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The claim that linear filters are liable to induce spurious fluctuations has

been repeated many times of late. However, there are good reasons for

asserting that this cannot be the case for the filters that, nowadays, are

commonly employed by econometricians. If these filters cannot have the

effects that have been attributed to them, then one must ask what effects

the filters do have that could have led to the aspersions that have been

made against them.

Introduction: The History of an Idea

The idea that fluctuations can be imparted to a data sequence by passing
it through a linear filter has long been familiar to econometricians. It was
associated with the discoveries of Slutsky and Yule in the early years of the
20th century.

Slutsky (1927, 1937) applied a moving-average filter to random numbers
drawn from a public lottery to produce a sequence that had the characteristics
of a macroeconomic business cycle. Yule (1927) demonstrated the manner in
which a second-order autoregressive model, driven by a white-noise sequence
of independently and identically distributed random variables, can give rise to
an output that contains cycles of such regularity that one might imagine that
they have a mechanical origin.

The danger of being misled by an inappropriate use of filters was empha-
sised by Howrey (1968), who discovered that the long-run economic cycles that
Kuznets (1961) claimed to have detected were, in fact, the artefacts of his data
processing. It seemed appropriate to describe these cycles as spurious.

A linear filter can have two effects. The first effect is to amplify or to
attenuate the amplitudes of the cyclical elements of the data to an extent that
varies with the frequencies of the elements. This is described as the gain effect
of the filter. The second effect is to displace the elements in time, such that
their peaks and troughs are advanced or retarded. This is the phase effect of
the filter. The phase effect can be avoided if the filter coefficients are disposed
symmetrically about a central point, so that the filter reaches equally forward
and backwards in time.

The examples described so far entail a marked amplification of the ampli-
tudes of sinusoidal elements within a narrow range of frequencies, accompanied
by marked attenuations over the remaining frequencies. It is inaccurate to say
that the cycles that have been amplified have been induced in the data, since
they are already present; but, in these contexts at least, the abuse of language
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is tolerable. However, such semantic issues will become important in the wider
context of our enquiry.

The claim that linear filters are liable to induce spurious fluctuations has
persisted; and it has been repeated often of late. However, there are good
reasons for asserting that this cannot be the case for the filters that, nowadays,
are commonly employed by econometricians. The purpose of this paper is to
demonstrate conclusively that these filters cannot have the effects that have
been attributed to them. Also, we need to ask what effects the filters do have
that could have led to the aspersions that have been made against them.

The Linear Detrending of a Random Walk

The belief that an inappropriate processing of the data can induce spurious
fluctuations has been reaffirmed in more recent times in connection with the
filtering of data generated by random walk processes. Chan et al. (1977) and
Nelson and Kang (1981) have described the effects of using linear and polyno-
mial regressions to remove apparent trends from the data. They have observed
that, regardless of the length of the data sequence, a random walk that has
been subject to detrending exhibits major cycles that have a duration that is
matched to the length of the sample.

The result can be explained in reference to the self-similarity of a Wiener
process in continuous time, from which a discrete-time random walk can be
obtained by a process of sampling. The self-similarity means that every seg-
ment of the Wiener process has a similar appearance and the same statistical
characteristics, regardless of its duration.

A sample of n elements taken at regular intervals from a Wiener process,
and scaled appropriately, has the same statistical properties as any other such
sample of n elements, regardless of the rate of sampling. Let samples be taken
at intervals of one and T time units. Then

T 1/2(x1, x2, . . . , xn) D= (xT1, xT2, . . . , xTn), (1)

which is to say that the two sides have the same distribution. Therefore, the
effects, in general, of fitting a linear trend according to a least-squares criterion
should not vary with the length of time spanned by the data. Nor should the
trend line be much affected by varying the rate of sampling within a given time
span.

Figure 1 shows a random walk with an upward drift, through which a
straight line has been interpolated by ordinary least-squares regression. The
random walk, which has a minimal sampling interval, can be taken to represent
a Wiener process seen with a limited visual acuity.

Nelson and Kang have presented the autocorrelation function of the resid-
ual sequence from the linear detrending of a random walk via a least-squares
regression. The autocorrelations can be expressed as a function of the ratio of
the time lags to the sample size T . This function tends to an asymptotic limit
as T tends to infinity.

