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Abstract

Standard equilibrium concepts in game theory find it diffi cult to explain the

empirical evidence in a large number of static games such as prisoners’ dilemma,

voting, public goods, oligopoly, etc. Under uncertainty about what others will do

in one-shot games of complete and incomplete information, evidence suggests that

people often use evidential reasoning (ER), i.e., they assign diagnostic significance to

their own actions in forming beliefs about the actions of other like-minded players.

This is best viewed as a heuristic or bias relative to the standard approach. We

provide a formal theoretical framework that incorporates ER into static games by

proposing evidential games and the relevant solution concept- evidential equilibrium

(EE). We derive the relation between a Nash equilibrium and an EE. We also apply

EE to several common games including the prisoners’dilemma and oligopoly games.
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1 Introduction

A considerable body of evidence shows that the predictions of the standard equilibrium con-
cepts in game theory are not borne out by a significant fraction of experimental subjects.1

In this paper, we are interested in static games of complete and incomplete information
such as a one-shot prisoners’dilemma game, a one-shot voting game, a one-shot public
goods game, and duopoly games such as Cournot, Bertrand or Stackelberg games etc.
Let us briefly note the nature of the violations in some static games that we are inter-

ested in. A more detailed treatment and references are given in Section 2. More than half
the subjects in the prisoners’dilemma game play the dominated action ‘cooperate’. Voters
vote in elections when it is clear to them that they will not be pivotal. Under traditional
preferences, if there is a cost to voting, voting is a dominated action. The dominant action
in public good games is to free-ride, yet we observe high levels of contributions initially that
decay over time. Furthermore, if we combine like-minded players in public good games,
based on the level of contributions, then we can elicit near first-best levels of contributions.
In experiments with two players who must simultaneously choose outputs, the Cournot
prediction is played at best by approximately only a third of the players, while monopoly,
Stackelberg and even the competitive outcomes are quite common. The evidence from
these and similar games suggests the following stylized facts that any reasonable theory of
static games may aspire to explain.

S1. A significant fraction of players behave in a manner that is consistent with the
predictions of classical game theory. For instance, many players defect in a prisoners’
dilemma game, many people abstain from voting, many people contribute very low
amounts or none at all in the early rounds of public goods games.

S2. An even larger fraction of players violate the predictions of classical game theory and
they often seem to behave non-strategically. In particular, in certain games, they
play dominated actions. But these dominated actions jointly lead to higher payoffs,
e.g., both players cooperating in prisoners’dilemma games. These findings are not
restricted to the games that we consider in this paper but are fairly robust in static
games. For instance, in a second price common value auction, Ivanov et al. (2010)
find that more than 30% of their subjects choose dominated bids. Controlling for
lack of attention, misconception or insuffi cient incentives, de Sousa et al. (2012)
find in a p-beauty contest with chess players that half of their experimental subjects
behave in a non-strategic manner.2

1See, Camerer (2003) for a book length treatment.
2The authors argue that (p.3): "Our results overall suggest that the existence of non-strategic players

in one-shot games is a robust feature. Rather than disregarding non-strategic players as noise, we believe
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S3. In environments where players think that they are playing with other like-minded
players they impute diagnostic significance to their own actions when forming beliefs
about the actions of others.3 For instance, those who cooperate (respectively defect)
in prisoners’dilemma games think that the vast majority of other players will also
cooperate (respectively defect). Similarly, despite publicly available information on
election polls, those who vote Democrat (respectively Republican) in the US Pres-
idential elections believe that a significant majority of other voters will also vote
Democrat (respectively Republican).

Each of the static games that we consider have an exceedingly simple structure. Hence,
we believe that the anomalies relative to the classical predictions are less likely to arise
from mistakenly playing the incorrect action.4 Rather, we believe that the formation of
individual beliefs about how their opponents will play is the critical element.

1.1 Epistemic conditions

The Nash equilibrium for static games of complete information does not impose any re-
strictions on the beliefs of the players. On the other hand, the epistemic conditions that
are known to imply a Nash equilibrium turn out to be extremely demanding. Aumann and
Brandenburger (1995) proved the following result. Suppose that we have mutual knowl-
edge of the payoffs, mutual knowledge of rationality, common knowledge of the beliefs (or
conjectures) each player has about the others, and common priors. Then the common con-
jectures about each player j by the other players agree and constitute a Nash equilibrium
of the game. Polak (1998) showed that if mutual knowledge of the payoffs is strength-
ened to common knowledge of payoffs then the Aumann-Brandenburger conditions imply
common knowledge of rationality. One may ask how players acquire such information. A
long history of experiments show that players do not acquire such information through
repeated play of the game; see Colman et al. (2010). Furthermore, insofar as the Nash
equilibrium is often violated in experiments (stylized fact S2), these epistemic conditions
cannot empirically hold either.5

One of the leading belief-based behavioral models that has been quite successful in the
explanation of the results of many static games has been the Level-k model. For instance,

that they should be considered as one of the main empirical regularities found in situations in which
economic agents are confronted with new situations." Since the experimental subjects are chess players,
experience from one domain does not necessarily transfer into another domain.

3We state some of the key features of stylized fact S3 here. A more detailed discussion with reference
to the sources can be found in Section 2.

4For this reason our focus is not on behavioral alternatives such as quantal response equilibrium (QRE)
in which players play a noisy best response but otherwise have consistent beliefs.

5Recent research offers an unsettled view of the epistemic foundations; see for instance, Gintis (2012).
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it makes very specific predictions for the p-beauty contest game that are supported by
the evidence; see, for instance, Camerer (2003). In Level-k models players play a best
response, yet their beliefs may not be justified in equilibrium, hence, these models belong
to the more general class of disequilibrium in belief models. Level-k models have been
very successful in other contexts too, e.g., explaining the salience of focal points and in
explaining the results from auctions.6 However, under Level-k models, one should not
observe the play of dominated strategies by any level-k player, k > 1, which makes it
diffi cult to account for stylized fact S2.

1.2 Evidential reasoning (ER)

In the spirit of belief-based models, we examine the implications for static games of a
particular kind of reasoning, evidential reasoning (ER), which is also sometimes known
as social projection. ER is underpinned by a great deal of psychological evidence. When
players who use ER are uncertain of the actions of other like-minded players, they assign
diagnostic significance to their own actions in forming inferences about how others may
behave. This might arise because there is true uncertainty in inferring what others will
do in static games, or because we are simply hard-wired to use ER, or because we need
to economize on scare cognitive resources, etc. ER may not apply to players who are
not viewed as like-minded. Following the psychological literature, we may refer to the
reasoning used in classical game theory as causal reasoning. A decision maker who uses
causal reasoning assigns no diagnostic value to his own actions, unlike evidential reasoning.
Robbins and Krueger (2005) describe evidential reasoning thus: “Using their own dis-

position or preferences as data, people can make quick predictions of what others are like
or what they are likely to do”. In a recent survey, Krueger (2007) writes “The concept
of social projection is once again generating vigorous theory development and empirical
research ... social projection is among the simplest, oldest, and arguably most central
concepts of the field”.
We now consider some initial examples of ER.

Example 1 (Grafstein, 1991): Suppose that an individual, A, would like to meet a col-
league, B, who lives in the same area, on the way to work. B is known to be similar in
personality and tastes but it is not known what route B will take to work. Then A may use
her own choice of route (e.g., a ‘scenic route’or a ‘quite route’or the ‘shortest route’etc.)
as the best guess of what route B may take. Thus, one’s own actions may have diagnostic
significance in inferring the actions of others. By choosing a particular route, A cannot
influence the route that B takes, nor does A believe so.

6See, for instance, Crawford and Iriberri (2007).
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Example 2 (Prisoners’dilemma game): Consider the one-shot prisoners’dilemma game.
A player who uses causal reasoning will reason as follows “My opponent is rational and uses
causal reasoning. To defect is a strictly dominant strategy for me as well as my opponent,
so I will defect”. On the other hand, if a player who uses evidential reasoning perceives his
opponent as like-minded, he may reason as follows “But if each of us defects, then we will
be in a worse situation than had we cooperated. The other player is like-minded, so he will
also realize that mutual cooperation is better for both of us than mutual defection. So I will
cooperate”. Whether players use such reasoning is a matter of empirical evidence. Indeed
the evidence from prisoners’dilemma game (see Section 2.2) is consistent with a mixture
of players who use causal and evidential reasoning. Furthermore, players who choose to
play the action cooperate (defect) estimate with high probability that others will cooperate
(defect), which is directly consistent with ER. The cooperative outcome in the prisoner’s
dilemma game under ER shows that welfare under ER may be higher than under causal
reasoning.

Example 3 (False consensus effect): Ross et al. (1977) asked subjects if they would walk
around a university campus wearing a sandwich board that said “REPENT”. Those who
agreed to do so, estimated that 63.5% of their peers would also agree to do so, while those
who refused expected 76.7% of their peers to also refuse. Clearly these fractions add up to
more than one and so cannot constitute consistent beliefs. This evidence is in line with
subjects using evidential reasoning to impute diagnostic value to their actions in forming
beliefs about the likely actions of other like-minded people (the student population in the
university in this case). This is an example of the false consensus effect.

Interestingly, people who use evidential reasoning are not aware of using it despite
their behavior being obviously consistent with evidential reasoning. Evidential reasoning
appears to arise as an automatic response, rather than a deliberate response, i.e., it does
not require awareness, effort or intention. Evidence supporting this view comes from
experiments which show that evidential reasoning was not hampered by cognitive load or
time required to complete an action; see Krueger (2007). Furthermore, other evidence,
also reported in Krueger (2007), suggests that considerable cognitive effort is required to
suspend evidential reasoning. The evidence from Acevedo and Krueger (2005) indicates
that evidential reasoning applies to human-human interaction but not to human-nonhuman
interaction. Another feature of evidential reasoning is that individuals continue to behave
in a self interested manner.
Economists accustomed to traditional notions of rationality will find evidential reason-

ing to be less than fully rational. And they are right. It is best, therefore, to view ER as a
heuristic or bias. However, the relevant issue is whether the evidence on human behavior
supports ER. Our own reading of the evidence is that the results of experimental games
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are best explained by a mixture of people who use evidential and causal reasoning. Our
framework allows for such a mixture. At the same time it appears that there is no single
theory that is capable of explaining the evidence from all static games.
In static games of complete information, when, for whatever reason, there is uncertainty

about what others will do, evidential reasoning enables the creation of a set of beliefs about
the likely actions of other players. As shown in the three examples above, the evidence is
consistent with players who follow ER and, thus, believe that other like-minded players will
follow the same actions that they themselves find desirable to follow. They then maximize
their utility, conditional on these beliefs even though these beliefs may not turn out to be
justified ex-post, as, say, in Level-k models7. This converts an essentially strategic situation
to a decision-theoretic problem.
The motivation for our approach may be given with an analogy. Starting with the ear-

liest experiments by Maurice Allais, the evidence from a very large number of experiments
turned out to be inconsistent with the predictions of models of formal decision theory.8 In
the early 1970’s Daniel Kahneman and Amos Tversky proposed an alternative approach,
the heuristics and biases approach. In this approach, instead of optimizing in the classical
sense, decision makers follow simple heuristics that are fast and frugal in the use of infor-
mation. The heuristics often work well but sometimes lead to errors relative to a strictly
optimizing behaviour.9 Thus our proposed evidential equilibrium concept contributes to
providing a heuristics and biases approach to strategic interaction. Indeed, many other
alternatives to a Nash equilibrium, such as Level-k models, may also be viewed in a similar
manner.

1.3 Structure of the paper

Further examples and a more detailed consideration of ER is given in Section 2 from many
contexts, such as prisoners’ dilemma, public goods, voting, etc. Section 3, Evidential
Games, gives a formal treatment of evidential reasoning and proposes several concepts
that we will find useful in the rest of the paper. An evidential game is simply a game
where players use evidential reasoning. An evidential equilibrium is one where each player
chooses to optimize given his beliefs about the behavior of the other players (inferred
from his own behavior in accordance with evidential reasoning). A consistent evidential
equilibrium is an evidential equilibrium where beliefs turn out to be correct although we,

7We consider both cases under the rubric of ER where beliefs are justified ex-post and where they are
not.

