996) and Burgess and Profit (2001), which

use single equation models or VARs of much smaller size. In addition, to

account for the possible nonlinear effect in the interactions between VAR

variables, we assume the regime changes are governed by a logistic smooth

transition function (Maddala, 1977; Teräsvirta, 1994). Our estimation ap-

proach is Bayesian. Papers such as Banbura et al. (2010), Koop (2011)

and Gefang (2014) show that large Bayesian VARs provide better forecasts

and more sensible impulse response analysis than their non-Bayesian coun-

terparts. Popular shrinkage methods for large Bayesian VARs include the

traditional Minnesota prior of Doan et al. (1984) and Litterman (1986) and

its natural variants (Kadiyala and Karlsson, 1997; Banbura et al., 2010), the

stochastic search variable selection (SSVS) prior of George et al. (2008), and

the family of SSVS plus Minnesota priors of Koop (2011). Recently, Gefang

(2014) introduces doubly adaptive elastic-net Lasso (DAELasso) for VAR

shrinkage. Compared to other Bayesian VAR methods, DAELasso is more

data based. In this paper, we use DAELasso for VAR parameter shrinkage

so as to let the data speak.

We use the generalized spillover measure (GSM) of Diebold and Yilmaz

(2012) to investigate the shocks propagating mechanism between variables

and regions. GSM is currently among the most popular tools for investi-

gating spillover effects using VAR models (Antonakakis, 2012; Altera and

Beyer, 2014) . GSM does not require orthogonal innovations to decompose

the forecast error variances, which is especially desirable when there is a lack

of theoretical guidance on identifying the structure of a complex dynamic

system. Various structured VAR models are used in the literature on the
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labour market. Papers such as Braun et al. (2007) and Canova et al. (2012)

assess the effect of different types of shocks to the labour market by including

variables such as productivity and hours into the system. Fujita (2011), how-

ever, shows that labour market reallocation exhibits a qualitatively similar

pattern regardless of the nature of the shocks. Fujita (2011) and Campoli-

eti et al. (2012) use sign restrictions consistent with the Beveridge curve

relationship to differentiate the aggregate negative/positive shocks depend-

ing on how unemployment and vacancies respond to such shocks. These

existing studies all look into aggregate data at national level. To implement

sign restrictions becomes more difficult, if not impossible, for our large VAR

that involves 33 endogenous regional labour market variables. To start with,

as shown in Wall and Zoega (2002), the Beveridge curve relationship does

not necessarily hold for every UK region. Next, it becomes even harder to

impose meaningful structures on how changes in one variable might affect

variables in other regions. To circumvent these problems, we resort to GSMs

to explore the spillover effects in a data based manner.

The spatial dynamics of labour market variables in the UK regions was

a topic of significant interest to economists in the wake of the recessions of

the 1980s and 1990s. Manning (1994) found strong contiguity effects in his

analysis of county labour market data. Martin (1997) found co-integrating

relationships between regional and national unemployment rates, suggesting

the existence of equilibrium differentials between regions and a tendency for

shocks to be transmitted speedily across geographies. Evans and McCormick

(1994), Taylor and Bradley (1994), and McCormick (1997) investigate the

role of, inter alia, housing markets and long term migration trends in de-
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termining regional response to macroeconomic shocks. As the core region

grows, migration from the periphery tends to increase, thereby easing labour

market shortages in the core while reducing unemployment in the periph-

ery. These papers uncover a marked change, observed in the 1990s recession,

in the pattern of regional labour market response to macroeconomic fluc-

tuations, with regions that had previously been characterised by relatively

lower levels of unemployment being relatively hard hit. More recent work

for the whole of the UK has been scanty3, but, building on the US work of

Crone (2006), Sensier and Artis (2011) investigate the spread of recession

over time across the counties of Wales. The work reported in the present

paper represents an extension of this to the whole of the UK, while simul-

taneously employing more recently developed methods of anlaysis to throw

greater light on the nature of the transmission mechanism.

Our empirical results shed new light on the interrelationship between

job finding, job separation and vacancy rates of 11 UK regions. Our model

comparison results indicate that regime changes in the dynamic system are

governed by confidence levels. The plot of the transition function shows two

marked dips: the first happened right after the Great Recession begins in

Q2 2008, while the second happened in the second half of 2010. Moreover,

we find that regardless of the regimes, for each variable, both the volatility

spillovers to and from other variables are high, which provides clear evidence

for the close interdependence between UK regional labour markets. Analysis

3There has, however, developed a literature on regional convergence in Europe - see,
for example, Duranton and Monastiriotis (2002), Corrado et al.(2005) - but the focus of
this work is on long run equilibrium differentials rather than on short term responses to
cyclical fluctuations.
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of net spillovers shows that, in general, shocks to job separation rates tend

to spread into job finding and vacancy rates. By contrast, vacancy rates are

usually at the receiving ends of shocks transmitted from the unemployment

flows. The impact of shocks to outflow rates are mixed. However, there is

strong evidence that shocks to outflow rates have larger impact on vacancy

rates compared to shocks to inflow rates or vacancy rates.

The remainder of the paper is organised as follows. Section 2 introduces

the econometric methods. Section 3 presents the empirical analysis. Section

4 concludes. Bayesian methods and explanations on GSM are provided in

an online appendix.

2 Econometric Methods

2.1 Model and Bayesian Methods

The United Kingdom has a relatively flexible labour market (Owen and

Green, 1989). The population is concentrated, with large cities linked by

a good transport infrastructure. Hence a worker can easily commute to

take up a job in a region other than the one in which she resides - though

of course this comes at a cost. Moreover, with a high share of private

ownership in the housing market, both in the form of owner-occupation and

private rentals, migration is straightforward. Consequently, changes in the

economic fortunes of one region of the country are typically transmitted to

other regions through a process of local labour market adjustments.

When we model the Diamond-Mortensen-Pissarides search/matching mech-

anism at regional level, it is necessary therefore to allow for interregional
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interactions. Moreover, there is considerable evidence of nonlinearity in the

dynamics of job search/matching process (eg. Shimer, 2007; Elsby et al.,

2009; Campolieti et al., 2012). Our modelling strategy therefore needs to

allow both for regional spillover and possible nonlinear effects.

Let yt be a vector containing inflow, outflow and vacancy rates for 11

UK regions. We model the dynamic linkages between these variables using

an unrestricted smooth transition VAR:

yt = Φ+Σp
h=1Γhyt−h + F (zt)

[
Φz +Σp

h=1Γ
z
hyt−h

]
+ εt, (1)

where εt is a white noise process, that is E(εt) = 0, E(εsε
′
t) = Σ for s = t,

and E(εsε
′
t) = 0 for s ̸= t.

The regime changes are assumed to be captured by the following first

order logistic smooth transition function as explained in Maddala (1977)

and Teräsvirta (1994):4

F (zt) = [1 + exp {−γ (zt−π − c) /σ}]−1 (2)

Function (2) is defined by the transition variable zt−π, where π is the lag

indicator. The parameter γ (which is non-negative) determines the speed

of the smooth transition. We can see that when γ → ∞, the transition

function becomes a Dirac function and the model (1) becomes a two-regime

threshold VAR model along the lines of Tong (1983). When γ = 0, the

logistic function becomes a constant (equal to 0.5), and the nonlinear model

4For a comprehensive review on smooth transition VAR models, please refer to Hubrich
and Teräsvirta (2013).
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(1) collapses, in this special case, to a linear VAR(p). The parameter c

is the point of inflection of the function and so is the threshold around

which the dynamics of the model change. The value for the parameter σ is

chosen by the researcher; it could, as a particularly simple example, be set

to one. However, if we set σ equal to the standard deviation of the process

zt, this effectively normalises γ such that we can give this parameter an

interpretation in terms of the precision of zt (i.e., σ
−1) which, in turn, aids

in defining the prior for γ. The transition from one extreme regime to the

other is smooth for reasonable values of γ.

The principle underlying the logistic smooth transition VAR (LSTVAR)

is that as zt increases, moving from well below some threshold c to well

above this threshold, the dynamics of the vector process yt changes from

one regime to another. That is, if zt is very low - that is, well into what

we will call the lower regime - then the process yt may be generated by the

VAR model as follows.

yt = Φ+ Σp
h=1Γhyt−h + εt (3)

However, when zt is very high - well into what we will call the upper regime

- then the process yt may be generated by the VAR given by

yt = (Φ + Φz) + Σp
h=1 (Γh + Γz

h) yt−h + εt = Φ1 +Σp
h=1Γ

1
hyt−h + εt (4)

The transition between these two regimes is smooth - governed by the values

of the parameters in the smooth function of zt denoted by F (zt). The
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value of F (zt) is bounded by 0 and 1 since F (zt) = 0 when zt = −∞,

and F (zt) = 1 when zt = ∞. The presence in the model of the smooth

transition between regimes allows nonlinearity to be accommodated, while

the inclusion of region-specific data in our vector of endogenous variables

allows for the presence of spillover effects.