A spectral density function can be derived on the assumption that the
autocorrelation function in question corresponds to a doubly-infinite stationary
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Figure 1. A random walk generated by the equation yt = yt−1 + δ + εt together

with an interpolated regression line. The variance of the white-noise disturbance is

V (εt) = 1 and the drift parameter is δ = 0.2.
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Figure 2. The spectral density function derived from the autocorrelation function

of Nelson and Kang for sample sizes of 32, 64 and 128.
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Figure 3. The spectral density functions for sample sizes T of 32, 64 and 128, scaled

by T−1/2 and plotted as functions of the number of cycles within the duration of the

sample.
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stochastic process. If the matrix of the autocovariances of the residuals from
the linear detrending of a finite sample of a random walk is to serve as the
basis for a spectral density function, then its form must be rectified, such that
it becomes a Toeplitz marix. The elements on the diagonals of the matrix,
which will vary with the row or column index, must be replaced by constant
values. This can be achieved by averaging the elements of each diagonal.

Figure 2 shows spectral density functions corresponding to the rectified
autocorrelation functions for sample sizes of 32, 64, and 128. Here, the spectra
are plotted against an axis that measures absolute frequency in radians per
sample interval.

The spectra are also plotted in Figure 3 against a horizontal axis that
measures the number of cycles within the length T of the sample. The ordinates
of these spectra have been scaled by T−1/2. Although these normalised spectra
have been plotted against a common set of axes to the limit of 6 cycles, their
horizontal ranges extend to the associated values of T .

In Figure 3, the spectral peaks are aligned at a frequency value of 1.265
cycles per sample. These peaks correspond to the wide deviations of the random
walk from the interpolated line, which are associated with what have been
described as the major cycles—i.e. cyles of low frequency and high amplitude.

As T → ∞, the normalised spectra will tend to the limiting form that
characterises the deviations of a Wiener process from an interpolated regression
line. The potential number of line crossings will increase indefinitely, and their
expected number will increase at the rate of T 1/2. The tails of the spectra
associated with the higher frequencies correspond to what may be described as
the minor cycles that are superimposed on the major cycles.

The Notion of Spurious Periodicity

Nelson and Kang have concentrated their attention on the major cycles; and
they have not hesitated to describe the phenomenon that they have uncovered
as one of spurious periodicity. This judgement may have been based on the
perception that a random walk has no central tendency. It is presumed that,
in the absence of a central tendency, there can be no cyclicality.

However, a random walk is generated by cumulating a white noise se-
quence, which contains cycles of every frequency in the interval running from
zero to the Nyquist frequency of π radians per period, which represents the
limit of the frequencies that are observable in sampled data. Therefore, the
idea that there is no cyclicality in the process should be treated with caution.

It is easy to see how, via a simple syllogism, a false conclusion concern-
ing macroeconomic data sequences can arise. The major premise is that the
macroeconomic data can be regarded as the product of a random walk. The
minor premise is that the detrending of a random walk gives rise to spurious
cycles. The conclusion is that the detrending of a macroeconomic sequence
induces spurious cycles.

One need not demur over the use of the word spurious in connection with
the cycles resulting from the linear detrending of a random walk. It is the
complete identification of the macroeconomic process with a random walk (or
with a random walk with drift) that is at fault.
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Figure 4. The quarterly series of the logarithms of consumption in the U.K., for

the years 1955 to 1994, together with a linear trend interpolated by least-squares

regression.

In contrast to random walks, real economic processes are subject to evident
constraints. They are driven by the buoyant forces of entrepreneurial endeavour
and by consumer aspirations, and they are constrained by the more or less
pliable limits of productive capacity and resource availability. In a thriving
economy, they press alternately against the floors and the ceilings and they
rebound from them in a manner that is undeniably cyclical.

A straight line interpolated through the logarithms of a macroeconomic
data sequence represents a benchmark of constant exponential growth. The
expectation that this should be the underlying trajectory of a well functioning
economy became widespread amongst the citizens of affluent countries during
20th century; and the cyclical departures from such a trajectory have been
characterised as booms and slumps.

Therefore, the analytic procedures that Nelson and Kang have warned
against seem to be the natural ones to follow, at least in times that are not
affected by major economic crises.

It should be born in mind that, when the number of major cycles within the
(linearly) detrended macroeconomic data exceed two or three, then the analogy
with a random walk begins to break down. Whether or not the analogy should
be rejected at this stage depends entirely on the purpose for which it is being
used.