8See, for instance, Kahneman and Tversky (2000) for the details of many of these results.
9A substantial literature developed subsequently that identified a rich range of heuristics and generated

evidence that they are used by human subjects. See, for instance Kahneman et al. (1982) and the Nobel
Lecture in Kahneman (2003).
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equally, allow for inconsistent evidential equilibria. Our formulation of evidential reasoning
yields causal reasoning, the dominant reasoning assumed in the traditional framework in
economics, as a special case. If players use causal reasoning then a consistent evidential
equilibrium corresponds to a Nash equilibrium in the ordinary sense; this is dealt with in
more detail in subsection 3.5.
Sections 4 and 5 apply the theory developed in Section 3 to important games in eco-

nomics and the social sciences. These are the prisoners’dilemma game (Section 4) and
oligopoly games (Section 5).We conclude that the evidence from these games is more sup-
portive of a mixture of evidential reasoning and causal reasoning.
So far, the discussion has been about static games of complete information. Section

6 extends the analysis of evidential reasoning to static games of incomplete information.
For such games, we give a natural extension of an evidential equilibrium.
Section 7 concludes.

2 Evidential reasoning

We now offer further discussion and some concrete contexts in which evidential reasoning
has been studied.

2.1 Calvinism and the development of capitalism

Consider the following example from Quattrone and Tversky (1984). According to the
Calvinist doctrine of predestination, those who are to be saved have been chosen by God
at the beginning of time, and nothing that one can do will lead to salvation unless one
has been chosen. Although one cannot increase the chance of salvation by good works,
one can produce diagnostic evidence of having been chosen by engaging in acts of piety,
devotion to duty, hard work and self denial. According to Max Weber, this is exactly how
millions of people responded to the Calvinist doctrine and why capitalism developed more
quickly in Protestant rather than Catholic countries; see for example, Nozick (1993).10

2.2 Why is there so much cooperation in the prisoners’dilemma
game?

The static prisoners’dilemma is a well known game in the social sciences in which each
of the two players can either cooperate (C) or defect (D). The payoffs from each action to
the row and the column player are shown in Table 1. In each cell, the first payoff is to the
row player and the second to the column player and x > 2.

10We are grateful to Andrew Colman for drawing our attention to this example.
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C D
C 2, 2 0, x
D x, 0 1, 1

Table 1: The Prisoner’s Dilemma Game

Defection is a strictly dominant strategy. Hence, a player using causal reasoning should
defect. However, experimental evidence indicates high cooperation rates. Rapoport (1988)
finds cooperation rates of 50% in the prisoners dilemma game. In a study of the prisoners’
dilemma based on high stakes outcomes from a British TV show called Goldenballs, Darai
and Grätz (2010) finds cooperation rates of 55% for stakes above £ 500 and cooperation
rates of 74% for stakes below this level. Zhong et al. (2007) show that the cooperation
rates in prisoners’dilemma studies go up to 60% when positive labels are used (such as a
“cooperative game”rather than a “prisoners’dilemma game”). When purely generic labels
are used (such as C and D) then the cooperation rates are about 50%. In similar games,
such as the one-shot public good contributions game, one also observes high cooperation
rate; see for instance, Dawes and Thaler (1988).
In a novel study, Khadjavi and Lange (2013) find that actual prison inmates cooperate

far more than the student population. In particular, while the cooperation rates among
students playing the static prisoners’dilemma game is 37%, the cooperation rate among
prison inmates is 56%.

2.2.1 Can cooperation in a prisoners’dilemma game be explained by existing
theories?

Can the propensity to cooperate also be explained by other regarding preferences? In the
standard model, individuals derive utility purely from their own levels of consumption
(or selfish preferences). Evidence indicates, however, that, in addition to purely selfish
considerations, individuals may also exhibit altruism and envy. Consider, for instance,
other regarding preferences as in the model of Fehr and Schmidt (1999) (FS preferences,
for short) that has been axiomatically founded and can explain the results of a very wide
range of experimental games. Suppose that we have N individuals and n different income
classes, where the typical income yj ∈ Y = {y1 < y2 < ... < yn}. The proportion of
individuals in the income class yj ∈ Y is pj ≥ 0 and

∑n
j=1 pj = 1. Then the FS utility

function of an individual with income yj ∈ Y is given by

U (yj) = yj − β
j−1∑
i=1

pi (yj − yi)− α
n∑

k=j+1

pk (yk − yj) , α ≥ 0, 0 ≤ β < 1. (1)

Individuals with FS preferences care for their own payoffs as under selfish preferences. But
they also derive disutility from being ahead of others (altruism) and from being behind
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others (envy). β ≥ 0 and α ≥ 0 are sometimes known as the parameters of, respectively,
advantageous and disadvantageous inequity. When α = β = 0 we have purely selfish
preferences. Evidence indicates that disadvantageous inequity is more important than
advantageous inequity (α > β) and one never benefits by throwing away one’s own income
(β < 1).
Let us apply FS preferences to the prisoners’dilemma game. Suppose that half the

players are row players and half are column players. The FS utility to any player from
the strategy profiles (C,C) and (D,D) respectively is 2 and 1. When both players have
FS preferences, is (C,C) a Nash equilibrium? Given that the column player plays C, the
FS utility of the row player from defecting is x− β

2
x. Thus, the row player will optimally

choose to cooperate if 2 > x
(
1− β

2

)
or equivalently, β > 2 − 4

x
where x > 2. As x

increases, the lower bound on β that is required to sustain cooperation increases. For
instance, for x = 3 the lower bound is 0.67 and for x = 5 the lower bound is 1.2. By
contrast, the empirical estimates of β are quite low. Fehr and Schmidt (1999) find that
60% of their subjects have β ≤ 0.25 and 90% have β ≤ 0.60. Fehr and Schmidt (2010)
report some updated estimates from three other papers related to contractual interaction
among agents. In these estimates, for 60% of the population, β = 0 and for 40% of the
population, β = 0.60. These estimates suggest that it is hard to sustain cooperation in
prisoners’dilemma games based on other regarding preferences.
The evidence also shows that pure altruism/warm glow cannot explain the evidence

for cooperation in prisoners’dilemma games either. Cooper et al. (1996) assume that
altruism takes the form of the row player deriving warm glow from the act of cooperation.
Hence, Table 1 is modified to Table 2 where δ > 0 captures warm glow to both players
from cooperating.

C D
C 2 + δ, 2 + δ 0 + δ, x
D x, 0 + δ 1, 1

Table 2: The Prisoner’s Dilemma Game in the Presence of Warm Glow

If δ > x − 2 then (C,C) becomes a Nash equilibrium and if δ > min {x− 2, 1} then
(C,C) is the unique pure strategy Nash equilibrium. If for a player δ > min {x− 2, 1}
then cooperation becomes a dominant strategy for each player; such players are termed
as altruists. Players are randomly matched with each other over 20 rounds to eliminate
repeated game effects. Cooper et al. (1996) find that 38% of the players in the first 10
rounds are altruists and 22% players in the last 10 rounds are altruists. However, altruism
is not able to explain the extent of cooperation in the authors’ experiments. Further,
altruism is not able to explain the decay in cooperation. These results also contradict
the theoretical result that cooperation can be sustained over a finite horizon if players
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perceive a small degree of irrationality about their opponents (see, for instance, Kreps et
al. (1982)). Thus, neither of the two leading explanations in game theory account for the
observed levels of cooperation in the one-shot prisoners’dilemma game.
Since the action C is a dominated strategy it is not rationalizable and cannot be

supported in a correlated equilibrium either. In Level-k models, any player with level-k,
k ≥ 1 will also never play a dominated strategy.
For these reasons, the explanation of cooperative behavior in prisoners’dilemma games

is an open problem in economics and social science.

2.2.2 Explaining cooperation in prisoners’dilemma games by evidential rea-
soning

Lewis (1979) used evidential reasoning to explain the unexpected levels of cooperation in
the one-shot prisoners’dilemma game. Mutual cooperation is better than mutual defec-
tion. If players use evidential reasoning, they may take their own preference for mutual
cooperation as diagnostic evidence that their rival also has a preference for mutual coop-
eration, in which case both players are more likely to cooperate. These views are borne
out by the evidence. Cooperators (those who play C) believe that the probability of other
players cooperating is between 0.6 and 0.7. Similarly, players who defect (those who play
D) believe that other players will defect with probabilities between 0.6 to 0.7; see Krueger
(2007). Darai and Grätz (2010) find that pre-play promises of players to cooperate with
each other and shake hands on it, increases the cooperation rates. In classical theory
this should have no effect, but evidential reasoning may provide one possible explanation.
Such actions may increase the likelihood, in the minds of players, that they are facing
like-minded players, hence, they cooperate more.
Rapoport (1966, p. 139-41) argued that each player takes his own belief that rational

players should prefer the cooperative outcome as evidence that similarly rational players
will also cooperate11. This is similar to evidential reasoning. Letting x = 3 in Table 1,
this is how the row player is envisaged to make a cooperative choice in Rapoport (1966,
p. 141): “The best outcome for both of us is (2, 2). However if Column assumes that
I shall do C, he may well not do C to win the largest payoff. To protect myself I will
also refrain from doing C. But this makes for a loss for both of us. Two rational players
certainly deserve the outcome (2, 2). I am rational and by the fundamental postulate of
game theory, I must assume that Column is also rational. If I have come to the conclusion
that C is the rational choice, he too must have come to the same conclusion. Now knowing
that he will do C, what shall I do? Shall I not refrain from doing C to get the greatest
payoff? But if I have come to this conclusion, he has also probably done so. Again we

11The term ‘rational’ is obviously used here in a different sense from the one used in modern game
theory.
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end up with (1, 1). To ensure that he does not come to the conclusion that he should
refrain from C, I better avoid it also. For if I avoid it and am rational, he too will avoid
it if he is rational. On the other hand, if rationality prescribes not doing C, then it must
also prescribe not doing C for him. At any rate because of the symmetry of the game,
rationality must prescribe the same choice to both. But if both choose the same then (2, 2)

is clearly the better. Therefore, I should choose to do C”.
Howard (1988) tests the assertion by Rapoport (1966, p. 139-41) by running a contest

between two computer programs. One computer program is designed to play the domi-
nant strategy, defect. Another computer program, called the MIRROR program, is able
to recognize if it is playing another MIRROR program, in which case it also cooperates,
otherwise it plays defect. There are five copies of each of the programs that play a tourna-
ment and, not surprisingly, the MIRROR program achieves higher payoffs. In effect, what
the MIRROR program is doing is to replicate the notion that people would cooperate with
other like-minded people. In the conclusion, Howard (1988, p. 212) gives an argument
that is identical in spirit to the evidential reasoning argument: “If all players use the self-
recognition program listed in the Appendix, and play cooperatively only if they recognize
their opponents as their twins, then every game will be played cooperatively”.
In contrast to the standard explanations, the explanation of cooperation based on

evidential reasoning appears to be quite plausible. The fact that a sizeable fraction of
the experimental subjects also defect suggests that the results are best accounted for by
a mixture in the population of people who use evidential reasoning and causal reasoning.
A more formal account of the prisoners’dilemma game under evidential reasoning is give
is section 4, below.