Following Gefang and Strachan (2011), we rewrite the model in (1) as

yt = (1− F (zt))
[
Φ+ Σp

h=1Γhyt−h

]
+ F (zt)

[
Φ1 +Σp

h=1Γ
1
hyt−h

]
+ εt (5)

which is equivalent to equation (1), but this representation shows explicitly

the parameters in the different regimes. Note that since zt is a continuous

variable and F (zt) is a continuous function of zt, model (1) implies an infinite

set of dynamic processes.

Let xt = (1, y′t−1, ..., y
′
t−p), x

θ
t = [xt F (zt)xt], Y = (y1, y2, ..., yT )

′, Xθ =

(xθ′1 , x
θ′
2 , ..., x

θ′
T )

′, B = (Φ,Γ1, ...,Γp,Φ
z,Γz

1, ...,Γ
z
p)

′ and E = (ε1, ε2, ..., εT )
′.

We rewrite model (1) in a more compact form as

Y = XθB + E (6)

where E is a T × N matrix for i.i.d. error terms with its tth row dis-

tributed as N(0,Σ).

Vectorizing the matrices, we can transform model (6) into

y = (In ⊗X)β + e (7)

where y = vec(Y ), β = vec(B), e = vec(E) and e ∼ N(0,Σ ⊗ IT ). Note
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that the dimension of β is N2k × 1.

Equation (7) cannot be estimated using frequentist methods when the

number of VAR coefficients exceeds the number of observations. The Bayesian

VAR approach, which shrinks parameters by employing appropriate priors,

has proved powerful for analyzing such dynamic models of large dimensions

(e.g., Sims, 1972, 1980; Banbura et al., 2010; Koop, 2011). Recently, Gefang

(2014) has introduced the Bayesian DAELasso method for VAR shrinkage.

Compared with other Bayesian VAR approaches, DAELasso is more at-

tractive for our current purposes as it does not discriminate between the

endogenous variables.

The DAELasso estimator for a VAR is defined as following:

β̂dL = arg minβ{[y− (In⊗X)β]
′
[y− (In⊗X)β] +

N2k∑
j=1

λ1,j |βj |+
N2k∑
j=1

λ2,jβ
2
j }

(8)

where λ1,j and λ2,j , for j = 1, 2, ..., N2k, are positive tuning parameters

associated with the L1 and L2 penalties, respectively. We allow for different

tuning parameters for different βj to allow for different degrees of shrinkage.

The parameters in equation (8), including γ and c in the smooth tran-

sition function (2), can be estimated using full conditional Gibbs samplers

(Geman and Geman, 1984). To save space, we present the priors, posteriors,

full Gibbs scheme and prior sensitivity analysis in the online appendix.

2.2 Generalised Spillover Measure

We use the GSM developed by Diebold and Yilmaz (2012) to decompose

forecast error variances of each variable into components that are associ-
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ated with various shocks to the dynamic system modelled in equation (1).

The GSM does not require orthogonal innovations, hence the variance de-

compositions are invariant to the ordering of the variables. This feature is

particular relevant to our current research as there is a lack of economic the-

ories regarding how shocks propagate in the complicated system involving

inflow, outflow and vacancy rates of many different regions.

The original GSMs are developed for linear VARs. As the smooth tran-

sition function (2) is continuous, we can calculate GSMs for any value of

F (zt) that may be of interest. For example, if we are concerned about the

situation where zt = zτ , model (1) turns into

yt = (Φ + ΦzF (zτ )) + Σp
h=1 (Γh + Γz

hF (zτ )) yt−h + εt (9)

Let Ψh = Γh+Γz
hF (zτ ), we have the familiar linear VAR form discussed

in section 2 of Diebold and Yilmaz (2012). Using the standard technique

detailed in section 2.1 of Lütkepohl (2007), we can write equation (9) in its

moving average representation:

yt = µ+
∞∑
i=0

Aiεt−i (10)

where µ is the mean, and the moving average coefficients Ai can be computed

recursively using A0 = IN , and Ai =
∑i

j=1Ai−jΨj .

Following Diebold and Yilmaz (2012), based on Ai and Σ, we can then

compute the own variance shares for variables yn that are due to shocks

to the variable itself, directional volatility spillovers received by the vari-

able yn from shocks to other variables and directional volatility spillovers
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transmitted by the variable yn to other variables. More importantly, we can

evaluate net spillovers and net pairwise spillovers to examine how shocks are

transmitted across variables and regions. Again, for brevity, we relegate the

details of how we compute these spillovers to the online appendix.

3 Empirical Analysis

3.1 Data Description

The main data series used in the present analysis provide labour market

information within standard UK regions and come from Nomis.5 Monthly

data are published on flows of workers into and out of the unemployment

register, notified vacancies,6 unemployment (known as the claimant count)

and unemployment rates (workplace-based estimates). For reasons of data

availability, our sample period runs from May 2002 to November 2012. We

seasonally adjust the variables in our analysis using the X-12-ARIMA sea-

sonal adjustment program of the US Census Bureau. There is an obvious

step change in the seasonally adjusted vacancy data in June 2003 when the

Employer Direct Online facility was introduced - this allows employers to

register vacancies at job centres much more easily than was previously pos-

sible. We use a dummy variable to control for this change in data handling

procedures. In line with the literature (Pissarides and Wadsworth, 1989;

5Nomis, previously known as the National Online Manpower Information Sys-
tem, produces detailed spatial labour market data and makes these available at
www.nomisweb.co.uk.

6Nomis also publish the stock of unfilled vacancies, which tend to have unspecified time
lags because follow up takes time. By contrast, notified vacancies do not have the time
lag problem. Qualitatively, notified vacancies are similar to the US help wanted index,
vacancy posting used in papers such as Fujita (2011) and Campolieti et al. (2012).
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Albæk and Hansen, 2004; Burgess and Turon, 2005), we calculate the inflow

rate (s) as the ratio of the flows of workers onto the unemployment register

to the number of employed workers, the outflow rate (f) as the ratio of the

flows out of the unemployment register to the number of people who are

unemployed,7 and the vacancy rate (v) as the ratio of notified vacancies to

the number of labour force (sum of the employed and unemployed). Finally,

to remove the excess volatility featured in high-frequency monthly data, we

use quarterly averages of the monthly data in our analysis. Altogether, we

consider 11 regions, i.e., North East (NE), North West (NW), Yorkshire and

The Humber (Y & H), East Midlands (EM), West Midlands (WM), East,

London, South East (SE), South West (SW), Wales and Scotland.

Studies such as Friedman (1997), Acemoglu and Scott (1994), and Stock

and Watson (1999) suggest that the regional labour market may be affected

by macroeconomic variables that are linked to expectations, output, infla-

tion and monetary policies at national level. Moreover, it is possible that

regime changes in the interrelationships between regional variables might be

governed by their national aggregates. Thus, we consider the following 7 UK

macro series as candidate transition variables for equation (2): confidence

indicators produced in consumer opinion surveys, total industrial produc-

tion, registered unemployment rate, money supply (M2), total unfilled job

vacancies, the consumer price index and interest rate (discount rate). The

first six series are obtained from OECD Main Economic Indicators, while

interest rate is from International Financial Statistics. The raw data are

7As argued by Shimer (2007), in a steady state, the relationship between worker flows
and the unemployment rate can be expressed as s/(s+ f) where s is the inflow rate and
f the outflow rate. The data we use match this function well.
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in monthly frequencies. Again, we use X-12-ARIMA of the US Census Bu-

reau to seasonally adjust the variables where needed, and take the quarterly

average to eliminate any excess volatilities.

The standardised inflow, outflow and vacancy rates for 11 UK regions

are plotted in Figures 1-3. There is pronounced evidence of a common trend

in each figure.8 Empirical literature on macro time series at disaggregated

levels identify the common trend as a factor which is driven by the broad

business cycle trends for the economy as a whole (Altonji and Ham, 1990;

Kose et al., 2003; Campolieti et al., 2013). Since we are more interested in

the effect of regional specific shocks, we remove the effect of the common

factor from the data before estimating the model (1).9

8To avoid the graphs becoming too messy, we omit labels for the multiple series. There
are, however, some notable cases of regions where, with the onset of the Great Recession
in 2008, the flows into and out of employment differed from the bulk of other regions. In
Figure 1, we see that there are two regions that experienced a particularly dramatic fall in
the inflow rate, and that this rate recovered more quickly than elsewhere - the two regions
are Scotland and Wales. Likewise, in Figure 2 the outflow rates of these two regions at
this time take deeper drops.