Figure 4 shows the logarithms of a sequence of quarterly aggregate con-
sumption in the U.K. through which a straight line has been interpolated by
least-squares regression. The calculation of the trend line entails a matrix ver-
sion of the twofold difference operator that takes the form of

Q′ =


1 −2 1 0 . . . 0 0 0
0 1 −2 1 . . . 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 . . . 1 −2 1

 . (2)
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Figure 5. The periodogram of the residual sequence obtained from the linear de-

trending of the logarithmic consumption data. The shaded band on the interval

[0, π/8] contains the elements of the business cycle, and the bands in the vicinities of

π/2 and π contain elements of the seasonal component.

From this matrix is formed the projection operator

P = Q(Q′Q)−1Q′, (3)

which gives rise to the following decomposition of the data vector:

y = (I − P )y + Py

= f + e.
(4)

Here, f = (I − P )y contains the ordinates of the linear trend and e = Py
contains the residual deviations of the data from the trend.

Figure 5 shows the periodogram of the residual sequence. Here, there is
the spectral signature of a low-frequency component that extends in frequency
as far as π/8 radians. This may be attributed to the business cycle. Next,
there is a deadspace that is interrupted by a sharp spike at the frequency of
π/2, which is the fundamental frequency of the annual seasonal fluctuations.
This is followed by a further deadspace that extends almost to the Nyquist
frequency of π, where the harmonic component of the seasonal fluctuations is
to be found. The periodogram will guide the extraction of the business cycle.

The Line Crossings of a Random Walk

A great deal of effort has been devoted by econometricians in recent years to
the matter of testing the hypothesis that the trajectory of an economic variable
has been generated by a random walk process; and many variations of the
tests have been investigated. Usually, the question is posed of whether or not
the process generating the data contains a unit root within an autoregressive
operator. Despair has often arisen from the fact that the tests rarely provide a
unequivocal answer to the question.
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An alternative question that might be asked is whether or not a unit-
root process provides an acceptable model for an economic process. Then,
there should no expectation of an unequivocal answer, since the criteria for
determining what is an appropriate model will vary according to the purpose
of the investigation and the tastes of the investigator. Nevertheless, formal
tests of a null hypothesis that the data have been generated by an equation of
a simple parametric structure can provide an essential guide to mathematical
modelling.

The null hypothesis that is commonly adopted is that the data have been
generated by a first-order random walk with drift. The hypothesis can be
represented by imposing the restriction that ρ = 1 within the equation

yt = δ + ρyt−1 + εt, (5)

wherein εt is an element from a white-noise process of independently and iden-
tically distributed random variables of zero mean and of a finite variance of
V (εt) = σ2, for all t. The process depicted by the equation is assumed to have
begun at time t = 0 with a finite value y0.

The vast majority of the tests are addressed directly to the matter of
whether ρ = 1 or whether, alternatively, |ρ| < 1. Such tests depend on mea-
suring the rate of mean reversion or, equivalently, the strength of the central
tendency of the data. It should be recognised that, the more rapidly the data
are observed, the less will be the apparent rate of mean reversion, as measured
from one point to the next. Therefore, it is reasonable to seek a test that is
independent of the rate of sampling. Tests of this nature can be based on the
number of times that the trajectory of the data crosses a line that represents
the mean to which it is supposed to revert.

Such a test can be based on a result of Feller (1968) in the specialised case
where δ = 0 and where εt = ±1 is generated by a Bernoulli trial with equal
probabilities for the two outcomes. Feller has demonstrated that, if NT is the
number of times that the resulting trajectory crosses the horizontal axis in the
T periods covered by the data, then the probability P (NT /

√
T < z) that the

scaled number does not exceed z will be given, in the limit as T → ∞, by
2Φ(2z) − 1, where Φ(z) denotes the cumulative standard normal distribution.

This strange looking result does not provide an adequate prototype for the
case where εt has a continuous distribution. As Burridge and Guerre (1996)
have remarked, the number of trajectories that only touch the horizontal axis
before bouncing back is equal, in the discrete case, to the number of trajectories
that cross the axis. (This result is a consequence of the reflection principle,
which indicates that, for any trajectory that crosses the axis, the segments
that lie below the axis can be reflected upwards to create a trajectory that only
touches the axis.) In the continuous case, by contrast, the trajectories that
only touch the horizontal axis constitute a set of measure zero.