2.3 Why do people voluntarily contribute to a public good?

A public good is a non-rival and non-excludable good. In public good games, a set of
individuals simultaneously contribute towards a public good that gives utility to all indi-
viduals. In such games the ‘first best’that maximizes the joint payoffs is typically achieved
when all players contribute. In classical game theory, under causal reasoning, it is optimal
for each player to free ride (zero contributions). Hence, cooperation cannot be sustained
in a Nash equilibrium of the game.
The experimental evidence shows that in early rounds of public good games, partici-

pants begin at quite high levels of contributions that are between a half to three-quarters
of their maximum possible contributions. Contributions drop off in subsequent rounds
unless ex-post punishment of non-cooperators by cooperators is allowed.12

Unlike the results of the prisoners’dilemma game, social preferences in the form of

12See Dawes and Thaler (1988), Camerer (2003) and Fehr and Gächter (2000).
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conditional reciprocity provide a convincing explanation of the experimental results; see,
e.g., Fehr and Gächter (2000). In particular, heterogeneity in beliefs provides the leading
account of the dynamic decay of cooperation; see, e.g., Fischbacher et al. (2001). In
the explanation of the dynamics of such games, the data reveals various degrees of like-
minded behaviors of the experimental subjects: (1) 10% always match the expected average
contribution of others. (2) 14% fully match the expected average contributions of others
until they spend half their endowments. (3) 40% match to a lesser extent. (4) 30% are free
riders. (5) 6% have no well defined behavioral pattern. Evidential reasoning may provide
the microfoundations of such behaviors. Subjects in the first three categories appear to be
using evidential reasoning with various degrees of like mindedness in behaviors. Subjects in
category 4 seem to be using causal reasoning. Finally the 6% subjects in the fifth category
are not explained by any of these theories. Under evidential reasoning, many players take
their own desire to contribute in the first round as diagnostic of the probability with which
other players will contribute, hence, they contribute.13

Further evidence for evidential reasoning is provided by Gächter and Thöni (2005)
who investigate whether cooperation in public goods games with voluntary contribution
is higher among like-minded people. In order to separate the subjects into like-minded
people they initially run a single-round of the public good experiment. The subjects are
then grouped by the amount of contributions they made in this round. For instance,
the top 3 contributors are grouped into a separate group (the TOP group) as having the
greatest inclination to contribute. The public good game is then played separately in each
group. Over the next 10 rounds, contributions are much higher and free riding much lower
in the TOP group, which achieves nearly the first best level in several rounds.14 Evidential
reasoning would predict that when high contributors have greater confidence that they are
grouped with like-minded people, they contribute more.

2.4 Evidential reasoning about states of other humans

In an experiment conducted by Van Boven and Loewenstein (2005), participants were asked
to imagine a hiker who is lost in the woods and asked whether the hiker was more likely to
be thirsty or hungry. When the experimental participants were made to experience these
states (thirst or hunger) they attributed similar states to the hypothetical hiker despite
their own states having no correlation or cue value with the state of the lost hiker. In each
case, they assign diagnostic significance to their own state in inferring the state of the lost
hiker.
13For the dynamic version of the public good game we conjecture that evidential reasoning in conjunction

with negative reciprocity gives a better description of the evidence from public good games.
14Even the endgame effect, i.e., the sharp drop in contributions in the last experiment is most pronounced

among the bottom group.
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Lenton et al. (2007) described a common scenario to a group of experimental subjects.
The scenario involved two students (one male and the other female) dining out on a date
and then going to the woman’s apartment and listening to music. The subjects were then
asked to assign a probability to the event that the two people in the scenario would have
casual sex. Those who were personally more predisposed to casual sex also assigned a
higher probability to the event. People seem to assign diagnostic significance to their own
actions in inferring the actions of others although they know that their actions do not
cause others to take specific actions.
Evidential reasoning may also aid in the emergence of empathy. When I observe a

person with a broken arm, I might use evidential reasoning to infer that the other person
suffers the same pain that I did when I had a broken arm.

2.5 Why do people vote and how do they form beliefs?

Under causal reasoning, if voters do not derive utility purely from the act of voting, then,
given that any one voter is most unlikely to be pivotal, nobody should vote. But then why
do so many people vote? This is the voting paradox. The situation faced by a voter who
uses causal reasoning is depicted in Table 3 (see, for instance, Grafstein, 1991).

D R
A pvD (1− p)vD
V pvD − c (1− p)vD − c

Table 3: Voting game

In Table 3 there are two political parties, Democrats (D) and Republicans (R). In a
Presidential election, a typical voter has an action set {A, V } where A is the action ‘abstain
from voting’and V is the action ‘vote’. Voting entails a fixed cost c > 0. The voter assigns
a probability p ≥ 0 that the Democrat candidate wins and the complementary probability
that the Republican candidate wins.15 The voter gets utility vD > 0 from a Democrat
candidate and vR > 0 from a Republican candidate. Clearly for any p, c, vD, vR it is a
dominant strategy to abstain from voting given that no voter is pivotal.
The explanation of voting when a voter uses evidential reasoning is as follows. “If I

do not vote for my preferred party, then probably like-minded people will not vote, and
my preferred party will lose to the other party. On the other hand, if I decide to vote
then, probably, other like-minded people will also make a similar decision and my party

15Since information on Presidential elections is publicly and equally available to all voters, one may
even make the strong argument that all voters assign the same probability, p, but this is not critical to
the argument below.
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Year Presidential Candidates
% of Democrat voters
expecting Democrat win

% of Republican voters
expecting Republican win

1988 Dukakis vs. Bush 51.7 94.2
1984 Mondale vs. Reagan 28.8 99.9
1980 Carter vs. Reagan 87.0 80.4
1976 Carter vs. Ford 84.2 80.4
1972 McGovern vs. Nixon 24.7 99.6
1968 Humphrey vs. Nixon 62.5 95.4
1964 Johnson vs. Goldwater 98.6 30.5
1960 Kennedy vs. Nixon 78.4 84.2
1956 Stevenson vs. Eisenhower 54.6 97.6
1952 Stevenson vs. Eisenhower 81.4 85.9

Table 4: Source: Table 6 in Forsythe et al. 1992

has a better chance of winning. So I vote if I wish my party to win, otherwise I do not.”16

In each case, the binary voting decision (vote or not vote) has diagnostic significance in
forming beliefs about whether others will vote, although it is critical to note that one’s
action to vote does not cause others to vote.
As Krueger and Acevedo (2008, p. 468) put it: “Compared with a Republican who ab-

stains, for example, a Republican who votes can be more confident that other Republicans
vote in large numbers”. Quattrone and Tversky (1984), Grafstein (1991) and Kouden-
burg et al. (2011) show that experimental evidence is strongly supportive of this view.
Delavande and Manski (2012) argue that state and national poll information in the US
is readily available public knowledge. On the other hand, private knowledge in elections
is likely to be very limited. Hence, all individuals should form identical estimates of the
winning probabilities of the political parties. In contrast to these expectations, they find
strong support for evidential reasoning. Voters who vote, assign too high a probability to
their preferred party of winning the elections. Their findings are invariant with respect
to males/females, whites/non-whites, educated/non-educated etc. Hence, and consistent
with earlier work, there is a strong possibility that evidential reasoning is hard-wired in
humans.
Consider Table 4 that reports survey evidence from successive US Presidential elections

that is supportive of the evidential reasoning explanation. Voters who intend to vote
Democrats typically assign high probabilities to the Democrat candidate winning. By
contrast, voters who intend to vote Republican assign high probabilities to a Republican
win. Thus, voters seem to take their own actions as diagnostic of what other like-minded

16Other possible explanations for voting, for instance, that people vote out of a sense of civic duty
cannot explain several kinds of strategic voting and the variation in voter turnout when an election is
believed to be close; see Krueger and Acevedo (2008).
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people will do. These findings show that, in some circumstances at least, people behave
as if their actions were causal even when they are merely diagnostic or evidential.

2.6 Coordinated attack: An application to the battle of Water-
loo

Consider the following version of the well known historical coordinated attack problem;
see for instance, Halpern (1986). Wellington (W) and Blucher (B) wish to attack their
common enemy Napoleon (N). If W or B attack on their own, N will win. But if W and B
attack together, they will win. W sends a message to B saying he will attack, but only if
he receives confirmation from B that B will also attack. B replies that he will attack, but
only if he receives confirmation that his message has reached W, and so on. Under causal
reasoning, neither W nor B will attack. The situation is shown in Table 5. W is the row
player and B is the column player. The payoffs when both players simultaneously Attack
are v, v, v > 0. If one of the generals choose Attack and the other chooses Capitulate then
the respective payoffs are −C,−c, C > c > 0.

Attack Capitulate
Attack v, v −C,−c
Capitulate −c,−C −c,−c

Table 5: The coordinated attack problem

The game has two pure strategy Nash equilibria: (Attack, Attack) and (Capitulate,
Capitulate). There is also a mixed strategy Nash equilibrium in which each player plays
Attack with probability C−c

v+C
. Under causal reasoning, each player finds it profitable to

Attack if he believes that the other will Attack with probability p ≥ C−c
v+C

. In general there
is no mechanism that enables players to coordinate under causal reasoning.
Under evidential reasoning, W and B may both choose Attack if they perceive each

other to be like-minded. Both might reason as follows: “The other player is like-minded so
he must realize that if we both choose Capitulate then we will get a lower payoff relative to
the case where we both choose Attack. So the other player is very likely to choose Attack.
Hence, I also choose Attack”. Each player may use his own reasoning as diagnostic evidence
that the other will choose Attack (and, maybe, a finite number of messages is suffi cient
to enforce this psychological mode of reasoning). Eventually, Wellington and Blucher did
attack Napoleon with decisive consequences in the Battle of Waterloo. Thus evidential
reasoning, while not a strictly correct method of reasoning may, nevertheless, be a useful
heuristic that has practical utility in coordinating actions in static games.
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3 Evidential equilibrium in static games of complete
information

We now consider static games of complete information. Section 6 considers static games
of incomplete information.

3.1 Elements of standard game theory

Consider the following standard description of a static game of complete information,
{N,A,π}. N = {1, 2, ..., n} is the set of players. Ai ⊆ R is the set of actions open to
player i. We denote a typical member of Ai by ai.17 A = ×ni=1Ai gives all possible action
profiles of the players. A−i ⊆ Rn−1 is the set of vectors of actions open to the other players.
Denote by ∆i, the set of probability distributions over the set of actions Ai. We denote
a typical element of ∆i by σi and call it a strategy. σi (ai) is the probability with which
player i plays ai ∈ Ai, so σi (ai) ≥ 0 and

∑
ai∈Ai σi (ai) = 1. In particular, if σi (ai) = 1

(hence, σi (a′i) = 0 for a′i 6= ai), then we call σ a pure strategy and we identify it with the
action ai.
A profile of strategies of all players is denoted by σ = (σ1, σ2, ..., σn) ∈ ∆, where

∆ = ×ni=1∆i is the set of all possible profiles of strategies. A particular profile of strategies
of other players is denoted by σ−i = (σ1, ..., σi−1, σi+1, ..., σn) ∈ ∆−i = ×j∈N−{i}∆j. The
payoff of player i is πi : ∆ → R and π is the vector of payoffs. Given a strategy profile,
σ = (σi,σ−i) ∈ ∆, the payoff to player i is πi (σi,σ−i) ∈ R. The structure of the game,
{N,A,π}, is common knowledge among the players. In an experimental setup, common
knowledge can be achieved by a public announcement of {N,A,π}. This is the sense in
which this is a game of complete information. However, when each player, i, chooses his
strategy, σi, he does not know the strategies, σ−i, chosen simultaneously by the other
players and this is the sense in which this is a static simultaneous move game.

Definition 1 (Nash, 1951): A strategy profile σ∗ = (σ∗1, σ
∗
2, ..., σ

∗
n) ∈ ∆ is a Nash equi-

librium in the game, Γ = {N,A,π}, if σ∗i maximizes πi
(
σi,σ

∗
−i
)
with respect to σi, given

σ∗−i, for each i ∈ N , i.e.,

πi
(
σ∗i ,σ

∗
−i
)
≥ πi

(
σi,σ

∗
−i
)
for all σi ∈ ∆i.