9Jimeno and Bentolila (1998) also argue that when analyze regional labour market
variables, it is important to differentiate aggregate and regional specific shocks in an
integrated economy. They use regional labour market variables expressed as deviations
from the corresponding national means to tackle the problem. Compared to theirs, our
method can better disentangle the common effect and regional specific effects.
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Figure 1: Standardised Inflow Rates

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 
−3

−2

−1

0

1

2

3

Time

 

 

Figure 2: Standardised Outflow Rates
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Figure 3: Standardised Vacancy Rates
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3.2 Model Comparisons

The Akaike information criterion (AIC) and Bayesian information criterion

(BIC) suggest a lag length of 1 or 2 quarters for linear trivariate VAR mod-

els that contain the inflow, outflow and vacancy rates for each region. For

the large non-linear VAR model that contains all the 33 UK regional inflow,

outflow and vacancy rates, we consider a large number of alternative VAR

models. The VARs have lag lengths of 1 or 2 quarters; each of the transition

variables is considered in logged level terms and in terms of first differences

(growth rates) and each of these (level or growth) transition variables ap-

pears in the model separately with the lag length of 1, 2, 3 or 4 to allow

for a long enough time period during which the regime of labour market

interactions begins to react to macroeconomic changes. Hence we estimate

(2 x 7 x 2 x 4 =) 112 candidate models differentiated by the lag order of

VAR, the transition variable (and whether that appears in level or change

terms), and the lag order of the transition variable. In empirical work, each
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Gibbs sampler runs 1,1000 iterations with the first 1000 discarded.

We use the BIC defined below for model comparisons.

BIC = −log(l̂) + 0.5log(T )d (11)

where l̂ is the maximum of the likelihood function and d is the number of

parameters including the VAR coefficients and the parameters in the logistic

function. The method is appealing as it does not involve integration and

does not depend on the priors (Wasserman, 2000).

The top 10 preferred models as selected by BIC are listed in Table 1.

The general finding is that the lagged consumer confidence indicator in lev-

els is the most effective series in the identification of regime changes, fol-

lowed by the growth rate of industrial production. Models with transition

variables associated with inflation and monetary policy also ranked highly.

However, models with transition variables related to national unemployment

and vacancies do not appear in the top 10 selected models. Our result that

consumer confidence level outperforms the rest of the candidate variables

in leading regime changes in intra- and inter- regional labour market inter-

dependencies is in the spirit of Acemoglu and Scott’s (1994) finding that

consumer confidence can forecast UK unemployment changes better than

other macroeconomic variables.10

As shown in Kass and Raftery (1995), the Bayes factor can be approxi-

10Although further investigation on why consumer confidence plays such an important
role goes beyond the scope of the current paper, we would like to point out that recent
papers that focus on individuals’ dual role as consumers and workers might provide more
insights on this issue. For instance, Crouch (2012) explores the possibility of resolving the
tension between an economy’s need for both flexible workers and confident consumers.
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mated by the exponential of −1
2 times the differences between two models’

BIC measures calculated by equation (11). If we assume uniform prior

model probabilities, the preferred model will receive almost 100% of the

posterior probability. Since there is no strong theoretical justification for

assigning models different prior probabilities, we take the model selected by

BIC as our preferred model and use it for the rest of the analysis.

Table 1: Model Comparison Results

Model Transition Variable Lag Length of Transi-
tion Variable

Order of VAR BIC

1 Consumer Confidence Indicators ( level ) 4 2 34.85
2 Industry Production ( first difference ) 2 2 -26.80
3 CPI ( first difference ) 4 2 -42.50
4 M2 ( first difference ) 2 2 -46.89
5 CPI ( first difference ) 1 2 -62.11
6 Interest Rate ( first difference ) 1 2 -72.70
7 Consumer Confidence Indicators ( level ) 2 2 -73.19
8 M2 ( first difference ) 1 2 -79.37
9 Interest Rate ( first difference ) 4 2 -80.13
10 Consumer Confidence Indicators ( first difference ) 4 2 -100.87

Notes:
The top 10 are selected out of 112 candidate models.

3.3 Nonlinear Effect in the Most Preferred Model

We plot the value of the smooth transition function against time for the

most preferred model in Figure 4. Note that here the transition indicator

is consumer confidence in levels, and the lag length of the indicator is one

year. The most striking feature of the plot is the huge impact of the Great

Recession which starts in 2008. Before then, the values taken by the transi-

tion indicator are relatively high and the changes are rather smooth. After

the recession hit, the regime changed abruptly. The value of the transition

function jumped towards a very low level close to zero. This situation only

starts to get better after early 2010. However, the recovery is very short
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lived, and the value of the logistic function takes another dive at the end of

2010. Interestingly, we find that the first drop to the lower regime happens

after the Great Recession sets in in 2008, yet the second fall in the regimes

happens well before growth once again slows in 2012. Overall, our result

supports the notion that the Great Recession greatly changed the regional

and interregional job search/matching process in the UK. We investigate

further how this switch manifests itself in the next section of the paper.

Figure 4: Transition Function
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3.4 Spillovers

We study how shocks are transferred between variables by investigating

spillovers under three hypothetical regimes: a lower regime where the value

of the transition function is 0, an upper regime where the value of the

transition function is 1, and a middle regime where the transition function

is 0.5. In practice, as we have seen the upper regime approximates the

position before the Great Recession while the lower regime approximates

20



the position since. For each regime, we consider two forecasting horizons:

h = 2 and h = 4.
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Table 2 presents the directional spillover from other variables. For each

variable, the spillovers from others are high. Generally, the values range

between 95% to 98% for each regime. There are some slight differences

between the regimes though. For example, variables typically receive fewer

spillovers from other variables when the regime moves from the upper to the

lower regime. These findings may explain the relatively slow transmission of

economic recovery from the leading regions to other parts of the country over

the course of the 2013-14 upturn (compared, that is, with earlier recoveries).

Table 3 shows the directional volatility spillover to other variables. There

is much more variation across regions in the extent of spillover in this table

than in Table 2; while labour market conditions spread across space, the

economic structure of some regions (specialising perhaps in industries with

strong input-output linkages) means that they are more likely than others

to serve as leaders in the diffusion of labour market shocks. On average,

volatilities of inflow and outflow rates tend to have the highest directional

spillovers to others at the lower regime, followed by the middle regime, then

have much smaller directional spillovers to others at the upper regime. The

scenario related to vacancy is mixed. Directional spillovers to others tend to

have the largest values at the upper regime, followed by the middle regime,

then the upper regime.

The large values of directional spillovers reported in Tables 2-3 confirm,

unsurprisingly, that the 33 endogenous variables we investigated are closely

interrelated and that it would therefore be inappropriate to ignore interre-

gional linkages when we model the regional labour market.
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Net spillovers from each variable to all the other variables are reported

in Table 4. Observe that shocks to inflow rates tend to have more impact on

the volatilities of other variables - with a preponderance of positive figures in

this part of the table. The net spillovers associated with Wales and Scotland

are particularly high, reflecting the fact that changes in the inflow rate in

these regions have marked effects on other aspects of the labour market both

within these regions and elsewhere. By way of contrast, the figures in the

part of the table that refers to vacancy rates are predominantly negative.

The figures related to outflows are mixed. Among them, London exhibits the

largest positive net spillovers under the both the lower and upper regimes,

this serving to highlight the key leading role played by the capital.

Tables 5-7 report respectively the net impact of shocks to one region’s

inflows on inflows of all other regions, the net impact of shocks to one region’s

inflows on all outflows, and the net impact of shocks to one region’s inflows

on vacancies of all regions. Table 5 shows that the volatility in inflows

associated with the South East, South West and Scotland tend to have

positive spillovers to inflows of other regions under all regimes. Yorkshire

and Humberside and the West Midlands tend to have negative spillovers.

The scenarios for other regions are quite mixed. Table 6 shows that shocks to

inflows in North East, East, Wales and Scotland tend to make outflows more

volatile as a whole, while shocks to inflows in East Midlands, West Midlands,

London and South East tend to dampen the volatilities in outflows of all

regions. Table 7 provides evidence that in most cases, shocks to inflows tend

to increase the volatilities on vacancies.

Tables 8-10 present respectively the net impacts of shocks to one region’s
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Table 5: Net Spillovers From Each Regional Inflows To Inflows Of All Other
Regions

Region
Lower Regime Lower Regime Middle Regime Middle Regime Upper Regime Upper Regime

h=2 h=4 h=2 h=4 h=2 h=4
NE 0.0118 0.0019 0.0131 -0.0017 -0.0087 -0.0126
NW -0.0067 0.0027 0.0031 -0.0075 0.0132 -0.0045
Y & H -0.0337 -0.0098 -0.0296 -0.0036 -0.0096 0.0087
EM 0.0400 0.0393 -0.0178 -0.0070 -0.0565 -0.0318
WM -0.1027 -0.0777 -0.0738 -0.0576 -0.0434 -0.0190
East -0.0130 -0.0063 -0.0025 -0.0081 0.0079 -0.0029
London 0.0261 -0.0187 0.0396 -0.0307 0.0266 -0.0403
SE 0.0435 0.0091 0.0395 0.0260 0.0200 0.0104
SW 0.0183 0.0015 0.0009 0.0020 0.0009 0.0054
Wales -0.0201 0.0141 0.0022 0.0413 0.0269 0.0510
Scotland 0.0365 0.0439 0.0253 0.0470 0.0227 0.0355