Burridge and Guerre have shown that, in the continuous case, the number
of line crossings depend on the nature of the distribution of εt—distributions
with fatter tails giving rise to fewer line crossings. They have established the
result that

T−1/2NT
D−→ E|εt|

σ
|z|, (6)
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Figure 6. Nested segments of a trajectory of Brownian motion, sampled at rates

that increase successively by factors of 4.

where z ∼ N(0, 1) is a standard normal variable, where σ2 = V (εt) and where
D−→ denotes a convergence in distribution as T → ∞. The half-normal distri-

bution |N(0, 1)| is the distribution of the absolute values of a standard normal
variate; and it is obtained by folding the negative range of the N(0, 1) distri-
bution over the vertical axis in the manner of closing an open book.

In the case where εt is an element from a normal distribution, which cor-
responds to the hypothesis that the data have been sampled from a Wiener
process, there is E|εt|/σ = 2/

√
2π.

The result given by (6) requires to be interpreted in the light of the familiar
picture of a Wiener process. First, its should be recognised that, as T → ∞,
both the expected number of times that the sampled trajectory crosses the axis
and the expected waiting times between successive crossings tend to infinity
at the rate of T 1/2. By contrast, in a stationary mean-reverting process, the
number of line crossings will increase at the rate of T and the expected duration
between successive crossings will be a finite constant.

Next, since the infinite sampled sequence corresponds to a finite segment
of the continuous Wiener process, one is bound to ask where one should look
to find an infinite number of line crossings. An answer is given via the succes-
sion pictures of Figure 6, which shows nested segments of a Wiener trajectory,
sampled at rates that increase successively by factors of 4, which implies a
magnification from first to last of 45 = 1024.

The first picture reveals four line crossings, the first two of which can barely
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Figure 7. The histogram of the number of times a random walk of 60 steps crosses

the horizontal axis, determined via 50,000 trials.
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Figure 8. The histogram of the number of times a random walk of 60 steps crosses

a line through the end points of the sample.
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Figure 9. The histogram of the number of times a random walk of 60 steps crosses

a line interpolated by least-squares regression.

be distinguished from cases where the trajectory only touches the horizontal
axis. We shall describe these four crossings that are associated with the major
cycles as the major crossings.

Attention is focussed on the third crossing. The succession of pictures
reveals that what seems, at the lowest resolution, to be a single crossing is
a case of multiple crossings within a limited vicinity. For want of a better
description, we shall call these the minor crossings. It will be understood that,
as the resolution, or, equivalently, the rate of sampling, increases, the number
of minor crossings that can be discerned is liable to increase indefinitely.

The implications of our analysis of a Wiener process and of the associated
random walk appear to be at variance with the analysis of Nelson and Kang,
which points to a single dominant cycle of a duration that is comparable to the
length of the data period. However, the latter cycle has been attributed to the
linear detrending of a drifting random walk; and it would also arise in the case
of an ordinary random walk with δ = 0, if the horizontal axis were replaced by
a straight line interpolated by least-squares regression.
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Since the majority of macroeconomic data sequences show marked trends,
it is inevitable that their degrees of central tendency should be measured rel-
ative to an interpolated trend. To fulfil this requirement, Garćıa and Sansó
(2006) have proposed to generalise the test of Burridge and Guerre by replac-
ing the horizontal axis at the level of y0 by a line that passes through the first
and the last of the data points of a finite sample, thereby creating what is known
as a Brownian Bridge. Thus, they replace the observations y0, y1, . . . , yT−1 by
the adjusted values x0, x1, . . . , xT−1, where

xt = yt − y0 − ct, x0 = y0 and c = (yT−1 − y0)/T. (7)

Garćıa and Sansó have considered the number of sign changes NB
T of the ad-

justed sequence, and they have established that

T−1/2NB
T

D−→ E|εt|
σ

R(z), (8)

where R(z) = ze−z2/2 denotes a standard Raleigh distribution.
The distribution of the number of times that a drifting random walk crosses

a line interpolated by least-squares regression does not seem to possess a simple
analytic form. For any sample size, even numbers of crossing are, on average,
more numerous than odd numbers of crossings.