Note that there is no role for beliefs about the strategies of others in the game
{N,A,π}, nor in the definition of a Nash equilibrium (Definition 1). Hence, we aug-
ment the game, {N,A,π}, with a profile of “social projection functions”, P that specify
the beliefs of players; this is undertaken in subsection 3.2, below.
17For this paper it will suffi ce to take an action for a player to be a real number. More generally, an

action may be a vector of real numbers or an even more abstract entity.
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3.2 Social projection functions

We would like to define a function that captures the beliefs that a player has about the
strategies of the other players, conditional on his own strategy. We will call such a function
a social projection function.18

Definition 2 (Social projection functions, SPF): A social projection function for player
i (SPF for short), is a mapping Pi : ∆i → ∆−i, that assigns to each strategy, σi ∈ ∆i,
for player i, an (n− 1) vector of strategies for the other players. We write Pij (aj|σi)
for the ‘subjective belief’that player i assigns to player j playing aj ∈ Aj, conditional on
player i playing σi ∈ ∆i. Hence, Pij (aj|σi) ≥ 0 and

∑
aj∈Aj Pij (aj|σi) = 1. We may write

Pi (σi) = σe−i (σi) to indicate that Pi (σi) is the (n− 1) vector of strategies that player i
anticipates that the other players will follow if player i adopts the strategy σi.

We now define causal reasoning, the dominant type of reasoning used in game theory,
and evidential reasoning.

Definition 3 (Causal Reasoning): We say that player i uses causal reasoning if Pij (aj|σi)
is independent of σi for each aj ∈ Aj and each j 6= i, i.e., if Pi (σi) = Pi (σ

′
i) for all

σi, σ
′
i ∈ ∆i.

Definition 4 (Evidential Reasoning) We say that player i uses evidential reasoning if it
is not necessarily the case that Pi (σi) = Pi (σ

′
i) for all σi, σ

′
i ∈ ∆i.

We make some important observations about Definitions 2-4 in the next remark.

Remark 1 : (a) In a static game of full information, players are uncertain of the actions
taken by others. Under evidential reasoning, player i resolves this uncertainty by assigning
diagnostic significance to his own choice of strategy, σi, in inferring the strategies of the
other players, σ−i, using his social projection function, Pi. For this reason, Definition
4 allows for Pi (.|σi) to change as σi changes. However, it is important to realize that
there is no causal connection between σi and σ−i. The choice of σi by player i merely
influences his ‘belief’about the strategies, σ−i, of the other players. In particular, players
who use evidential reasoning know that their own actions have no causal effects in altering
the actions of others when they change their own actions. Further, a SPF (Definition 2)
specifies the beliefs of a player for all possible actions of others, including out-of-equilibrium
actions. The beliefs of a player need not turn out to be fulfilled in equilibrium just as in

18We use the term social projection function because, on the one hand, it is obviously connected with
social projection and evidential reasoning and, on the other hand, to distinguish it from the term projection
function as commonly used in mathematics.
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other disequilibrium-in-beliefs models such as the Level-k model.
(b) If player i uses causal reasoning as in classical game theory (see Definition 3) then he
assigns no diagnostic significance to his own strategy, σi, in inferring the strategies, σ−i,
followed by the other players.19 Thus, under causal reasoning, Pi (σi) remains fixed as σi
changes. From Definitions 3, 4, causal reasoning is a special case of evidential reasoning

Players need not impute diagnostic significance to their actions when others are per-
ceived not to be like-minded; the next definition formalizes this idea. This issue is consid-
ered further in subsection 3.3.

Definition 5 (Ingroups and Outgroups): Suppose that players use evidential reasoning.
(a) Player i regards player j (j 6= i) as an outgroup member if Pij (aj|σi) is independent
of σi, i.e., if Pij (aj|σi) = Pij (aj|σ′i) for all σi, σ′i ∈ ∆i and all aj ∈ Aj. Otherwise, player
i regards player j (j 6= i) as an ingroup member.
(b) Let M ⊂ N be a non-empty set of players. If every player in M regards every other
player in M as an ingroup member, then M is an ingroup.
(c) Let L ⊂ N and M ⊂ N be disjoint non-empty sets of players. Suppose every player in
L regards every player in M as an outgroup member. Then we say that M is an outgroup
relative to L.

Remark 2 : Since player i plays action ai ∈ Ai with probability σi (ai) and believes that
player j will play action aj ∈ Aj with probability Pij (aj|σi) (the latter is conditional on
σi), it follows that player i also believes that the joint probability of ai and aj being played
is Pij (ai, aj|σi) = σi (ai)Pij (aj|σi). Suppose that player i regards player j as an outgroup
member. Then (and only then) Pij (aj|σi) is independent of σi ∈ ∆i. In this case we can
set Pij (aj|σi) = σej (aj) (which, of course, depends on i but is independent of σi). Hence,
in this case, Pij (ai, aj|σi) = σi (ai)Pij (aj|σi) = σi (ai)σ

e
j (aj). Thus, if player i regards

player j as an outgroup member, then player i believes that the probability with which he
(player i) plays ai ∈ Ai is independent from the probability that he believes j will play
aj ∈ Aj. In particular, if player i uses causal reasoning, then he regards all others as
outgroup members and, hence, he believes that his actions are independent of the actions
of all other players.

Many different types of social projection functions (SPF’s) are possible. There are
possibly various degrees of like-mindedness. However, the examples in the introduction
and in Section 2 above, suggest a particularly salient SPF that imparts the main predictive

19By contrast, in a dynamic game (under causal reasoning), if (say) player 1 moves first, choosing the
strategy σ1, followed by player 2 who chooses strategy σ2, having observed a realization of σ1, then σ2
may very well depend on σ1. When choosing σ1, player 1 will take into account the influence of his choice
on the future behaviour of player 2. This should not be confused with evidential reasoning.
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content to theory. This SPF seems important when choices are low dimensional such as the
binary choices ‘cooperate or defect in a prisoners’dilemma game’or ‘vote Democrats or
Republicans in US Presidential elections’or ‘coordinate or fail to coordinate in coordination
games’etc. In each of these cases, players may think that other like-minded players will
choose identical actions to their own. The corresponding SPF in these cases is the identity
social projection function. In this case, conditional on playing any strategy σi, player i
believes that like-minded players will play an identical strategy.

Definition 6 (Identity social projection function): Let M ⊆ N be a subset of players.
Suppose that all players in M have the same action set, i.e., Ai = Aj = A for all i, j ∈M .
Let Pi be the social projection function for player i ∈ M . Recall that Pij (a|σi) is the
probability that player i assigns to player j playing action a when the strategy of player i
is given by σi. If Pij (a|σi) = σi (a) for all a ∈ A and all j ∈ M − {i}, then we say that
Pi is an identity social projection function on M . If M = N , then we say that Pi is an
identity social projection function.

Definition 7 (Perfect ingroups): Let M ⊆ N be a subset of players. Suppose that all
players in M have the same action set, i.e., Ai = Aj = A for all i, j ∈ M . Let Pi be the
social projection function for player i ∈ M . If Pi is an identity social projection function
on M , for each player i ∈M , then M is a perfect ingroup.

Definition 8 (Evidential game): Consider the static game of complete information, {N,A,π}.
Let P = (P1,P2, ...,Pn) be a profile of social projection functions, where Pi is the social
projection function of player i ∈ N (Definition 2). Then we denote the game augmented
with the vector of social projection functions, P, by Γ = {N,A,π,P} and we call it an ev-
idential game. We say that players in such a game use evidential reasoning. In particular,
if each Pi (σi) is independent of σi, then we say that Γ is a causal game.

Remark 3 : (a) From Definition 8 a causal game is a special case of an evidential game.
(b) Suppose Pi (σi) is independent of σi, for each player, i, so that Γ = {N,A,π,P} is
a causal game. Γ is still richer than the static game of complete information, {N,A,π},
because Γ incorporates players’beliefs about other players’actions, as given by P.

Example 4 : Consider the matching pennies game.

H T
H −1, 1 1,−1
T 1,−1 −1, 1

The set of players is N = {1, 2}. The action sets are A1 = A2 = {H,T}. Player
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1, the row player, plays H and T with respective probabilities p, 1 − p. Player 2, the
column player, plays H and T with respective probabilities q, 1 − q. The sets of possible
strategies are ∆1 = {p : 0 ≤ p ≤ 1} for player 1 and ∆2 = {q : 0 ≤ q ≤ 1} for player
2. For any profile of strategies (p, q), p, q ∈ [0, 1], the payoff functions of the players are
π1(p, q) = − (1− 2p) (1− 2q) and π2(p, q) = (1− 2p) (1− 2q). The following are examples
of social projection functions{

P12 (H | p) = p, P12 (T | p) = 1− p for all p ∈ [0, 1] ,
P21 (H | q) = 0.5, P21 (T | q) = 0.5 for all q ∈ [0, 1] .

(2)

According to (2), player 1, who uses evidential reasoning, believes that if he (player 1)
plays H with probability p, then so will player 2 for any p ∈ [0, 1]. Hence, player 1 has
an identity social projection function. It is critical to note that these are the ‘beliefs’of
player 1. There is no presumption that these beliefs will turn out to be justified ex-post.
Player 2, who uses causal reasoning, believes that player 1 will play H with probability 0.5,
whatever strategy, q, player 2 chooses. Hence, player 1 regards player 2 as an ingroup
member but player 2 regards player 1 as an outgroup member. Hence, N = {1, 2} fails to
be an ingroup. On the other hand, if both players had identity social projection functions,
then N = {1, 2} would be an ingroup (in fact, a perfect ingroup). By contrast, if in (2)
we had, say, P12 (H | p) = 0.3 for all p ∈ [0, 1], then both players would exhibit causal
reasoning; and this example would become a causal game as in classical game theory.

3.3 Ingroups, outgroups and evidential reasoning

Intuitively, an “ingroup”is a group of players each of whom believes that the others are
like-minded and, hence, would behave in a similar, but not necessarily identical, manner.
The literature has typically assumed that players do not use their actions as diagnostic of
the actions for “outgroup”players; see, for instance, Krueger (2007), Robbins and Krueger
(2005); and our definitions reflect this (see, in particular, Definition 5).
However, recent evidence suggests a more nuanced view that is also consistent with

our definitions. Koudenburg et al. (2011) show that voters project their own preference
for a political party to non-voters even when they are informed about the poll results for
non-voters. Thus, voters may regard non-voters as ingroup members, though in a strict
sense only the set of voters may be thought to form an ingroup (Definition 5).
Riketta and Sacramento (2008) cite several references to show that members of an

ingroup assign beliefs about other members even when they could have no possible infor-
mation about those members (recall subsection 2.4). They find that an ingroup member
may have a harmonious (or cooperative) relation with other members. On the other hand,
they also find that an ingroup member may be in competition (or conflict) with other
members. In the latter case, an ingroup member may believe that the actions of others
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are in contrast20 to his own actions (the contrast effect). Subsection 5.2 will give further
examples of these.

3.4 Equilibria

In this section we consider the relevant solution concept for static evidential games of
complete information that we call an evidential equilibrium.

Definition 9 (Optimal strategies): An optimal strategy for player i, σ∗i ∈ ∆i, in the evi-
dential game Γ = {N,A,π,P} (Definition 8), is one that maximizes the payoff function,
πi (σi,Pi (σi)) (i.e., πi

(
σi,σ

e
−i (σi)

)
) of player i.

Definition 10 (Evidential equilibria): The strategy profile σ∗ = (σ∗1, σ
∗
2, ..., σ

∗
n) ∈∆ is an

evidential equilibrium of the evidential game Γ = {N,A,π,P} if σ∗i is an optimal strategy
for each i ∈ N (Definition 9).

Definitions 9, 10 identify an important feature of an evidential equilibrium. In static
games of complete information, when, for whatever reason, there is uncertainty about
what others will do, evidential reasoning converts an essentially strategic situation to a
decision-theoretic problem. It does this through the incorporation of a social projection
function as an essential part of the game. This appears to be consistent with the evidence
(see section 2).
The optimal actions of each player in an evidential equilibrium are found from solving

a decision-theoretic problem in what is classically a strategic game. There are no higher
order beliefs. Each player does not think about strategically exploiting the SPF of the
other player. Indeed the game Γ = {N,A,π,P} does not involve any assumptions about
the mutual or common knowledge of P. Requiring πi to be a continuous function on
the compact mixed strategy space guarantees that an equilibrium exists in the decision
theoretic problem.
Note that Definition 10 only requires that a strategy for a player be optimal given

his beliefs. But, of course, beliefs may not turn out to be correct, ex-post. Ultimately,
the choice among models in all science is guided by the evidence. The evidence reviewed
above (and below) shows that in static games, beliefs about others often turn out to be
incorrect.21 Nevertheless, it is of interest to consider the special case where beliefs turn
out to be correct, at least in equilibrium. This is the subject of the next two definitions.