Table 6: Net Spillovers From Each Regional Inflows To Outflows Of All
Regions

Region
Lower Regime Lower Regime Middle Regime Middle Regime Upper Regime Upper Regime

h=2 h=4 h=2 h=4 h=2 h=4
NE 0.0546 0.0231 0.0293 0.0221 0.0022 0.0095
NW 0.0129 0.0028 -0.0037 -0.0188 0.0104 -0.0121
Y & H -0.0070 -0.0013 0.0072 0.0197 0.0140 0.0338
EM -0.0719 -0.0323 -0.0768 -0.0519 -0.0509 -0.0407
WM -0.0835 -0.0764 -0.0758 -0.0435 -0.0254 -0.0061
East 0.0707 0.0384 0.0564 0.0136 0.0423 0.0131
London -0.0560 -0.0759 -0.0803 -0.0812 -0.0850 -0.0528
SE -0.0071 -0.0138 -0.0240 -0.0198 -0.0171 -0.0020
SW 0.0038 -0.0079 0.0082 -0.0112 0.0125 0.0130
Wales 0.0813 0.0438 0.1013 0.0654 0.0758 0.0623
Scotland 0.0792 0.0301 0.0978 0.0453 0.0634 0.0304

Table 7: Net Spillovers From Each Regional Inflows To Vacancies Of All
Regions

Region
Lower Regime Lower Regime Middle Regime Middle Regime Upper Regime Upper Regime

h=2 h=4 h=2 h=4 h=2 h=4
NE 0.0075 0.0444 -0.0001 0.0287 0.0058 0.0121
NW 0.0369 0.0450 0.0250 0.0356 0.0231 0.0215
Y & H 0.0502 0.0466 0.1025 0.0707 0.1056 0.0653
EM 0.0941 0.0592 0.0632 0.0400 0.0097 0.0017
WM -0.0101 -0.0278 0.0016 0.0020 0.0108 0.0230
East 0.0564 0.0577 0.0332 0.0449 0.0176 0.0314
London -0.0341 -0.0010 -0.0359 0.0087 -0.0214 -0.0030
SE -0.0026 0.0272 -0.0093 0.0298 -0.0054 0.0245
SW -0.0349 -0.0071 -0.0237 0.0128 0.0103 0.0363
Wales 0.0906 0.0905 0.0768 0.0943 0.0490 0.0665
Scotland 0.0671 0.0844 0.0622 0.0874 0.0416 0.0537
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outflows on outflows of all other regions, the net impact of shocks to one

region’s outflows on all inflows, and the net impact of shocks to one region’s

outflows on vacancies of all regions. Table 8 shows that under all regimes,

Yorkshire and Humberside tends to exert a positive effect on volatilities of

outflows in other regions, while the West Midlands, East and South West

are receivers of outflow volatility spillovers originated from other regions.

Perhaps the most interesting feature of this table, though, is the sign rever-

sals that may be observed for some regions as we move from the lower to

the upper regime. For example, with h=2, there are positive spillovers out

of London in the lower regime, but negative spillovers in the higher regime.

In the wake of recession, outflows from the unemployment register in the

capital have a positive impact on outflows elsewhere, serving to pull the

country as a whole out of recession; but as the economy grows and we move

to the upper regime, this effect is reversed.

Table 9 shows that in most cases the impact of shocks to outflows tend

to dampen the volatilities in inflows. By way of contrast, Table 10 provides

strong evidence that shocks to outflows generally increase the volatilities in

vacancies. Note that under the lower and middle regimes, the net spillovers

from outflows in London to UK vacancy rate amount to around 10%. At the

upper regime, Yorkshire and Humberside, London and South East regions

all have a strong positive effect on volatilities in vacancies.

Tables 11-13 present respectively the net impact of shocks to one region’s

vacancies on vacancies of all other regions, the net impact of shocks to one

region’s vacancies on all inflows, and the net impact of shocks to one region’s

vacancies on outflows of all regions. Table 11 shows that the East Midlands,
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Table 8: Net Spillover From Each Regional Outflows To Outflows Of All
Other Regions

Region
Lower Regime Lower Regime Middle Regime Middle Regime Upper Regime Upper Regime

h=2 h=4 h=2 h=4 h=2 h=4
NE 0.0073 0.0135 -0.0042 0.0079 -0.0231 -0.0058
NW -0.0252 -0.0053 -0.0116 0.0083 -0.0040 0.0002
Y & H 0.0337 0.0224 0.0393 0.0230 0.0379 0.0261
EM 0.0129 0.0109 0.0161 0.0118 0.0111 -0.0034
WM -0.0330 -0.0333 -0.0415 -0.0427 -0.0436 -0.0444
East -0.0178 -0.0212 -0.0244 -0.0318 -0.0267 -0.0380
London 0.0158 0.0303 -0.0006 0.0089 -0.0005 0.0115
SE 0.0165 -0.0119 0.0622 0.0372 0.0786 0.0682
SW -0.0281 -0.0093 -0.0606 -0.0433 -0.0486 -0.0317
Wales 0.0082 0.0059 -0.0019 0.0118 0.0036 0.0139
Scotland 0.0097 -0.0021 0.0272 0.0087 0.0154 0.0036

Table 9: Net Spillover From Each Regional Outflows To Inflows Of All
Regions

Region
Lower Regime Lower Regime Middle Regime Middle Regime Upper Regime Upper Regime

h=2 h=4 h=2 h=4 h=2 h=4
NE 0.0807 0.0911 0.0484 0.0668 -0.0051 0.0028
NW 0.0818 0.0701 0.1090 0.0747 0.0730 0.0212
Y & H -0.0183 0.0203 0.0132 0.0376 0.0473 0.0354
EM -0.0442 -0.0280 -0.0671 -0.0389 -0.0580 -0.0245
WM -0.0502 -0.0477 -0.0475 -0.0497 -0.0540 -0.0460
East -0.0215 -0.0174 -0.0272 -0.0192 -0.0402 -0.0318
London -0.0195 0.0189 -0.0132 0.0215 -0.0099 0.0099
SE -0.0391 -0.0221 -0.0059 -0.0096 0.0575 0.0327
SW -0.0190 -0.0030 -0.0326 -0.0163 -0.0424 -0.0320
Wales -0.0240 -0.0108 -0.0335 -0.0153 -0.0162 -0.0151
Scotland -0.0038 -0.0019 0.0168 0.0088 0.0060 -0.0011

Table 10: Net Spillover From Each Regional Outflows To Vacancies Of All
Regions

Region
Lower Regime Lower Regime Middle Regime Middle Regime Upper Regime Upper Regime

h=2 h=4 h=2 h=4 h=2 h=4
NE 0.0193 0.0364 0.0260 0.0514 0.0017 0.0237
NW 0.0312 0.0419 0.0332 0.0655 0.0045 0.0378
Y & H 0.0285 0.0406 0.0394 0.0599 0.0526 0.0729
EM 0.0303 0.0347 0.0312 0.0299 0.0177 0.0103
WM 0.0032 0.0060 0.0091 0.0179 -0.0025 -0.0017
East 0.0003 0.0138 0.0028 0.0254 -0.0115 0.0061
London 0.1090 0.0922 0.1192 0.1156 0.0707 0.0711
SE -0.0177 0.0117 0.0080 0.0440 0.0404 0.0742
SW 0.0752 0.0632 0.0540 0.0482 0.0181 0.0145
Wales -0.0030 0.0173 -0.0257 0.0046 -0.0324 -0.0039
Scotland 0.0364 0.0498 0.0379 0.0647 0.0122 0.0364
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East, Wales and Scotland are always net givers in terms of vacancies to

vacancies, while Yorkshire and Humberside, London, South East and South

West are always receivers. Table 12 implies that, in general, shocks to

vacancies tend to decrease the volatilities in inflows. Note that most of the

figures in this table have negative values. Especially, shocks to London’s

vacancy rate tend to decrease the volatilities in inflow rates to around 10%

under all regimes. Table 13 shows that shocks to vacancies tend to have

negative impact on the variations in outflows.