In implementing tests based on the number of line crossings, it is ap-
propriate, when the sample size is small, to rely on empirically determined
distributions as opposed to asymptotic approximations.

Figures 7–9 show the empirical distributions of the number of line crossings
for samples of 60 points generated by a random walk, determined, in each case
via 50,000 trials. The three cases concern the number of times a random walk
without drift crosses the horizontal axis, the number of times a random walk
crosses a line interpolated through the first and the final points and the number
of times that a random walk crosses a line interpolated by a least-squares
regression.

The line-crossing tests have a limited ability to distinguish an interpolated
random walk from a cyclical ARMA process of the sort that could be used to
describe a business cycle. A more efficient test would take account not only of
the number of line crossings but also of their locations. It would discount the
minor crossings of the random walk that are to be found in the vicinity of the
major crossings. Such minor crossings are due to the high-frequency contents
of the random walk, which are absent from the ARMA process.

Aspersions against the Hodrick–Prescott Filter

The idea that filtering can induce spurious cycles has also been fostered by a
succession of papers that have inveighed against the use of the filter of Hodrick
and Prescott (1980, 1997), which is also attributable to Leser (1961), as a
device for extracting trends from economic data. See, for example, King and
Rebelo (1993), Harvey and Jaeger (1993), Jaeger (1994), Cogley and Nason
(1995), Schenk-Hoppe (2001) and Ivanov (2005). These critics tend to regard

10



D.S.G. POLLOCK: CYCLES AND SEMANTICS

0

0.25

0.5

0.75

1

1.25

0 π/4 π/2 3π/4 π

A
B

C

Figure 10. The pseudo-spectrum of a random walk, labelled A, together with the

squared gain of the highpass Hodrick–Prescott filter with a smoothing parameter of

λ = 100, labelled B. The curve labelled C represents the spectrum of the filtered

process.

the random walk as an appropriate model for an economic process; and their
analysis typically concerns the interaction of the frequency response of the filter
with the pseudo spectrum of the random-walk process, which is defined on a
doubly infinite set of indices.

Such a random walk is truly an unimaginable process; and its values have
a zero probability of being found within a finite distance of the origin. Also,
the pseudo spectrum is unbounded in the vicinity of the zero frequency. It
is observed that, when the pseudo spectrum is modulated by the frequency
response function of the highpass Hodrick–Prescott filter, a spectral density
function is produced that has a prominent peak in the low-frequency region.
This spectral density function, which corresponds to the output of the filter, is
identified with a cyclical process. It is commonly asserted, on this basis, that
the filter is liable to induce spurious cycles.

In Figure 10, the curve labelled A represents the pseudo spectrum of a
random walk and the curve labelled B is the frequency response function of
the highpass Hodrick–Prescott filter, which shows the squared gain of the filter
over the range of frequencies. These run from zero to the Nyquist frequency π
radians per period. The curve C, which is the product of A and B, represents
the spectral density function of the output of the filter.

The matter can be approached from two sides—that of the filter and that
of the pseudo-spectrum of process. As regards the filter, it will be observed
that, over the entire range of frequencies, its gain never exceeds unity. Its gain
is close to unity over the range of frequencies that are described as the pass
band. Elsewhere, the gain makes a transition from a value close to unity to
zero, which is reached at the zero frequency.

The effect of the filter is, therefore, to nullify or to attenuate strongly
some elements of the data that are in the vicinity of the zero frequency while
preserving other elements that are of higher frequencies. Therefore, one can
declare emphatically that nothing is induced or amplified by the filter and that
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nothing that is to be found in its output can be described as spurious. Opinions
to this effect have been voiced by Pedersen (2001), Pollock (1997, 2000) and
Kaiser and Maravall (1999), amongst others.

Next, it can be declared that the pseudo-spectrum is a doubtful concept
that ought to be handled with caution. It relates to a nonstationary process
and, as such, it has a doubtful role within the context of a spectral analysis
which, ostensibly, is appropriate only to stationary processes of the sort that
can be represented as weighted sums of trigonometrical or complex exponential
function defined over the entire set of positive and negative integers.

The Typical Spectral Shape of an Economic Variable

The pseudo spectrum of a random walk has been regarded, occasionally, as
an appropriate surrogate for the typical spectrum of an economic process of
the sort that was identified by Granger (1966). This is a so-called “one-over-
f” spectrum of which the power declines monotonically as the frequency f
increases. Such spectra are common to a wide variety of physical and biological
processes including, for example, ocean waves and electroencephalographs.