20In the case of binary actions, A, B, if a player wishes to play A then the action that is in contrast to
his own is B.
21Even in experiments, where successive rounds of play lead to an improvement in the accuracy of

beliefs, one may be interested in explaining the behaivor in early rounds of play where beliefs do not turn
out to be correct. Often such behavior mimics real life situations in which decision makers do not get
repeated or frequent opportunities to make their decisions.
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Definition 11 (Mutually consistent strategies): A strategy profile σ∗ = (σ∗1, σ
∗
2, ..., σ

∗
n)∈∆

of the evidential game Γ = {N,A,π,P} (Definition 8) is a mutually consistent vector of
strategies if Pi (σ

∗
i ) = σ∗−i for all i ∈ N , i.e., if Pij (aj|σ∗i ) = σ∗j (aj), for all i, j ∈ N , i 6= j,

and all aj ∈ Aj.

In other words, a strategy profile σ∗ = (σ∗1, σ
∗
2, ..., σ

∗
n) is a mutually consistent vector

of strategies, if for all players i, j ∈ N , i 6= j and all actions, aj, open to player j, the
probability Pij (aj|σ∗i ) that player i ‘believes’that player j will play action aj (given σ∗i ) is
equal to the ‘actual’probability σ∗j (aj) with which player j plays aj. Indeed, imposing such
a social projection is quite strong, as are the epistemic conditions for a Nash equilibrium;
the relation between the two is shown in Section 3.5 below. The empirical evidence (see
Section 2 above) does not support the imposition of such social projection functions.

Definition 12 (Consistent evidential equilibria): A consistent evidential equilibrium of
the evidential game Γ = {N,A,π,P} is an evidential equilibrium, σ∗ ∈ ∆, which is also
a mutually consistent vector of strategies (Definitions 10 and 11).

3.5 Nash equilibria and consistent evidential equilibria

As one might expect, there is a natural correspondence between Nash equilibria and con-
sistent evidential equilibria. This is formally stated and established by the following propo-
sition, which is a special case of the famous result of Aumann and Brandenburger (1995)
on the epistemic foundations of a Nash equilibrium.

Proposition 1 : (a) Let σ∗ ∈ ∆ be a Nash equilibrium in the static game of complete
information, {N,A,π}. Consider the (constant) social projection functions: Pi (σi) =

σ∗−i, i ∈ N . Then σ∗, is a consistent evidential equilibrium in the evidential game Γ =

{N,A,π,P}. Furthermore, Γ is a causal game.
(b) Let σ∗ ∈ ∆ be an evidential equilibrium in the evidential game Γ = {N,A,π,P},
where P is the profile of constant social projection functions Pi (σi) = σ∗−i, i ∈ N (hence,
σ∗ is a consistent evidential equilibrium and Γ is a causal game). Then σ∗ is a Nash
equilibrium in the static game of complete information {N,A,π}.

Proof of Proposition 1: (a) Let σ∗ ∈ ∆ be a Nash equilibrium in the static game
of complete information, {N,A,π}. Consider the social projection functions: Pi (σi) =

σ∗−i, i ∈ N . Since σ∗ is a Nash equilibrium (Definition 1), it follows that σ∗i maximizes
πi
(
σi,σ

∗
−i
)
with respect to σi, given σ∗−i, for each i ∈ N . Since, by construction, Pi (.|σi) =

σ∗−i, i ∈ N , it follows that σ∗i maximizes πi (σi,Pi (σi)) with respect to σi, for each
i ∈ N . Hence, σ∗ is an evidential equilibrium (Definitions 9 and 10) in the evidential
game Γ = {N,A,π,P}. Furthermore, since, by construction, Pi (σi) = σ∗−i, i ∈ N , it
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follows that σ∗ is a consistent evidential equilibrium (Definitions 11 and 12). Since P is a
profile of constant social projection functions, it follows that Γ = {N,A,π,P} is a causal
game (Definition 8).
(b) Let σ∗ ∈∆ be an evidential equilibrium in the evidential game Γ = {N,A,π,P},

where P is the profile of constant social projection functions Pi (σi) = σ∗−i, i ∈ N . Then
σ∗i maximizes πi (σi,Pi (σi)) with respect to σi, for each i ∈ N (Definitions 9 and 10). But
Pi (σi) = σ∗−i, i ∈ N , hence σ∗i maximizes πi

(
σi,σ

∗
−i
)
with respect to σi, for each i ∈ N .

Hence, σ∗ is a Nash equilibrium in the static game of complete information {N,A,π}
(Definition 1). �.

4 The prisoners’dilemma game

We now use the prisoners’dilemma game in Table 6 to illustrate some of the key concepts
developed so far. We call the row player as player 1 and the column player as player 2.
We consider the following cases.

1. Both players use evidential reasoning.

2. One player uses evidential reasoning but the other uses causal reasoning.

3. Both players use causal reasoning but beliefs turn out to be wrong ex-post.

4. Both players use causal reasoning and beliefs turn out to be correct ex-post.

The last case illustrates Proposition 1a, namely, that there will always be a profile of
social projection functions for which a given Nash equilibrium corresponds to a consistent
evidential equilibrium. A comparison of Cases 3 and 4 shows that causal reasoning does
not guarantee mutual consistency of beliefs.

C D
C 2, 2 0, 3
D 3, 0 1, 1

Table 6: The Prisoner’s Dilemma Game

Here N = {1, 2}, A1 = A2 = {C,D}, A = {C,D}×{C,D} and π is given by the
payoff matrix in Table 6. Each player has a dominant action, D, thus, the unique Nash
equilibrium of this game is (D,D) (Definition 1). By contrast, the empirical evidence
reviewed in subsection 2.2, above, shows that 50% or more of the outcomes involve the
play (C,C). We can set up this game as either an evidential game or a causal game. Since
the Nash equilibrium for a prisoners’dilemma game is in pure strategies, we focus only on
pure strategies.
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From Definition 4, in general, Pij (.|σi) will vary with σi but, if player i uses causal
reasoning, as in classical game theory, then Pij (.|σi) will be independent of σi (Definition
3).
Case 1: In this case the SPF for each player is given by{

P12 (C|C) = 1, P12 (D|C) = 0;P12 (D|D) = 1, P12 (C|D) = 0,
P21 (C|C) = 1, P21 (D|C) = 0;P21 (D|D) = 1, P21 (C|D) = 0.

(3)

From (3), both players use evidential reasoning, so this is an evidential game. In particular,
each player uses his identity social projection function (Definition 6). Together, both
players form an ingroup. Given the social projection function for player 1, his unique
optimal choice is C. Similarly, C is also the optimal choice for player 2. Hence, (C,C)

is an evidential equilibrium (Definition 10). Furthermore, (C,C) is the unique evidential
equilibrium of this game. Each player expects the other to play C in response to C,
which turns out to be correct, ex-post. Therefore, (C,C) is a mutually consistent vector of
strategies (Definition 11). Hence, (C,C) is a consistent evidential equilibrium (Definition
12). In contrast, (C,C) is not the Nash equilibrium of the game. Indeed, (C,C) requires
each player to play a strictly dominated strategies. However, (C,C) is Pareto optimal.
Note that under evidential reasoning one does not need repeated game arguments to justify
cooperation in the static prisoners’dilemma game. Moreover, this is consistent with the
play of more than 50% of players (see Section 2.2 above).
Readers trained in classical game theory may wish to make the following argument.

Since P12 (C|C) = 1 and players cannot change the actions of opponents by changing their
action, why does not player 1 defect and increase his outcome to 3, hence, breaking the
cooperative equilibrium? The answer to this is given in section 2.2.2, above; we give a brief
summary here. It is also the case that P12 (D|D) = 1. Player 1 knows that player 2, who
is like-minded will also benefit by thinking in an analogous manner and, hence, both will
defect, in which case both get a payoff of 1. However, this does not maximize the payoffs,
which is required for an evidential equilibrium (see Definitions 9, 10). Hence, player 1
finds it worthwhile to cooperate. For analogous reasons, player 2 also cooperates. Thus,
mutual cooperation is sustained.

Remark 4 : We now make a set of observations that apply to each of the four cases
that we consider in this subsection. The SPF for each player in (3) also specifies out-of-
equilibrium beliefs. For instance, P12 (D|C) = 0 specifies the belief of player 1 that if he
were to find it optimal to play C then the probability that player 2 will play D is zero. It
does not mean that by playing C, player 1 can induce player 2 to play D; indeed there is
no such causal link. The optimal actions of each player, (C,C) in this case, are found
from solving a decision-theoretic problem, using the heuristic of evidential reasoning, and
none of the players attempt to strategically exploiting the SPF of the other player. Indeed
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there is no requirement in an evidential game that there even be mutual knowledge of the
SPF.

Case 2. In this case, the SPF for each player is given by{
P12 (C|C) = 1, P12 (D|C) = 0;P12 (D|D) = 1, P12 (C|D) = 0,
P21 (C|C) = 1, P21 (D|C) = 0;P21 (C|D) = 1, P21 (D|D) = 0.

Player 1 uses evidential reasoning and, in particular, his identity social projection
function, as in case 1 above. Player 2, on the other hand, uses causal reasoning and, in
particular, mistakenly assumes that player 1 will always cooperate. This is an evidential
game. The unique evidential equilibrium (Definition 10) is (C,D). It is an evidential
equilibrium because each player’s chosen action is optimal, given his beliefs, which are
captured by his social projection function. It is not a consistent evidential equilibrium
because the belief of player 1 turns out to be mistaken in equilibrium (P12 (C|C) = 1 but
player 2 plays D instead). By contrast, the belief of player 2 that player 1 always plays C
turns out to be correct in equilibrium.
Case 3. In this case the SPF for each player is given by{

P12 (C|C) = 0, P12 (D|C) = 1;P12 (D|D) = 0, P12 (C|D) = 1,
P21 (C|C) = 0, P21 (D|C) = 1;P21 (C|D) = 1, P21 (D|D) = 0.

Given these social projection functions, the unique payoff maximizing strategy for each
player is to play D (Definition 9). Hence, (D,D), is the unique evidential equilibrium
(Definition 10). However, (D,D), is not a mutually consistent vector of strategies (Defi-
nition 11) because each player expects his opponent to play C in response to D but the
opponent’s response is D. Hence (D,D) is not a consistent evidential equilibrium (Defin-
ition 12). The importance of this case arises because it is sometimes believed that a Nash
equilibrium under causal reasoning requires mutual consistency of beliefs.
Case 4. In this case, the SPF for each player is given by{

P12 (C|C) = 0, P12 (D|C) = 1;P12 (D|D) = 1, P12 (C|D) = 0,
P21 (C|C) = 0, P21 (D|C) = 1;P21 (C|D) = 0, P21 (D|D) = 1.

Both players use causal reasoning, so this is a causal game. Given his social projection
function, playing D is the unique optimal strategy for player 1 (Definition 9). And sim-
ilarly for player 2. Hence (D,D) is the unique evidential equilibrium (Definition 10).
Furthermore, (D,D) is a mutually consistent vector of strategies (Definition 11) because
each player expects his rival to play D and, in fact, his rival does play D. Hence, (D,D)

is a consistent evidential equilibrium (Definition 12). The unique Nash equilibrium of this
game is, of course, (D,D). Hence this case illustrates Proposition 1a, namely, a Nash
equilibrium of the game {N,A,π} is also a consistent evidential equilibrium of the game
{N,A,π,P} with a suitable choice of social projection functions, P.
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Remark 5 (Predictive content of evidential equilibria): As one would expect, the outcome
in an evidential equilibrium depends critically on the social projection function (SPF). The
four cases depicted above consider a range of social projection functions in the prisoners’
dilemma game. The evidence, reviewed in Section 2 shows that when players consider
others as like-minded and use evidential reasoning then there is good support for the identity
SPF (Definition 6). In the prisoners’dilemma game, this corresponds to Case 1 above.
However, there could be a mixture of players, some who use evidential reasoning while
others use causal reasoning. Furthermore, beliefs of some players could turn out to be
fulfilled, perhaps because they are particularly canny or lucky, while in other cases, beliefs
may not be fulfilled. Using subsection 2.2, the weight of the evidence indicates a cooperation
rate of at least 50% in the prisoners’dilemma game. When players are randomly matched
and about half cooperate while the other half defect, the beliefs of some players are fulfilled
but those of others are not. Given the observed heterogeneity of players, we consider a
range of SPFs. However, the predictive content of evidential equilibrium for simple games
with low dimensional choices is likely to arise from a mixture of players who use causal
and evidential reasoning and the latter use the identity social projection function.