Table 11: Net Spillover From Each Regional Vacancies To Vacancies Of All
Other Regions

Region
Lower Regime Lower Regime Middle Regime Middle Regime Upper Regime Upper Regime

h=2 h=4 h=2 h=4 h=2 h=4
NE -0.0116 -0.0335 0.0253 -0.0197 0.0283 -0.0090
NW 0.0269 0.0208 0.0101 -0.0010 -0.0201 -0.0239
Y & H -0.0365 -0.0229 -0.0343 -0.0219 -0.0163 -0.0009
EM 0.0207 0.0334 0.0333 0.0335 0.0362 0.0344
WM -0.0399 -0.0342 -0.0171 -0.0098 0.0097 0.0075
East 0.0303 0.0301 0.0272 0.0333 0.0480 0.0447
London -0.0484 -0.0310 -0.0718 -0.0432 -0.0777 -0.0573
SE -0.0332 -0.0255 -0.0324 -0.0072 -0.0226 -0.0042
SW -0.0170 -0.0117 -0.0340 -0.0214 -0.0391 -0.0263
Wales 0.0440 0.0336 0.0403 0.0289 0.0312 0.0283
Scotland 0.0647 0.0408 0.0533 0.0286 0.0223 0.0066

Table 12: Net Spillover From Each Regional Vacancies To Inflows Of All
Regions

Region
Lower Regime Lower Regime Middle Regime Middle Regime Upper Regime Upper Regime

h=2 h=4 h=2 h=4 h=2 h=4
NE -0.0576 -0.0753 -0.0404 -0.0486 -0.0244 -0.0232
NW 0.0118 0.0063 -0.0501 -0.0690 -0.0754 -0.0729
Y & H -0.0106 -0.0366 -0.0193 -0.0399 -0.0085 -0.0268
EM -0.0046 -0.0198 0.0144 -0.0022 0.0162 0.0195
WM -0.0589 -0.0680 -0.0763 -0.0575 -0.0652 -0.0178
East 0.0095 -0.0114 0.0365 0.0017 0.0438 0.0175
London -0.0816 -0.0865 -0.0984 -0.1047 -0.0862 -0.0937
SE -0.0498 -0.0473 -0.0758 -0.0494 -0.0853 -0.0408
SW -0.0509 -0.0492 -0.0480 -0.0684 -0.0434 -0.0760
Wales -0.0380 -0.0286 0.0283 -0.0205 0.0632 -0.0117
Scotland 0.0095 -0.0028 0.0336 0.0036 0.0186 -0.0067

To summarise, six important features leap out from Tables 6-13. First,

outflows from London show that this region is the most important volatil-
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Table 13: Net Spillover From Each Regional Vacancies To Outflows Of All
Regions

Region
Lower Regime Lower Regime Middle Regime Middle Regime Upper Regime Upper Regime

h=2 h=4 h=2 h=4 h=2 h=4
NE -0.0669 -0.0741 -0.0708 -0.0768 -0.0518 -0.0439
NW -0.0312 -0.0175 -0.0569 -0.0637 -0.0467 -0.0699
Y & H -0.0393 -0.0411 -0.0223 -0.0287 0.0096 -0.0054
EM -0.0309 -0.0211 -0.0115 -0.0362 0.0160 -0.0181
WM -0.0328 -0.0352 0.0055 -0.0106 0.0243 0.0088
East -0.0300 -0.0330 -0.0155 -0.0337 0.0309 0.0126
London -0.0173 -0.0505 -0.0521 -0.1018 -0.0552 -0.0979
SE -0.0192 -0.0446 -0.0192 -0.0579 -0.0213 -0.0628
SW -0.0548 -0.0582 -0.0758 -0.0607 -0.0626 -0.0560
Wales 0.0393 -0.0009 0.0445 -0.0165 0.0331 0.0000
Scotland -0.0296 -0.0314 -0.0609 -0.0405 -0.0478 -0.0089

ity ‘giver’ affecting vacancies. Its importance in this respect is reduced

somewhat in the upper regime (when the economy fares relatively well),

suggesting that the capital’s role as the engine of the UK economy is par-

ticularly important during tough macroeconomic times. Second, outflows

tend to have a bigger impact on vacancies than inflows, yet inflows tend

to have a bigger impact on outflows than vice versa. This provides fur-

ther evidence that the interlinkages between the three types of variables are

rather complicated. Third, our results corroborate Robson’s (2001) finding

that vacancies play a minor role in accounting for the variations in outflows.

Fourth, if we look at h = 4, we find that in the lower regime, where the

economy is in recession, the net spillovers from inflow to outflow outweigh

those from the outflow to inflow, whereas at the middle and upper regime,

when the economy is doing better, the net spillovers from outflow to inflow

outweigh those from the inflow to outflow. In the literature, there is ongoing

debate on whether job separation plays a more important role during reces-

sions (Shimer, 2007; Campolieti, 2011; Elsby et al., 2009). Our empirical

analysis is not directly designed to address this issue as we do not focus on
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the first moments as most of these other papers do. However, our results do

demonstrate that if we take the UK regional scenario as a whole, there is

evidence that in recessions, the variations in job separation rate increase the

variations in job finding rate, while when the economy is in better shape,

the volatility spillovers take the opposite direction. Fifth, there is clear ev-

idence that under all three regimes, the spillovers from outflow to vacancy

rates are bigger than those from inflow to vacancy rates. Finally, we find

that compared with regions in England, Wales and Scotland exhibit higher

levels of net spillovers from inflows to other variables under all regimes.

In Tables 14-16 we report, for the lower, middle and higher regimes

respectively, the net spillovers between the inflow, outflow and vacancy rate

within each region. These being net values, the numbers are again small.

There appears to be a pattern in which vacancy rate are ‘receivers’ in most

regions. The evidence on the inflow and outflow rates is more mixed. London

and the South East again appear as major net ‘givers’ in terms of outflows,

with Wales consistently being a ‘receiver’. The opposite is true of inflows.

4 Conclusion

This paper proposes a smooth-transition VAR model of high dimension to

investigate the intra- and inter- regional linkages between the job separation

rate, job finding rate and vacancies. Our model is an extension of the stan-

dard multivariate matching model explored in Fujita (2011) and Campolieti

et al. (2012). Using DAELasso of Gefang (2014) and GSM of Diebold and

Yilmaz (2012), we are able to track the dynamic volatility spillover mecha-
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Table 14: Net Spillovers Within Regions, Lower Regime

Region Inflow Rate Outflow Rate Vacancy Rate

h = 2

NE 0.0050 0.0033 -0.0083
NW 0.0040 0.0109 -0.0149
Y & H -0.0049 0.0155 -0.0106
EM -0.0023 0.0122 -0.0098
WM -0.0060 -0.0053 0.0113
East 0.0536 -0.0356 -0.0180
London 0.0023 -0.0060 0.0037
SE 0.0216 -0.0005 -0.0211
SW 0.0041 0.0037 -0.0078
Wales 0.0277 -0.0486 0.0209
Scotland 0.0140 -0.0088 -0.0052

h = 4

NE 0.0002 0.0127 -0.0129
NW -0.0020 0.0089 -0.0069
Y & H -0.0039 0.0096 -0.0057
EM -0.0009 0.0038 -0.0029
WM -0.0027 0.0022 0.0005
East 0.0274 -0.0180 -0.0094
London -0.0053 0.0129 -0.0076
SE 0.0075 0.0065 -0.0140
SW 0.0004 0.0050 -0.0054
Wales 0.0218 -0.0265 0.0047
Scotland 0.0098 -0.0055 -0.0043
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Table 15: Net Spillovers Within Regions, Middle Regime

Region Inflow Rate Outflow Rate Vacancy Rate

h = 2

NE -0.0043 0.0010 0.0033
NW 0.0099 0.0213 -0.0312
Y & H -0.0102 0.0328 -0.0226
EM -0.0032 0.0149 -0.0117
WM -0.0086 -0.0067 0.0153
East 0.0412 -0.0230 -0.0183
London 0.0015 0.0045 -0.0059
SE 0.0112 0.0236 -0.0348
SW 0.0011 0.0036 -0.0047
Wales 0.0125 -0.0582 0.0457
Scotland 0.0105 -0.0018 -0.0087

h = 4

NE -0.0063 0.0062 0.0002
NW 0.0023 0.0201 -0.0224
Y & H -0.0033 0.0107 -0.0073
EM -0.0013 0.0071 -0.0058
WM -0.0029 -0.0050 0.0079
East 0.0184 -0.0071 -0.0113
London -0.0014 0.0190 -0.0176
SE 0.0025 0.0190 -0.0216
SW 0.0027 0.0034 -0.0061
Wales 0.0218 -0.0300 0.0082
Scotland 0.0027 0.0043 -0.0071
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Table 16: Net Spillovers Within Regions, Upper Regime

Region Inflow Rate Outflow Rate Vacancy Rate

h = 2

NE -0.0057 0.0006 0.0051
NW 0.0104 0.0138 -0.0242
Y & H -0.0129 0.0352 -0.0223
EM -0.0053 0.0126 -0.0073
WM -0.0036 -0.0082 0.0118
East 0.0168 -0.0154 -0.0015
London -0.0011 0.0115 -0.0104
SE -0.0006 0.0336 -0.0330
SW 0.0056 -0.0015 -0.0041
Wales -0.0009 -0.0406 0.0415
Scotland 0.0060 0.0004 -0.0064

h = 4

NE -0.0053 0.0012 0.0042
NW 0.0055 0.0145 -0.0200
Y & H -0.0018 0.0078 -0.0060
EM -0.0047 0.0056 -0.0009
WM 0.0023 -0.0090 0.0067
East 0.0055 -0.0068 0.0013
London 0.0034 0.0177 -0.0211
SE 0.0012 0.0151 -0.0163
SW 0.0105 -0.0016 -0.0089
Wales 0.0156 -0.0197 0.0041
Scotland -0.0018 0.0040 -0.0022
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nism in 11 UK regions.

Our empirical evidence suggests the existence of close interlinkages be-

tween UK regional labour markets, with regime changes driven by confi-

dence. We find that, in general, shocks to job separation rates tend to

spread into job finding and vacancy rates. By contrast, vacancy rates are

usually at the receiving ends of shocks transmitted from the job separation

and finding rates. The impacts of shocks to regional outflow rates are mixed.