However, there is a strong supposition that, in econometrics, this spectral
shape is associated, primarily, with a failure to reduce the data to stationarity
on account of an inadequate detrending. The subject of a spectral analysis
of a finite data sequence is the indefinite periodic extension of the sequence.
The periodic extension of a finite trended data sequence will give rise to a saw
tooth function of which the spectrum or periodogram has a typical “one-over-
f”profile.

However, a “one-over-f”spectrum that achieves a maximum value—albeit
a finite value—at zero frequency may also correspond to a regular stationary
stochastic process. In such a context, one can reasonably analyse the effects of
the Hodrick–Prescott filter, without endeavouring to eliminate a trend. Then,
a possible aspersion against the highpass filter is that it allows low-frequency
elements to be transmitted when they ought to be stopped.

Filters and Trended Data

Any misgivings regarding the pseudo spectrum should not be taken to imply
that a linear filter cannot be applied to trended data. It is proposed only
that a conventional spectral analysis is inappropriate to cases of nonstationary
processes and to their pseudo-spectra.

In applying a filter directly to trended data, one must take care to supply
the appropriate pre-sample and post-sample values to allow it to be run up or
down the sample in a manner that avoids creating inappropriate end effects.
Erroneous end effects can easily contaminate all of the filtered data sequence.

An appropriate recourse in the case of trended data, which avoids the
difficulty of the end effects, is to apply the filter to residuals that have been
obtained from fitting a polynomial function to the data. The residuals can
be filtered to separate their low-frequency elements from their high-frequency
elements. The low-frequency elements can be added back to the polynomial
trend to generate a more variable trend, which is commonly described as the
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Figure 11. The residual sequence e = Py from fitting a linear trend to the logarith-

mic consumption data with an heavy interpolated line De, representing the business

cycle, obtained by the frequency-domain method.

trend-cycle component. The high-frequency elements, which correspond to the
detrended data, may be subjected to further filtering, which could be designed,
for example, to remove the seasonal fluctuations.

Figure 11 shows the effects of filtering the residual sequence obtained by
fitting a straight line to the data of Figure 4. The smooth curve described by the
heavy line has been obtained via a synthesis based on the Fourier ordinates of
the residual sequence that lie in the frequency interval [0, π/8]. The purpose of
this filtering is to remove the powerful seasonal fluctuations from the sequence
e = Py and to eliminate some minor high-frequency elements.

A frequency-domain filtering requires a Fourier transform to be applied
to the data vector to carry it into the frequency domain. Then, the Fourier
ordinates, which are the product of the transformation, can be modified in the
desired manner before being carried back to the time domain, via an inverse
Fourier transform, to become the filtered values.

For a matrix representation of these operations, one may define

U = T−1/2[exp{−i2πtj/T}; t, j = 0, . . . , T − 1],

Ū = T−1/2[exp{i2πtj/T}; t, j = 0, . . . , T − 1],
(9)

which are unitary complex matrices such that UŪ = ŪU = IT . Then,

ζ = T−1/2Uz ←→ z = T 1/2Ūζ, (10)

where z = [z0, z1, . . . zT−1]′ and ζ = [ζ0, ζ1, . . . ζT−1]′ are the vectors of the data
and of their Fourier ordinates, respectively.

Let Λ = diag{λ0, λ1, . . . , λT−1} be a diagonal matrix of the weights. Then,
the modified Fourier ordinates are in the vector

Λζ = T−1/2ΛUz. (11)

13



D.S.G. POLLOCK: CYCLES AND SEMANTICS

Subjecting this vector to the inverse Fourier transform gives the filtered output

x = T 1/2ŪΛζ = {ŪΛU}z = Φ◦z, (12)

where Φ◦ = ŪΛU is the matrix of the filtering operation in the time domain.
This is a circulant matrix; and the filtering of the data in the time domain would
entail the circular convolution of the data with the filter coefficients that are
to be found at successive displacements within successive rows of the matrix.

Notwithstanding the fact that the filtering is performed more efficiently in
the frequency domain in the manner that has been described, the filtering of
the residual vector e = Py will be represented, hereafter, by the time domain
equation h = De.