5 Oligopoly games

We reconsider several classical models from industrial organization in the light of evidential
reasoning; in particular the monopoly, competitive, Cournot, Bertrand and Stackelberg
models. For ease of reference, we first give the classical formulation of these models under
causal reasoning. We then reconsider them from the perspective of evidential reasoning
and finally give the empirical evidence on such games.
We consider a market for a single homogeneous good. We shall assume a competitive

market on the consumers’side, i.e., no consumer has any market power and they do not
collude. Classically, this enables us to assume that each consumer is a price taker and,
hence, that the unit price is given by an inverse-demand function, P (Q); which we further
assume to be a strictly decreasing function of the total industrial output of that good, Q.
The total industrial output, Q, is produced by a fixed number of firms, n. Let qi be the
output of firm i. Then

Q =

n∑
i=1

qi. (4)

For simplicity we shall take P (Q) to be linear,

P (Q) = A− aQ, a > 0, A > 0, (5)

and we shall take the unit production cost of firm i to be a constant, ci, i = 1, 2, ..., n,
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where
0 ≤ c1 ≤ c2 ≤ ... ≤ cn < A. (6)

Thus, the variable cost of firm i is ciqi. Assuming zero fixed costs, the total cost of firm i

is ciqi. Hence, the profit of firm i is

πi = (P − ci) qi, i = 1, 2, ..., n. (7)

In the light of (4) and (5), the profit of firm i, (7), can be written in the useful form

πi (qi,q−i) =

(
A− ci − a

∑
j 6=i

qj

)
qi − aq2i , i = 1, 2, ..., n. (8)

5.1 Classical oligopoly models under causal reasoning

In this subsection, we consider the textbook case where all players use causal reasoning.

5.1.1 Perfect competition

Under perfect competition, the market price, P ∗, equals the minimum marginal cost, c1:

P ∗ = c1. (9)

Hence, from (5), total output is

Q∗ =
A− c1
a

. (10)

Note that outcomes (9)-(10) are not consistent with a Nash equilibrium when outputs (qi)
are the decision variables. However, they are consistent with a Nash equilibrium in the
Bertrand game where prices, pi, are the decision variables.

5.1.2 Monopoly

Suppose that a benevolent planner gives all rights of production and use of technology to
a single profit maximizing monopolist. The chosen monopolist would use the lowest cost
technology, resulting in the profit function

Π (Q) = (A− c1)Q− aQ2. (11)

Maximizing (11) with respect to Q gives monopoly output22

Q∗ =
A− c1

2a
. (12)

22By completing the square we get Π (Q) = (A−c1)2
4a − a

(
Q− A−c1

2a

)2
which, clearly, has the unique

maximum Q = A−c1
2a .
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5.1.3 Cournot oligopoly

Given the vector of outputs of all other firms, q−i, it easily follows from (8) that the profit
maximizing output for firm i is

q̃i (q−i) =
A− ci

2a
− 1

2

∑
j 6=i

qj. (13)

The Nash equilibrium, q∗, also known as the Cournot equilibrium, is the fixed point of the
function q̃ (q). This can easily be found to be23

q∗i =
A+

∑
j 6=i cj − nci

(n+ 1) a
, i = 1, 2, ..., n. (14)

5.1.4 A Stackelberg leader-follower model

Unlike all the games considered above, which are single stage games, this is a two-stage
game. There is a total of n firms. Firms i = 1, 2, ...,m are the followers while firms
i = m + 1,m + 2, ..., n are the leaders. The followers choose their outputs, given the
outputs of the leaders. When the leaders choose their outputs, they correctly anticipate
the output choices of the followers.
To simplify the exposition, we concentrate on the case of equal unit costs:

0 ≤ c1 = c2 = ... = cn = c < A. (15)

We rewrite the (reaction) function of follower i as

q̃i (q−i) =
A− a

∑n
j=m+1 qj − c
2a

− 1

2

m∑
j=1,j 6=i

qj, i = 1, 2, ...,m. (16)

The Nash equilibrium for the followers, in the subgame determined by the leaders’outputs
qm+1, qm+2, ..., qn, can be obtained by reinterpreting (14):

q∗i =
A− a

∑n
j=m+1 qj − c

(m+ 1) a
, i = 1, 2, ...,m. (17)

We could go on to calculate the subgame perfect equilibrium of this game. But of more
interest to us is the case where the leaders maximize their joint profit, which they share

23The Cournot equilibrium, q∗, must satisfy q∗i = A−ci
2a −

1
2

∑
j 6=i q

∗
j , i = 1, 2, ..., n. Since

∑
j 6=i qj =

Q− qi, this can be written as q∗i = A−ci
a −Q∗, i = 1, 2, ..., n. Summing from 1 to n, and rearranging, gives

Q∗ =
nA−

∑n
j=1 cj

(n+1)a and, hence, q∗i =
A+

∑
j 6=i cj−nci
(n+1)a , i = 1, 2, ..., n.
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equally, correctly anticipating the reaction of the followers as given by (17). The resulting
outputs are:

q∗i =
A− c

2 (m+ 1) a
, i = 1, 2, ...,m (Followers), (18)

q∗i =
A− c

2 (n−m) a
, i = m+ 1,m+ 2, ..., n (Leaders). (19)

From (17) we see that the followers, naturally, condition their outputs on that of the
leaders. Hence, the leaders, when taking their decisions, anticipate the effect that their
actions will have on the followers. This is entirely consistent with causal reasoning (recall
footnote 13). Note that (18)-(19) form a Nash equilibrium, in fact a subgame perfect Nash
equilibrium24, only when n = m+ 1 (one leader).

5.2 Evidential reasoning

In this subsection we focus on the consequences of evidential reasoning for the producers.
But we shall assume that all consumers use causal reasoning, i.e., each consumer regards
every other consumer and every firm as an outgroup member (recall Definition 5). We also
assume that each firm regards each consumer as an outgroup member.25 This also allows
us to continue to assume that the market demand curve is given by (5).26

We now describe an evidential equilibrium, q∗, with the following properties. Suppose
that firm i is considering a deviation, qi, from q∗i . Firm i reasons as follows. “If I am
tempted to deviate by an amount qi − q∗i and if I believe that my rival, firm j, j 6= i, is
like-minded, then the rival is probably also tempted to deviate by an amount qj − q∗j =

λij (qi − q∗i )”; the interpretation of λij is given below. We formalize such reasoning by the
following social projection function (Definition 2):

Pij (qj|qi) = 1⇔ qj − q∗j = λij (qi − q∗i ) , j 6= i. (20)

The social projection specified in (20) is quite general. By specifying like-mindedness of
other players in this manner, it nests several subcases, as we show below. At this point,
the reader may wish to also think about Remark 5. The generality of (20) should not be

24I.e., Nash in the whole game and Nash in each subgame conditional on the output chosen by the
leader.
25Thus if C is the set of consumers and F is the set of firms, then each is an outgroup relative to the

other (Definition 2e).
26If we allowed consumers to use non-causal reasoning, then a single consumer could reason as follows “If

I cut my demand, then probably each like-minded consumer would also cut his demand. The aggregate
result would be a reduction in price for all of us”. Consumers would then be able to collude. The
consequence would be that we would no longer have an oligopoly model (as classically defined) but a
bargaining model. While this is very interesting, it lies beyond the scope of this paper and, in fact,
deserves a paper on its own.
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taken to mean that the predictive content of the evidential reasoning model of oligopoly
is empty. Rather, as in prisoner’s dilemma games, individuals display a wide variation in
choices when they are asked to play oligopoly game (see Section 5.3 below). Variations in
the parameter λij in (20) offer a parsimonious way of capturing this heterogeneity.
In particular, changes in λij may be thought of as capturing how different degrees of

like-mindedness. For instance, perfect like-mindedness, λij = 1, gives rise to the identity
social projection function (Definition 6). The other extreme arises when no like-mindedness
is perceived by firms, as in models of causal reasoning. This corresponds to λij = 0.
Intermediate cases of like-mindedness correspond to values 0 < λij < 1 and to λij < 0 and
possibly reflect different degrees of uncertainty that players have about their opponents.
The distribution of values of λij in any population is eventually an empirical question that
cannot be answered ex-ante.

Lemma 2 : (a) Given the social projection functions (20), the unique evidential equi-
librium (Definition 10), q∗, is characterized by the following set of simultaneous linear
algebraic equations

2 +
∑

j 6=1 λ1j 1 ... 1

1 2 +
∑

j 6=2 λ2j ... 1

... ... ... ...
1 1 ... 2 +

∑
j 6=n λnj



q∗1
q∗2
...
q∗n

 =


A−c1
a

A−c2
a

...
A−cn
a

 (21)

(b) Furthermore, q∗ is a mutually consistent vector of strategies (Definition 11) and, hence,
a consistent evidential equilibrium.
(c) Conversely, given any vector of outputs, q∗, satisfying q∗i > 0 and

∑n
i=1 q

∗
i ≤ A−c1

a
, there

exits a profile of social projection of the form (20) such that q∗ is a consistent evidential
equilibrium.

Proof of Lemma 2: (a) Substituting qj from (20) into (8) gives

πi (qi,Pi (.|qi)) =

{
A− ci − a

∑
j 6=i

[
q∗j + λij (qi − q∗i )

]}
qi − aq2i , i = 1, 2, ..., n, (22)

which, after simplification, gives

πi (qi,Pi (.|qi)) =

(
A− ci + aq∗i

∑
j 6=i

λij − a
∑
j 6=i

q∗j

)
qi − a

(
1 +

∑
j 6=i

λij

)
q2i , i = 1, 2, ..., n.

(23)
(23) shows how a player who uses the heuristic of evidential reasoning translates an essen-
tially strategic problem into a decision theoretic problem. Maximizing (23) with respect
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to qi gives the optimal (pure) strategy for firm i (Definition 9), given his social projection
function (20):

qi =
A− ci + aq∗i

∑
j 6=i λij − a

∑
j 6=i q

∗
j

2a
(

1 +
∑

j 6=i λij

) , i = 1, 2, ..., n. (24)

Setting qi = q∗i , i = 1, 2, ..., n and simplifying gives the following set of simultaneous linear
algebraic equations,(

2 +
∑
j 6=i

λij

)
q∗i +

∑
j 6=i

q∗j =
A− ci
a

, i = 1, 2, ..., n, (25)

which can be written in the matrix form
2 +

∑
j 6=1 λ1j 1 ... 1

1 2 +
∑

j 6=2 λ2j ... 1

... ... ... ...
1 1 ... 2 +

∑
j 6=n λnj



q∗1
q∗2
...
q∗n

 =


A−c1
a

A−c2
a

...
A−cn
a

 (26)

(b) From (20) we see that Pij (qj|q∗i ) = 1 ⇔ qj = q∗j . In effect, when firm i produces the
output q∗i it assigns perfect certainty of beliefs that firm j will produce q∗j . Ex-post, firm
i finds that firm j indeed did produce an output level q∗j , thus, vindicating its ex-ante
beliefs. Hence, q∗ is a mutually consistent vector of strategies and, hence, a consistent
evidential equilibrium.
(c) Rewrite (25) in the form∑

j 6=i

λij =
A− ci
aq∗i

− 2− 1

q∗i

∑
j 6=i

q∗j , i = 1, 2, ..., n. (27)

(27) has many solutions, for example

λij = λi, i, j = 1, 2, ..., n, j 6= i, where

λi =
A− ci

(n− 1) aq∗i
− 2

n− 1
− 1

(n− 1) q∗i

∑
j 6=i

q∗j , i = 1, 2, ..., n. �.