Yet, there is clear evidence that shocks to outflows play a more important

role in affecting the volatilities in vacancy rates than shocks to inflow rates

or vacancy rates.

Of particular interest in the context of current policy debates is the

changing impact of the job market in London on that of other regions. In

the lower regime outflows from unemployment in the capital exert a stronger

influence on outflow patterns in other regions than is the case in the higher

regime. This offers some reassurance that the current recovery, which has

started in London and the surrounding region, will (as has happened in the

past) have a beneficial impact on labour markets in other regions. Testing

that prediction in real time will, of course, require further research.
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1 Bayesian Methods

The unrestricted nonlinear VAR takes the following form:

yt = Φ+Σp
h=1Γhyt−h + F (zt)

[
Φz +Σp

h=1Γ
z
hyt−h

]
+ εt, (1)

where εt is a white noise process, that is E(εt) = 0, E(εsε
′
t) = Σ for s = t,

and E(εsε
′
t) = 0 for s ̸= t.

The regime changes are assumed to be captured by the following first
order logistic smooth transition function:

F (zt) = [1 + exp {−γ (zt−π − c) /σ}]−1 (2)

First, we rewrite model (1) as

yt = (1− F (zt))
[
Φ+ Σp

h=1Γhyt−h

]
+ F (zt)

[
Φ1 +Σp

h=1Γ
1
hyt−h

]
+ εt (3)

Let xt = (1, y′t−1, ..., y
′
t−p), x

θ
t = [xt F (zt)xt], Y = (y1, y2, ..., yT )

′, Xθ =

(xθ′1 , x
θ′
2 , ..., x

θ′
T )

′, B = (Φ,Γ1, ...,Γp,Φ
z,Γz

1, ...,Γ
z
p)

′ and E = (ε1, ε2, ..., εT )
′.

Next, we rewrite model (3) in a more compact form as

Y = XθB + E. (4)

where E is a T ×N matrix for i.i.d. error terms with its tth row distributed
as N(0,Σ).

Vectorizing the matrices, we can transform model (4) into

y = (In ⊗X)β + e (5)
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where y = vec(Y ), β = vec(B), e = vec(E) and e ∼ N(0,Σ ⊗ IT ). Note
that the dimension of β is N2k × 1.

We use the DAELasso estimator defined as following for parameter shrink-
ages

β̂dL = arg minβ{[y− (In⊗X)β]
′
[y− (In⊗X)β] +

N2k∑
j=1

λ1,j |βj |+
N2k∑
j=1

λ2,jβ
2
j }

(6)
where λ1,j and λ2,j , for j = 1, 2, ..., N2k, are positive tuning parameters
associated with the L1 and L2 penalties, respectively.

1.1 Priors

Following Gefang (2014), we consider a conditional multivariate mixture
prior of the following form:

π(β|Σ,Γ,Λ1,Λ2) ∝
N2k∏
j=1

{
√

λ2,j√
2π

exp(−λ2,j

2
β2
j )

×
∫ ∞

0

1√
2πfj(Γ))

exp[− 1

2fj(Γ)
β2
j ]d(fj(Γ))}

× {|M |−
1
2 exp(−1

2
Γ

′
M−1Γ)}2

(7)

where Γ = [γ1, γ2, ..., γN2k]
′
, M = Σ⊗ INk, and fj(Γ) is a function of Γ and

Λ1 to be defined later.
We need to find an appropriate fj(Γ) which provides us tractable pos-

teriors. The last term in equation (7) takes the form of a multivariate
Normal distribution Γ ∼ N(0,M). For ease of exposition, we first write the
N2k ×N2k covariance matrix M as following:

M =



M1,1 ... M1,j M1,j+1 ... M1,N2k

... ... ... ... ... ...
Mj,1 ... Mj,j Mj,j+1 ... Mj,N2k

Mj+1,1 ... Mj+1,j Mj+1,j+1 ... Mj+1,N2k

... ... ... ... ... ...
MN2k,1 ... MN2k,j MN2k,j+1 ... MN2k,N2k

 (8)
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Let Hj = (Mj,j+1, ...,Mj,N2k)

 Mj+1,j+1 ... Mj+1,N2k

... ... ...
MN2k,j+1 ... MN2k,N2k

−1

.

We next construct independent variables τj for j = 1, 2, ..., N2k using stan-
dard textbook techniques (e.g. Anderson, 2003; Muirhead 1982).

τ1 = γ1 +H1(γ2, γ3, ..., γN2k)
′

(9)

τ2 = γ2 +H2(γ3, γ4, ..., γN2k)
′

(10)

...

τN2K−1 = γN2k−1 +HN2k−1γN2k (11)

τN2K = γN2k (12)

The joint density of τ1, τ2, ...., τN2k is

N(τ1|0, σ2
γ1)N(τ2|0, σ2

γ2)...N(τN2k|0, σ2
γN2k

) (13)

where σ2
γj = Mj,j −Hj(Mj,j+1, ...,Mj,N2k)

′, with σ2
γN2k

= MN2k,N2k. Note

that it is computationally feasible to derive σ2
γj when M is sparse.

The Jacobian of transforming Γ ∼ N(0,M) to (13) is 1. Defining ηj =
τj/λ1,j , we can write (13) as

N(η1|0, σ2
γ1λ

−2
1,1)N(η2|0, σ2

γ2λ
−2
1,2)...N(ηN2k|0, σ2

γN2k
λ−2
1,N2k

) (14)

Let fj(Γ) = 2(η2j ). Our scale mixture prior in (7) can be rewritten as:

π(β|Σ,Γ,Λ1,Λ2) ∝
N2k∏
j=1

{
√

λ2,j√
2π

exp(−λ2,j

2
β2
j )

×
∫ ∞

0

1√
2π(2η2j ))

exp[−
β2
j

2(2η2j )
]d(2η2j )

×
λ2
1,j

2σ2
γj

exp[−1

2

2η2j
(σ2

γj )/λ
2
1,j

]}

(15)

Equation (15) shows that the conditional prior for βj is N(0,
2η2j

2λ2,jη2j+1
),

and the conditional prior for β is

β|Γ,Σ,Λ1,Λ2 ∼ N(0, D∗
Γ) (16)
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where D∗
Γ = diag([

2η21
2λ2,1η21+1

,
2η22

2λ2,2η22+1
, ...,

2η2
N2k

2λ2,N2kη
2
N2k

+1
]). The tightness of

the prior for each βj depends on
2η2j

2λ2,jη2j+1
. If

2η2j
2λ2,jη2j+1

is small, βj will be

shrunk towards zero. If
2η2j

2λ2,jη2j+1
is large, the prior for βj can become quite

uninformative.
Priors for Σ, λ2

1,j and λ2,j can be elicited following standard practice in

VAR and Lasso literature. In this paper, we set Wishart prior for Σ−1 and
Gamma priors for λ2

1,j and λ2,j : Σ−1 ∼ W (S−1, ν), λ2
1,j ∼ G(µ

λ2
1,j
, νλ2

1,j
),

λ2,j ∼ G(µ
λ2,j

, νλ2,j
).1

We set the prior distribution for γ as Gamma, which exclude a priori
the point γ = 0 from the integration range. Finally, we elicit the conditional
prior of c as uniformly distributed between the middle 70% ranges of the
transition variables.

We adopt relatively uninformative priors for empirical analysis. First,
we set the priors for λ2

1,j (or λ2
1) and λ2,j (or λ2) to be G(1, 0.0001) and

G(1, 0.001), respectively. Next, we elicit the prior for Σ−1 as W ((N −
1)IN , 1). Finally, the prior for γ is set to be G(3, 4).

1.2 Posteriors and Gibbs Sampler

The full conditional posterior for β is β ∼ N(β, V β), where V β = [(IN ⊗
X)

′
)(Σ−1⊗INk)(IN ⊗X)+(D∗

Γ)
−1]−1, and β = V β[(IN ⊗X)

′
(Σ−1⊗INk)y].

The Full conditional posterior for Σ−1 is W (S
−1

, ν), with S
−1

= (Y −
XB)

′
(Y −XB)+ 2Q

′
Q+S−1 and ν = T +2Nk+ ν, with vec(Q) = Γ. The

Full conditional posterior for λ2
1,j is G(µ̄λ1,j

, ν̄λ1,j
), where ν̄λ1,j

= νλ1,j
+

2 and µ̄λ1,j
=

νλ1,jσ
2
jµλ1,j

2τ2j µλ1,j
+νλ1,j

σ2
γj

. The Full conditional posterior for λ2,j is

G(µ̄λ2,j
, ν̄λ2,j

), where ν̄λ2,j
= νλ2,j

+ 1 and µ̄λ2,j
=

µ
λ2,j

ν̄λ2,j

νλ2,j
+µ

λ2,j
β2
j
. Finally the

full conditional posterior of 1
2η2j

is Inverse Gaussian: IG(

√
λ2
1,j

β2
j σ

2
γj

,
λ2
1,j

σ2
γj

).2 Γ

can not be directly drawn from the posteriors. But it can be recovered in
each Gibbs iteration using the draws of 1

2η2j
and Σ .