In the case of the ideal filter that selects only the Fourier ordinates that lie
in the frequency interval [0, π/8], the element of the matrix D are the coefficients
of a Dirichelet kernel. These matters have been elucidated in Pollock (2009a),
where some devices are described for avoiding the disjunctions that may occur
in the periodic extension of the data sequence where the end of one iteration
of the data joins the begining of the next iteration.

The smooth trajectory of Figure 11 might be regarded as a good represen-
tation of the business cycle in the U.K. over the period 1955–1994.

Spurious Regularisation

The version of the highpass Hodrick–Prescott filter that is appropriate to a
finite data sequence entails the following matrix transformation:

H = Q(λ−1I + Q′Q)−1Q′. (13)

Two alternative derivations are provided by Pollock (2013). See also Pollock
(2009b). The complementary lowpass filter that determines the trend has the
matrix I − H. The flexibility of the tend line is determined by the so-called
smoothing parameter λ. When λ → ∞, then H → P = Q(Q′Q)−1Q′, and the
trend becomes a straight line.

It will be seen that HP = H. From this identity, it follows that

(I − H)y = (I − P )y + (I − H)Py. (14)

This shows that the output of the lowpass filter can be expressed as the sum
of the ordinates (I − P )y of a linear trend and those of the filtered version
(I − H)Py = (I − H)e of the residual vector from the linear detending. Thus
it will be recognised that the trend line of Figure 13 can be obtained by adding
the trajectory represented by the heavy line of Figure 12 to the linear trend of
Figure 4.

Figure 14 represents the residual sequence Hy = He generated by the
highpass version of the Hodrick–Prescott filter. The sequence is strongly af-
fected by seasonal fluctuations; and these can be eliminated by applying the
frequency-domain filter, represented in the time domain by the matrix D. The
resulting sequence DHy = DHe is represented by the heavy line in Figure 14.
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Figure 12. The residual sequence e = Py obtained by extracting a linear trend

from the logarithmic consumption data, together with a low-frequency trajectory

(I − H)e, represented by the heavy line, which has been obtained via the lowpass

Hodrick–Prescott filter.
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Figure 13. The quarterly logarithmic consumption data together with a trend (I −
H)y = (I − P )y + (I − H)Py interpolated by the lowpass Hodrick–Prescott filter

with the smoothing parameter set to λ = 1, 600.
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Figure 14. The residual sequence Hy = He obtained by using the lowpass Hodrick-

Prescott filter to extract the trend, together with a fluctuating component DHy =
DHe obtained by subjecting the sequence to a lowpass frequency-domain filter with

a cut-off point at π/8 radians.
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According to the common assertion, this product of the Hordrick–Prescott
filter is liable to be affected by spurious fluctuations. Given that the Hodrick–
Prescott filter has a gain that never exceeds unity, it cannot amplify elements
that are already in the data. Nor can it add anything to the data. Therefore,
one must look for other reasons that might justify the aspersions that have
been made against the filter.

One effect of the filter that may be problematic is its tendency to regularise
the amplitudes of the fluctuations that are present in the data. Fluctuations
of large amplitudes appear to be attenuated to a greater extent than those
of smaller amplitudes. Therefore, the effect of passing a linearly detrended
data sequence through the filter may be to increase significantly the number
of times that its trajectory crosses the horizontal axis. This is evident in the
comparison of Figures 11 and 14, where the heavy lines represent De and DHe,
respectively.

It could be said that the effect of the Hodrick–Prescott filter has been to
impart a spurious regularity to the fluctuations. However, it cannot be said
that the fluctuations of DHy = DHe are spurious or that they have been
induced by the filter. The effects of the filter can be explained in reference
either to the time domain or to the frequency domain.

For the explanation in the time domain, one can make reference to the
least-squares criterion function from which the Hodrick–Prescott filter can be
derived. Large deviations from the fitted function are penalised to a greater
extent than are the smaller deviations, with the effect that the fluctuations
acquire similar amplitudes. Also, the more flexible is the trend function, i.e.
the lower the value of λ, the greater will be the regularisation of the amplitudes
of the residual deviations.

To explain the effect from the point of view of the frequency domain, one
can observe that the highpass filter H serves to attenuate the low-frequency
motions within y and e, which carry the fluctuations away from the horizontal
axis. Therefore, the filtered sequence DHe is liable to cross the axis more often
that De does.