In subsection 5.1 we showed how under causal reasoning one may obtain various mar-
ket outcomes such as perfect competition, monopoly, Cournot oligopoly, and Stackelberg
leader-follower. As an application of Lemma 2 we now show how one may obtain the same
market outcomes under evidential reasoning by choosing suitable values for λij, j 6= i, in
(21). This is followed in section 5.3 by a consideration of the empirical evidence.

5.2.1 Monopoly

Setting c1 = c2 = ... = cn and λij = 1, for all i, j and i 6= j, in (21) gives q∗i = A−c1
2na

,
i = 1, 2, ..., n. Hence, the total output level

∑n
i=1 q

∗
i = Q∗ = A−c1

2a
, which is identical to the
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monopoly output level given in (12). In this case, the social projection functions for the
producers are identity social projection functions on the set of all producers (Definition
6). The set of firms form a perfect ingroup (Definition 7). They behave harmoniously (or
cooperatively) towards each other (see subsection 3.3). Thus, if all firms believe that others
are like-minded and they use the identity social projection function then the aggregate
output maximizes joint profits of the group.

5.2.2 Cournot oligopoly

Setting λij = 0, for all i, j and i 6= j, in (21) gives q∗i =
A+

∑
j 6=i cj−nci
(n+1)a

, i = 1, 2, ..., n, which
is identical to the Cournot output levels given in (14). Here each firm regards the other
firm as an outgroup member (Definition 5). Thus, each firm regards every other player
(whether consumer or producer) as an outgroup member. Hence, every firm uses causal
reasoning (Definition 3).

5.2.3 Perfect competition

Setting c1 = c2 = ... = cn and λij = − 1
n−1 , for all i, j and i 6= j, in (21) gives∑n

i=1 q
∗
i = Q∗ = A−c1

a
, in agreement with (10). Here each firm regards every other firm

as an ingroup member and the set of firms forms an ingroup (Definition 5). We may call
this a competitive ingroup and the resulting social projection functions competitive social
projection functions. This is in line with the ideas considered in subsection 3.3 and, in
particular, is an illustration of the contrast effect.

5.2.4 Stackelberg leader-follower model

Consider the case c1 = c2 = ... = cn and let

λij = 0, i = 1, 2, ...,m, j = 1, 2, ..., n, i 6= j,

λij = −n−m
m+ 1

, i = m+ 1,m+ 2, ..., n, j = 1, 2, ...,m,

λij = 1, i = m+ 1,m+ 2, ..., n, j = m+ 1,m+ 2, ..., n, i 6= j.

Here the social projection function of each of the leaders (firms m + 1,m + 2, ..., n) is an
identity social projection function on the set of leaders (Definition 6). Hence, the leaders
form a perfect ingroup (Definition 7). The social projection functions for the followers
(firms 1, 2, ...,m) are all constant, hence all the followers use causal reasoning (Definition
3). Each follower regards each leader as an outgroup member. The leaders form an
outgroup relative to the followers and each leader regards each follower as an ingroup
member (Definition 5) although the degree of like mindedness they assign to followers
(λij = −n−m

m+1
) is lower relative to that they assign to other leaders (λij = 1). We may
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say that the leaders behave collusively towards each other but competitively towards the
followers (the contrast effect, recall subsection 3.3).
Substitute the assumed values of λij in (21) to get

q∗i =
A− c

2 (m+ 1) a
, i = 1, 2, ...,m (Followers),

q∗i =
A− c

2 (n−m) a
, i = m+ 1,m+ 2, ..., n (Leaders).

Hence, the output levels of leaders and followers are identical to those under the Stackelberg
case when players use causal reasoning as in (18) and (19). However, unlike the Stackelberg
game of subsection 5.1.4, this version is a single-stage game.27 The empirical evidence that
we present below does show that in static duopoly games, players often choose outputs
similar to the Stackelberg output level.
The following is a simple corollary of Lemma 2, which is of interest in its own right.

Corollary 3 Suppose all firms are identical, so that c1 = c2 = ... = cn = c (say) and
λij = λ, i, j = 1, 2, ..., n, j 6= i. Then under the social projection functions (20):
(a) The consistent evidential equilibrium, q∗, is given by

q∗i =
A− c

[n+ 1 + (n− 1)λ] a
, i = 1, 2, ..., n.

(b) The profit of firm i is given by

π∗i =
[1 + (n− 1)λ] (A− c)2

a [n+ 1 + (n− 1)λ]2
, i = 1, 2, ..., n.

(c) π∗i is strictly increasing in λ in the range −n+1
n−1 < λ < 1.

(d) π∗i is maximized when λ = 1.
(e) In particular, as λ increases from − 1

n−1 to 1, the profit (output) level of each firm
increases (decreases) from the perfectly competitive, through the Cournot (λ = 0), to the
fully collusive.

5.3 Empirical evidence from oligopoly games

In our theoretical model we have used a flexible social projection function in (20). We
showed how alternative values of λ in (20) were able to produce, in a static game, the output
levels under alternative market forms such as monopoly, Cournot duopoly, Stackelberg
leader-follower game, perfect competition etc. The aim of this empirical section is to show

27For the special case n = 2, m = 1 (one leader and one follower) we get: q∗1 = A−c
4a (follower), q∗2 = A−c

2a

(leader), Q∗ = 3(A−c)
4a (total output).
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that one indeed does observe a wide range of market outcomes when a duopoly game is
played with experimental subjects.
In the early experiments on Cournot markets by Fouraker and Siegel (1963), and the

experiments that followed for several decades, it was usual to present a profit table (PT).
The PT was typically based on linear demand and linear cost curves in symmetric, ho-
mogenous goods duopolists. The PT listed the outputs of each firm on the two margins
while individual cells of the table contained the corresponding profits of both firms. The
PT was often supplemented by a profit calculator (PC) which allowed each experimental
subject in their role as a firm to calculate the profit for a given pair of quantities chosen by
both firms. In recent years, several experiments also give to the subjects a best response
option (BRO) which tells them their profit maximizing quantity for any quantity chosen
by the other player.
The extra information provided (PT, PC, BRO) arguably alters the nature of the

problem by suggesting a particular frame and solution. Requate and Waichman (2011)
find that there is substantially more collusion (corresponding to λ = 1 in (20)) in PT and
PC treatments as compared to BRO. They find, in a static duopoly experiment, that the
collusive outcome is reached at least once in the 20 rounds, in 62%, 78% and 29% of the
markets, respectively, in the PT, PC and BRO treatments. The theoretical outcome of
the Cournot-Nash equilibrium is, therefore, not confirmed in many cases.
Several papers claim to find support for the Cournot-Nash equilibrium under random

matching of opponents while finding that there is greater collusion under fixed matching
of players.28 Consider a representative paper by Huck et al. (1999), which uses symmetric
firms and linear demand curves. For the demand and cost curves used, the Cournot-Nash
outcome is for each firm to produce an output of 8. The authors report data for round 9
of play under random matching, as the most supportive of their hypothesis (see Table 5
in their paper); these results are given in Table 7.29

Output level 6 7 8 9 greater than 10
% of subjects choosing 12 21.5 35.5 14.5 14

Table 7: Distribution of output levels in Huck et al. (1999)

The mean quantity is close to the Cournot-Nash output level of 8. However, there is
substantial variation in the output levels and about 65% of individuals do not choose the
Cournot output level.
28The interested reader can consult the bibliography in Requate and Waichman (2011).
29In these experiments, outputs of both firms vary between 3-15. The Cournot-Nash outcome is for each

firm to produce an output of 8. Since both firms are known to the experimental subjects to be symmetric,
they must know that the solution lies on the diagonal of a relatively small matrix. Profits of each firm in
the PT drop off sharply for output levels equal to or higher than 10 or less than an output of 3. These
arguably leaves only 7 levels of output to choose from: 4,5,6,7,8,9.
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Rassenti et al. (2000) use an asymmetric Cournot game in which firms have different
marginal costs. Importantly, firms are not told the marginal costs of their opponents or
any probability distribution over them. In this sense, there is true uncertainty, an area
where evidential reasoning would seem to have the most bite. The game is played over 75
rounds to allow for substantial learning possibilities. The main finding is that while total
output is above, but close to, the Cournot-Nash solution, the individual levels of output
chosen by the firms are quite different from the Cournot-Nash solution. The results, in
this sense, are similar to those in Huck et al. (1999), however, the authors take this as a
refutation rather than a confirmation of the Cournot-Nash equilibrium.
Bosch-Domènech and Vriend (2003) report results from the last two rounds of a 22

round duopoly experiment in which, in each round, two firms simultaneously choose out-
puts. They find that the output levels are widely distributed over a range that includes
the monopoly output level and the perfectly competitive level. Table 8 summarizes infor-
mation that is extracted from their paper. The three treatments, easy, hard and hardest,
differ in terms of the time within which firms had to choose their outputs and the level of
information provided.30 The cells in Table 8 report the approximate percentage of output
chosen by the experimental subjects under each column head. It is clear from the evidence
that the Cournot output level is not particularly salient relative to the others. Further,
the wide distribution of output levels even in rounds 21 and 22 of the experiment suggest
that a flexible social projection function as in (20) is consistent with the evidence.

Monopoly Cournot Walrasian Others
Easy 38.89 33.33 0 27.78
Hard 11.11 16.67 11.11 61.11
Hardest 8.33 14.28 16.67 60.72

Table 8: Percentage of outputs corresponding to various market levels

When players choose their quantities simultaneously, can they observe each other’s
body language, talk to each other or send other kinds of messages? The Cournot-Nash
equilibrium is agnostic about pre-play communication; such features are simply not a part
of the game. Waichman et al. (2010) find that pre-play communication increases the degree
of collusion in the Cournot game. Between 91% and 100% of the markets achieve collusion
in at least one round of the experiment when pre-play communication is allowed. This
also seems consistent with evidential reasoning. Pre-play communication may increase the
players’beliefs that they are dealing with like-minded players, hence, facilitating the use

30For instance, in the easy treatment, a PT is provided but not in the other treatments. In the hardest
treatment, firms are not even told of the exact functional form of the linear demand curve (only that it is
downward sloping) whereas in the easy treatment firms know the exact demand curve.
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of evidential reasoning.31

Duersch et al. (2010) document systematic departures from a Cournot-Nash equilib-
rium. They consider a linear-demand, linear-cost Cournot game with the Cournot-Nash
quantity, q∗i = 36. Computers play one of several well known strategies including best
response against human subjects who are not aware of the computers’strategy over 40
rounds. Again, by creating uncertainty about what others will do, this situation is quite
relevant to the domain of evidential reasoning.
Mean quantities chosen by computers (34.39) are always lower than mean quantities

chosen by humans (47.95). Human subjects choose quantities that are much greater than
the Cournot-Nash levels and, in some cases, approach the Stackelberg leader output of 54.
In particular, when computers are programmed to play a best response with some small
noise, in three different treatments, subjects choose the output levels 51.99, 48.67, and
49.18, while computers choose 32.05, 35.02, 31.67. Thus, human subjects show systematic
(upward) departures from the Cournot-Nash level, even approaching the Stackelberg levels.

5.4 Summary of the evidence in oligopoly games

Among the classical oligopoly models (subsection 5.1, where all players use causal reason-
ing), q∗ is a Nash equilibrium only for the case of the Cournot model (subsection 5.1.3).32

However, under evidential reasoning (subsection 5.2), q∗ is always a consistent evidential
equilibrium.
Turning now to the empirical evidence (subsection 5.3), the claim that under random

matching, experimental subjects’behavior robustly conforms to a Cournot-Nash equilib-
rium is not supported by the evidence. One observes a wide and rich range of behaviors that
are often collusive and range all the way up to the choice of quantities in the Stackelberg
case. The results are consistent with a range of social projection functions used (corre-
sponding to alternative values of λ in (20)) by experimental subjects who use evidential
reasoning. The collusive outcome is played by a significant percentage of experimental
subjects, which is consistent with the identity social projection function.