1Please refer to Koop (2003), p326, for Gamma distribution, and Zellner (1971), p389,
for Wishart distribution.

2We adopt the same form of the inverse-Gaussian density used in Park and Casella
(2008).
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The posterior distributions for the remaining parameters, γ and c, have
nonstandard forms. In this paper, we use Metropolis-Hastings algorithm
(Chib and Greenberg, 1995) within Gibbs to estimate γ and c.

Conditional on arbitrary starting values, the Gibbs sampler contains the
following seven steps:

1. draw β|Σ,Λ1,Λ2,Γ, γ, c from N(β, V β);

2. draw Σ−1|β,Λ1,Λ2,Γ, γ, c from W (S
−1

, ν)

3. draw λ2
1,j |β,Σ,Λ1,−j ,Λ2,Γ, γ, c from G(µ̄λ1,j

, ν̄λ1,j
) for j = 1, 2, ...N2k

4. draw λ2,j |β,Σ,Λ1,Λ2,−j ,Γ, γ, c from G(µ̄λ2,j
, ν̄λ2,j

) for j = 1, 2, ...N2k

5. draw 1
2η2j

|β,Σ,Λ1,Λ2, γ, c from IG(

√
λ2
1,j

β2
j σ

2
γj

,
λ2
1,j

σ2
γj

) for j = 1, 2, ...N2k.

6. calculate Γ based on draws of Σ and 1
2η2j

in the current iteration.

7. draw γ and c conditional on other parameters using Metropolis-Hastings
algorithm

2 Generalized Spillover Measure

When zt = zτ , model (1) can be written as:

yt = (Φ + ΦzF (zτ )) + Σp
h=1 (Γh + Γz

hF (zτ )) yt−h + εt (17)

Let Ψh = Γh+Γz
hF (zτ ). Following Diebold and Yilmaz (2012), we write

equation (17) in its moving average representation:

yt = µ+

∞∑
i=0

Aiεt−i (18)

where µ is the mean, and the moving average coefficients Ai can be computed
recursively using A0 = IN , and Ai =

∑i
j=1Ai−jΨj .

The H-step-ahead forecast error variance decompositions is

θgij(H) =
σ−1
jj

∑H−1
h=0 (e

′
iAhΣej)

2∑H−1
h=0 (e

′
iAhΣA

′
hei)

(19)

where σjj is the standard deviation of the error terms for the jth equation,
and ei is the selection vector with one as the ith element and 0s otherwise.
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Next, we normalize each row of the variance decomposition matrix by
the following:

θ̃gij(H) =
θgij(H)∑N
j=1 θ

g
ij(H)

(20)

The directional spillovers received by the variable i from all other vari-
ables is defined as

Sg
i.(H) =

∑N
j=1;j ̸=i θ̃

g
ij(H)

N/100
(21)

The directional spillovers transmitted by the variable i to all other vari-
ables is defined as

Sg
.i(H) =

∑N
j=1;j ̸=i θ̃

g
ji(H)

N/100
(22)

Finally, the net pairwise spillovers is defined as

Sg
ij(H) =

θ̃gji(H)− θ̃gij(H)

N/100
(23)

3 Prior Sensitivity Analysis

Our empirical results are relatively robust to the prior choices. In this
section, we report the spillover measures for the most preferred model,
LSTVAR(2) with the lagged 4 quarters consumer confidence level as tran-
sition variables, using the following priors: λ2

1,j ∼ G(1, 0.0001), λ2,j ∼
G(1, 0.0001), Σ−1 ∼ W (9 ∗ IN , 1) and γ ∼ G(1, 1).
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Table 4: Net Spillovers From Each Regional Inflows To Inflows Of All Other
Regions

Region
Lower Regime Lower Regime Middle Regime Middle Regime Upper Regime Upper Regime

h=2 h=4 h=2 h=4 h=2 h=4
NE 0.0149 -0.0050 0.0064 -0.0025 -0.0254 -0.0140
NW -0.0019 0.0153 0.0093 0.0015 0.0250 0.0033
Y & H -0.0281 -0.0063 -0.0216 -0.0002 -0.0084 0.0067
EM 0.0469 0.0495 -0.0052 0.0029 -0.0442 -0.0184
WM -0.0933 -0.0673 -0.0616 -0.0395 -0.0236 -0.0043
East 0.0086 0.0094 0.0204 0.0045 0.0273 -0.0029
London 0.0435 -0.0115 0.0469 -0.0241 0.0358 -0.0301
SE 0.0097 -0.0164 -0.0013 -0.0126 -0.0153 -0.0160
SW 0.0029 -0.0209 -0.0178 -0.0221 -0.0163 -0.0073
Wales -0.0043 0.0269 0.0100 0.0402 0.0250 0.0389
Scotland 0.0012 0.0262 0.0144 0.0520 0.0201 0.0440

Table 5: Net Spillovers From Each Regional Inflows To Outflows Of All
Regions

Region
Lower Regime Lower Regime Middle Regime Middle Regime Upper Regime Upper Regime

h=2 h=4 h=2 h=4 h=2 h=4
NE 0.0469 0.0172 0.0327 0.0227 0.0064 -0.0036
NW 0.0278 0.0279 0.0058 -0.0042 0.0130 -0.0044
Y & H -0.0167 -0.0086 -0.0212 -0.0007 -0.0046 0.0235
EM -0.0627 -0.0273 -0.0784 -0.0487 -0.0652 -0.0513
WM -0.0598 -0.0535 -0.0580 -0.0370 -0.0193 0.0063
East 0.0404 0.0256 0.0286 0.0068 0.0206 0.0045
London -0.0693 -0.0712 -0.0895 -0.0835 -0.0797 -0.0543
SE -0.0279 -0.0359 -0.0387 -0.0421 -0.0352 -0.0370
SW -0.0190 -0.0351 -0.0185 -0.0361 -0.0164 -0.0102
Wales 0.0799 0.0364 0.1105 0.0649 0.0873 0.0567
Scotland 0.0811 0.0309 0.1004 0.0577 0.0681 0.0436
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Table 6: Net Spillovers From Each Regional Inflows To Vacancies Of All
Regions

Region
Lower Regime Lower Regime Middle Regime Middle Regime Upper Regime Upper Regime

h=2 h=4 h=2 h=4 h=2 h=4
NE -0.0047 0.0218 -0.0157 0.0121 -0.0072 0.0124
NW 0.0587 0.0623 0.0388 0.0572 0.0268 0.0328
Y & H 0.0435 0.0404 0.0964 0.0647 0.0996 0.0593
EM 0.0997 0.0726 0.0718 0.0455 0.0182 0.0060
WM -0.0057 -0.0226 0.0149 0.0096 0.0277 0.0374
East 0.0681 0.0592 0.0561 0.0498 0.0420 0.0314
London -0.0408 -0.0149 -0.0437 0.0016 -0.0340 -0.0108
SE -0.0233 -0.0019 -0.0276 0.0081 -0.0265 0.0083
SW -0.0596 -0.0279 -0.0478 -0.0103 -0.0065 0.0074
Wales 0.0768 0.0746 0.0682 0.0852 0.0463 0.0631
Scotland 0.0676 0.0812 0.0643 0.0990 0.0520 0.0701

Table 7: Net Spillover From Each Regional Outflows To Outflows Of All
Other Regions

Region
Lower Regime Lower Regime Middle Regime Middle Regime Upper Regime Upper Regime

h=2 h=4 h=2 h=4 h=2 h=4
NE 0.0190 0.0314 0.0143 0.0319 -0.0111 0.0057
NW -0.0194 -0.0078 -0.0173 -0.0085 -0.0111 -0.0113
Y & H 0.0264 0.0145 0.0313 0.0113 0.0318 0.0226
EM 0.0142 0.0077 0.0131 -0.0011 0.0048 -0.0150
WM -0.0439 -0.0412 -0.0416 -0.0380 -0.0413 -0.0378
East -0.0193 -0.0227 -0.0197 -0.0245 -0.0235 -0.0295
London -0.0120 -0.0020 -0.0340 -0.0232 -0.0377 -0.0173
SE 0.0351 0.0013 0.0764 0.0487 0.1042 0.0833
SW 0.0004 0.0197 -0.0446 -0.0112 -0.0422 -0.0068
Wales -0.0008 -0.0081 -0.0022 0.0031 0.0011 0.0071
Scotland 0.0003 0.0072 0.0243 0.0114 0.0250 -0.0010

Table 8: Net Spillover From Each Regional Outflows To Inflows Of All
Regions

Region
Lower Regime Lower Regime Middle Regime Middle Regime Upper Regime Upper Regime

h=2 h=4 h=2 h=4 h=2 h=4
NE 0.1010 0.1018 0.0716 0.0781 0.0175 0.0155
NW 0.0677 0.0605 0.0993 0.0784 0.0672 0.0331
Y & H -0.0227 0.0067 0.0189 0.0350 0.0468 0.0255
EM -0.0352 -0.0193 -0.0500 -0.0245 -0.0444 -0.0192
WM -0.0472 -0.0525 -0.0448 -0.0479 -0.0468 -0.0449
East -0.0137 -0.0081 -0.0145 -0.0156 -0.0134 -0.0197
London -0.0365 -0.0156 -0.0465 -0.0116 -0.0472 -0.0124
SE -0.0220 -0.0017 0.0187 0.0222 0.0824 0.0745
SW 0.0102 0.0418 0.0031 0.0175 -0.0057 0.0035
Wales -0.0134 -0.0084 -0.0304 -0.0287 -0.0219 -0.0280
Scotland -0.0090 -0.0116 0.0011 -0.0028 -0.0094 -0.0016
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Table 9: Net Spillover From Each Regional Outflows To Vacancies Of All
Regions