These explanations suggest that the effects of the Hodrick–Prescott filter
are bound to be shared with other filters that attenuate or remove the low-
frequency elements of the data.

It should be observed that, in common with Hodrick–Prescott filter, the
ideal frequency-domain filter fulfils a least-square criterion. The Fourier synthe-
sis that constitutes the output of the filter corresponds to the trigonometrical
polynomial of a given degree that provides the least-squares approximation to
the data sequence. This result is proved by Baxter and King (1999) in their
appendix and by Pollock (1999, p. 375).

Summary and Conclusions

The idea that linear filters are liable to induce spurious fluctuations in the data
to which they are applied has been repeated many times, and it appears to
be firmly rooted in the consciousness of many econometricians. The twofold
purpose of this paper has been show that this idea is largely mistaken and to
attempt to reveal the various ways in which it has arisen.
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It is undeniable that, when they are applied without due care and without
a full understanding of their effects, linear filters can give surprising results that
can mislead the analyst. Therefore, one is bound to ask what can be done to
guard against the dangers of being misled.

The best advice that can be offered is that, in applying a filter to the data,
one should be fully aware of its frequency response and one should be appraised
of the frequency composition of the data. In addition, in econometrics, one has
often to deal with the non-cyclical elements that give rise to a trend in the
data.

The removal of the trend is a necessary step that must be taken before one
can assess the frequency content of the data. Whenever the data have a strong
trend, the periodogram will have a “one-over-f” profile, which will conceal the
information that could otherwise serve to guide the filtering process.

To avoid giving rise to a spurious regularisation of the residual fluctuations,
it is recommended that the trend function should be made as stiff as possible,
while remaining capable of capturing the underlying trajectory of the data. A
polynomial function of a low degree will often serve this purpose. In the case
of the logarithmic consumption data of Figure 5, which comes from a period in
which the underlying growth of the U.K. economy was at a constant exponential
rate, a linear detrending of the data is appropriate.

There are times when disturbances occur that disrupt the steady progress
of the economy. Whereas such breaks will be highlighted by fitting a firm trend
function to the data, it may be desirable to absorb the breaks within the trend.
This can be achieved by means of a segmented trend function, of which Mills
(2003) has provided some good examples.

An alternative recourse is to attribute some extra flexibility to the trend
function in the vicinity of the breaks. As example that employs a Hodrick–
Prescott filter with a variable smoothing parameter has been provided by Pol-
lock (2009b). The program IDEOLOG that achieves this is available at the web
address http://www.le.ac.uk/users/dsgp1/ and it has been documented by
Pollock (2009c).

The periodogram of the detrended data is an indispensable guide in the
choice of a filtering procedure. Often, it will reveal distinct and separable
spectral structures. The periodogram of Figure 5, which relates to the residuals
from the linear detrending of the logarithmic consumption data, provides a good
example. In an ideal circumstance, the transition of the frequency response of
the filter from the pass band to a stop band will occur within a deadspace
of the periodogram. The wide deadspaces that are revealed by the figure will
accommodate even a gradual transition.

The frequency-domain filter that has been described in the text and which
has been used in isolating the business cycle component of Figure 11 has a
perfectly abrupt transition at the frequency of π/8. The filter is available with
the IDEOLOG program. However, given the ample deadspace that stretches
from π/8 almost to π/2, other filters, which operate in the time domain and
which have more gradual transitions, would serve the same purpose.

The Hodrick–Prescott filter is not able to serve this purpose. Its fault lies
in its limited adjustability, which depends solely on the smoothing parame-
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ter. This determines the nominal cut-off point, which is the mid point of the
transition from the pass band to the stop band. The transition becomes more
gradual as the nominal cut-off frequency increases. Thus, the filter is incapable
of isolating a localised spectral structure, unless it is confined to the vicinity of
the zero frequency.

The shortcomings of the Hodrick–Prescott filter, which has been used ex-
tensively in macroeconomic analyses, were highlighted by Pollock (2000), who
compared it to the more flexible Butterworth square-wave filter. The present
paper has higlighted a further effect that one must guard again, not only in
connection with the Hodrick–Prescott filter, but also in the case of any filter
that generates a flexible trend function. This is the spurious regularisation of
the fluctuations within the residual sequence.
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