Region
Lower Regime Lower Regime Middle Regime Middle Regime Upper Regime Upper Regime

h=2 h=4 h=2 h=4 h=2 h=4
NE 0.0299 0.0472 0.0383 0.0610 0.0125 0.0411
NW 0.0035 0.0293 0.0260 0.0544 0.0149 0.0257
Y & H 0.0137 0.0274 0.0353 0.0574 0.0566 0.0680
EM 0.0242 0.0235 0.0344 0.0202 0.0269 0.0081
WM 0.0031 0.0012 0.0069 0.0168 -0.0027 0.0045
East 0.0157 0.0233 0.0143 0.0392 -0.0052 0.0159
London 0.0810 0.0513 0.1006 0.0812 0.0661 0.0387
SE 0.0016 0.0302 0.0259 0.0687 0.0598 0.0973
SW 0.1077 0.0941 0.0955 0.0813 0.0588 0.0462
Wales -0.0148 0.0073 -0.0502 -0.0092 -0.0528 -0.0002
Scotland 0.0466 0.0445 0.0482 0.0732 0.0217 0.0506

Table 10: Net Spillover From Each Regional Vacancies To Vacancies Of All
Other Regions

Region
Lower Regime Lower Regime Middle Regime Middle Regime Upper Regime Upper Regime

h=2 h=4 h=2 h=4 h=2 h=4
NE -0.0211 -0.0304 0.0212 -0.0177 0.0328 -0.0085
NW 0.0169 0.0054 -0.0050 -0.0127 -0.0224 -0.0184
Y & H -0.0287 -0.0087 -0.0266 -0.0052 -0.0012 0.0049
EM 0.0266 0.0311 0.0425 0.0366 0.0367 0.0449
WM -0.0304 -0.0292 -0.0193 -0.0072 -0.0049 0.0083
East 0.0420 0.0398 0.0299 0.0324 0.0513 0.0407
London -0.0474 -0.0354 -0.0619 -0.0380 -0.0787 -0.0505
SE -0.0155 -0.0044 -0.0294 -0.0013 -0.0297 -0.0015
SW -0.0331 -0.0313 -0.0283 -0.0284 -0.0256 -0.0280
Wales 0.0187 0.0112 0.0129 0.0055 0.0069 0.0008
Scotland 0.0720 0.0519 0.0640 0.0361 0.0348 0.0074

Table 11: Net Spillover From Each Regional Vacancies To Inflows Of All
Regions

Region
Lower Regime Lower Regime Middle Regime Middle Regime Upper Regime Upper Regime

h=2 h=4 h=2 h=4 h=2 h=4
NE -0.0436 -0.0467 -0.0320 -0.0394 -0.0134 -0.0147
NW -0.0040 -0.0105 -0.0588 -0.0763 -0.0824 -0.0850
Y & H 0.0000 -0.0244 -0.0074 -0.0342 -0.0064 -0.0171
EM -0.0218 -0.0254 0.0033 -0.0090 0.0175 0.0127
WM -0.0702 -0.0712 -0.0769 -0.0524 -0.0594 -0.0213
East 0.0308 0.0116 0.0343 0.0043 0.0430 0.0186
London -0.0626 -0.0667 -0.0818 -0.0874 -0.0806 -0.0956
SE -0.0322 -0.0318 -0.0486 -0.0305 -0.0574 -0.0207
SW -0.0518 -0.0601 -0.0580 -0.0763 -0.0557 -0.0745
Wales -0.0468 -0.0324 0.0055 -0.0459 0.0314 -0.0299
Scotland 0.0219 0.0127 0.0447 0.0246 0.0249 0.0104
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Table 12: Net Spillover From Each Regional Vacancies To Outflows Of All
Regions

Region
Lower Regime Lower Regime Middle Regime Middle Regime Upper Regime Upper Regime

h=2 h=4 h=2 h=4 h=2 h=4
NE -0.0495 -0.0571 -0.0525 -0.0629 -0.0388 -0.0376
NW -0.0353 -0.0219 -0.0595 -0.0645 -0.0601 -0.0774
Y & H -0.0381 -0.0319 -0.0253 -0.0285 0.0026 -0.0077
EM -0.0311 -0.0234 -0.0351 -0.0420 -0.0151 -0.0176
WM -0.0356 -0.0404 0.0032 -0.0207 0.0215 -0.0081
East -0.0271 -0.0252 -0.0103 -0.0331 0.0346 0.0204
London -0.0254 -0.0468 -0.0673 -0.0992 -0.0716 -0.1013
SE -0.0078 -0.0286 -0.0130 -0.0506 -0.0217 -0.0508
SW -0.0793 -0.0732 -0.0877 -0.0744 -0.0744 -0.0610
Wales 0.0352 -0.0093 0.0289 -0.0366 0.0147 -0.0322
Scotland -0.0184 -0.0216 -0.0567 -0.0317 -0.0485 -0.0225

Table 13: Net Spillovers Within Regions, Lower Regime

Region Inflow Rate Outflow Rate Vacancy Rate

h = 2

NE -0.0060 0.0107 -0.0046
NW 0.0108 0.0048 -0.0156
Y & H -0.0032 0.0155 -0.0123
EM -0.0005 0.0082 -0.0077
WM -0.0047 -0.0062 0.0109
East 0.0509 -0.0250 -0.0259
London -0.0007 -0.0092 0.0099
SE 0.0122 0.0029 -0.0151
SW -0.0067 0.0155 -0.0087
Wales 0.0309 -0.0583 0.0274
Scotland 0.0185 -0.0154 -0.0031

h = 4

NE -0.0024 0.0096 -0.0072
NW 0.0043 0.0027 -0.0070
Y & H -0.0001 0.0054 -0.0052
EM 0.0055 -0.0001 -0.0054
WM -0.0002 0.0013 -0.0010
East 0.0217 -0.0108 -0.0109
London -0.0034 0.0056 -0.0021
SE 0.0017 0.0093 -0.0110
SW -0.0072 0.0175 -0.0103
Wales 0.0191 -0.0252 0.0061
Scotland 0.0119 -0.0060 -0.0059
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Table 14: Net Spillovers Within Regions, Middle Regime

Region Inflow Rate Outflow Rate Vacancy Rate

h = 2

NE -0.0124 0.0110 0.0014
NW 0.0130 0.0175 -0.0305
Y & H -0.0148 0.0388 -0.0239
EM -0.0069 0.0204 -0.0134
WM -0.0039 -0.0083 0.0122
East 0.0461 -0.0131 -0.0329
London -0.0053 0.0068 -0.0015
SE 0.0012 0.0281 -0.0293
SW -0.0064 0.0146 -0.0082
Wales 0.0188 -0.0660 0.0472
Scotland 0.0159 -0.0031 -0.0128

h = 4

NE -0.0050 0.0077 -0.0028
NW 0.0055 0.0149 -0.0204
Y & H -0.0021 0.0130 -0.0109
EM 0.0000 0.0067 -0.0066
WM -0.0009 -0.0022 0.0031
East 0.0184 -0.0015 -0.0169
London -0.0001 0.0137 -0.0136
SE -0.0057 0.0228 -0.0171
SW -0.0038 0.0116 -0.0077
Wales 0.0189 -0.0258 0.0069
Scotland 0.0136 -0.0001 -0.0134
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Table 15: Net Spillovers Within Regions, Upper Regime

Region Inflow Rate Outflow Rate Vacancy Rate

h = 2

NE -0.0120 0.0082 0.0038
NW 0.0122 0.0128 -0.0251
Y & H -0.0181 0.0410 -0.0229
EM -0.0128 0.0207 -0.0079
WM 0.0002 -0.0098 0.0096
East 0.0200 -0.0082 -0.0118
London -0.0062 0.0126 -0.0064
SE -0.0115 0.0414 -0.0299
SW 0.0034 0.0075 -0.0109
Wales 0.0079 -0.0481 0.0401
Scotland 0.0160 -0.0024 -0.0137

h = 4

NE -0.0043 0.0042 0.0001
NW 0.0029 0.0135 -0.0165
Y & H 0.0038 0.0044 -0.0082
EM -0.0076 0.0028 0.0048
WM 0.0050 -0.0084 0.0034
East 0.0025 -0.0025 0.0000
London 0.0067 0.0111 -0.0178
SE -0.0079 0.0225 -0.0146
SW 0.0037 0.0042 -0.0079
Wales 0.0165 -0.0144 -0.0021
Scotland 0.0087 -0.0013 -0.0073
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