31Recall from the discussion of the work by Darai and Grätz (2010) above that in the prisoner’s dilemma
game with pre-play communication and handshakes, the cooperation levels are also similarly enhanced.
32Barring some very special cases, as indicated in subsection 5.1.
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6 Evidential equilibrium in static games of incom-
plete information

6.1 Motivation

A player might be unsure about the payoff functions or the action sets of the other players.
In addition to these typical concerns, a player may be unsure as to whether some of the
other players are ingroup or outgroup members, as illustrated in Example 5, below. Our
formulation, in subsection 6.3, below, allows for a consideration of both these concerns.

Example 5 (Prisoners’ dilemma game of incomplete information): Suppose that you,
player 1, are particularly well disposed to cooperate with others and you spend your spare
time working gratis for various charities. You have been asked to play a prisoners’dilemma
game with an opponent, player 2. You believe that there is a probability p ≥ 0 that player
2 was fired from his previous job on the grounds of being an atrocious team player who also
never privately contributes to charity (type 1 of player 2) and a probability 1 − p that he
was never fired from his job and contributes to charity (type 2 of player 2). Should player
1 cooperate?
This is an example of a static game of incomplete information. Player 2 has more than
one possible type that is privately known to player 2 but not to player 1. Player 1 might
reason as follows: “There is a probability p that player 2 is not like-minded, so in this
case, I may consider him as an outgroup member. In particular, I expect such type of a
player to always choose the strategy defect. But there is a probability 1− p that player 2 is
completely like-minded so I may take my own propensity to cooperate or defect as having
perfect diagnostic significance in this case”.33 Notice that in this case, player 1 uses causal
reasoning towards type 1 of player 2 and evidential reasoning towards type 2 of player 2
and, in particular, assigns the identity social projection function towards the type 2 player.

The above example indicates that the concept of evidential reasoning can also be used
for static games of incomplete information. We give, below, a formal development of
evidential reasoning in the context of static games of incomplete information.

6.2 Preliminary considerations

In standard accounts of game theory, the terms “static games of incomplete information”
and “static Bayesian games”are used as synonymous. However, we wish to distinguish
between them. In particular, in our formulation of static games of incomplete information,

33Or one may have a richer setting in which player 1 believes that the type 2 of player 2 is like-minded
with probability q 6= 1 − p and not like-minded with probability 1 − q. Our setup allows for this feature
although, for simplicity, we shall assume the case stated in the text.
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we do not commit to common priors, Bayesian updating or the expected utility form
of payoffs. Adding these changes a static game of incomplete information into a static
Bayesian game as commonly understood in standard game theory.
Our motivation for introducing evidential reasoning is entirely empirical. Given this

attitude, it does not appear appropriate to introduce evidential reasoning into a theory
where three of the fundamental assumptions, namely, common priors, Bayesian updating
and expected utility are not empirically supported by the evidence.34 Of course, a fully
developed theory should include substitutes for these concepts.35 However, this lies beyond
the scope of this paper.

6.2.1 Static games of incomplete information

As in section 3, N = {1, 2, ..., n} is the set of players. However, now each player i ∈ N
can be one of several types, given by Ti = {ti1, ti2, ..., tini}, with typical element denoted
by ti. The Cartesian product of types, or type space, is given by the set T = ×ni=1Ti,
and a typical member is denoted by t = (t1, t2, ..., tn) ∈ T. For any player, i, the set
of types of all other players is T−i = ×nj=1,j 6=iTi, and a typical member is denoted by
t−i = (t1, t2, ..., ti−1, ti+1, ..., tn). Each player has incomplete information about the exact
type of the opponents. Following Harsanyi’s well known device, we assume that nature
moves first and draws some vector of types t = (t1, t2, ..., tn) ∈ T. To each player i ∈ N ,
nature privately reveals the corresponding type ti ∈ Ti that was drawn but does not give
this information to any other player. This changes a game of incomplete information into
a game of imperfect information.
The probability assigned by player i that the type vector of other players is t−i,

conditional on his own type being ti, is given by pi (t−i | ti). When types are inde-
pendent then pi (t−i | ti) does not depend on ti and pi (t−i | ti) = pi (t−i). Let p =

{pi (t−i | ti) : i ∈ N, t ∈ T} be the family of these beliefs.
The set of actions of a player i ∈ N , of type ti ∈ Ti, is given by Ai (ti). We assume

Ai (ti) to be finite. Let A (t) = ×ni=1Ai (ti). Denote by A = {Ai (ti) : i ∈ N, t ∈ T}, the
family of all action sets of all types of players.
The set of probability distributions over Ai (ti) is given by ∆i (ti). For any player i, a

strategy of type ti ∈ Ti is given by σi (., ti) ∈ ∆i (ti), thus, strategies are type-contingent.
σi (ai, ti) is the probability that type ti ∈ Ti, of player i, takes the action ai ∈ Ai (ti). Let
∆ = {∆i (ti) : i ∈ N, t ∈ T} be the family of all the strategies of all the types of players.

34See, for instance, Kahneman and Tversky (2000) and Camerer (2003).
35For instance, prospect theory or rank dependent theory in place of expected utility; judgement heuris-

tics in place of Bayes’rule etc.
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Definition 13 (Payoff functions under incomplete information): Let

σi = (σi (., ti1) , σi (., ti2) , ..., σi (., tini))

be a vector of strategies for player i, one for each type of player i. Let σ = (σ1,σ2, ...,σn)

be a profile of such vectors, one for each player and let σ−i = (σ1,σ2, ...,σi−1,σi+1, ...,σn)

be the profile of strategy vectors of the players other than player i. The payoff to player
i of type ti as a result of that player adopting the strategy σi (., ti) and the other players
adopting the profile σ−i is written as

Ui (σi (., ti) ,σ−i) . (28)

(28) captures the idea that player i knows his own type, ti, but not, necessarily, that
of the other players. Hence, his payoff will depend on his own strategy, σi (., ti), and, in
general, will also depend on the strategy adopted by each type of each of the other players,
as captured by σ−i. In addition, the payoffto player i, Ui, will depend on the type space, T,
and also on the assessment by player i of the probability, {pi (t−i | ti) : t−i ∈ T−i}, of each
type of each of the other players, given knowledge of his own type ti. LetU = {Ui : i ∈ N}
be the family of the payoff functions of the players.

Definition 14 : A static game of incomplete information is given byG = 〈N,T,p,A,∆,U〉,
where N , T, p, A, ∆, U have all been introduced above.

Definition 15 : σ∗i (., ti) is a best reply for player i of type ti to the profile of strategy
vectors σ−i adopted by all the types of the other players, if Ui (σ∗i ,σ−i) ≥ Ui (σi,σ−i) for
each σi ∈ ∆i (recall Definition 13).

Definition 16 : A profile of strategy vectors, σ∗, is a Nash equilibrium under incomplete
information if, for each i, i = 1, 2, ..., n, and each ti ∈ Ti, σ∗i (., ti) is a best reply to σ∗−i
(recall Definitions 13 and 15).

Note that in computing a Nash equilibrium of the game of incomplete information,
G = 〈N,T,p,A,∆,U〉, one needs to specify an optimal strategy for each type of each
player.

6.2.2 Static Bayesian games

Definition 17 : A static Bayesian game is a static game of incomplete information (Defi-
nition 14),G = 〈N,T,p,A,∆,U〉, where the family of beliefs, p = {pi (t−i | ti) : i ∈ N, t ∈ T},
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of the players about the types of the other players is derived, using Bayes law, from a com-
mon prior, p (t), which is common knowledge to all players:

pi (t−i | ti) =
p (t)∑

t−i∈T−i p (t−i, ti)
, (29)

and the payoff functions (28) take the expected utility form (assuming uncorrelated strate-
gies):

Ui (σi,σ−i) =
∑

t−i∈T−i

∑
a∈A(t)

pi (t−i | ti) Πn
j=1σj (aj, tj)ui (a, ti, t−i) . (30)

Definition 18 (Bayesian Nash equilibrium): A Nash equilibrium of a static Bayesian
game (Definition 17) is called a Bayesian Nash equilibrium.

Note that for a Bayesian Nash equilibrium, the strategy of each type of each player
must be a best reply to the profile of strategy vectors of other player, just like a Nash
equilibrium of a static game of incomplete information. But, in addition, the beliefs of
each type of each player must be derived from a common prior using Bayes’law (29). And,
furthermore, the payoff of each type of each player takes the expected utility form (30).

6.3 Static evidential games of incomplete information

We now consider the implications of evidential reasoning for static games of incomplete
information. We begin by defining social projection functions (SPF) for such games. The
main difference is that the social projection function, SPF (recall Definition 2) is now
type-dependent. In particular, type ti of player i must now form beliefs about the action
to be taken by each type of each of other players, as in the example of subsection 6.1.

Definition 19 : A social projection function for type ti of player i onto type tj of player
j, i 6= j (SPF for short) in a static game of incomplete information is a mapping Piti,jtj :

∆i (ti)→ ∆j (tj), that assigns to each strategy, σi (., ti) ∈ ∆i (ti), for type ti of player i, a
strategy, σej (., tj) ∈ ∆j (tj), for type tj of player j, j 6= i. If Piti,jtj (σi (., ti)) = σej (., tj),
i 6= j, then σej (a, tj) is the probability with which player i of type ti believes player j of
type tj will play action a ∈ Aj (tj); which we write as Piti,jtj (a|σi (., ti)).

Definition 20 (Family of social projection functions): We call

P =
{
Piti,jtj : ti ∈ Ti, tj ∈ Tj, i, j ∈ N, i 6= j

}
,

where Piti,jtj are as in Definition 19, a family of social projection functions.
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Definition 21 (Anticipated strategies and anticipated payoffs): Let Piti,jtj : ∆i (ti) →
∆j (tj) be a social projection function for type ti of player i onto type tj of player j,
j 6= i (Definition 19). Let σi (., ti) ∈ ∆i (ti) be a strategy for type ti of player i. Suppose
Piti,jtj (σi (., ti)) = σej (., tj). We then call σej (., tj) the strategy of type tj of player j
anticipated by player i, when type ti of player i uses his strategy σi (., ti), i 6= j. We write
σej (σi (., ti)) =

(
σej (., tj1) , σ

e
j (., tj2) , ..., σ

e
j

(
., tjnj

))
, j 6= i, for the vector of strategies of

each of the types of player j as anticipated by type ti of player i when he uses his strategy
σi (., ti). We write

σe−i (σi (., ti)) =
(
σe1 (.) ,σe2 (.) , ...,σei−1 (.) ,σei+1 (.) , ...,σen (.)

)
for the profile of strategy vectors that type ti of player i, when using his strategy σi (., ti), an-
ticipates all the types of all the other players will use. We write Ui

(
σi (., ti) ,σ

e
−i (σi (., ti))

)
for the payoff anticipated by player i of type ti.

As in static games of complete information, no player is required to be aware of the
social projection functions of the other player, hence, players cannot strategically exploit
the social projection functions of others.

Definition 22 (Causal Reasoning): In a static game of incomplete information, we say
that type ti of player i uses causal reasoning if Piti,jtj (σi (., ti)) is independent of σi (., ti),
i.e., if Piti,jtj (σi (., ti)) = Piti,jtj (σ′i (., ti)) for all σi (., ti) , σ

′
i (., ti) ∈ ∆i (ti), all tj ∈ Tj

and all j 6= i.

Definition 23 (Evidential Reasoning): In a static game of incomplete information, we
say that type ti of player i uses evidential reasoning if it is not necessarily the case that
Piti,jtj (σi (., ti)) = Piti,jtj (σ′i (., ti)) for all σi (., ti) , σ

′
i (., ti) ∈ ∆i (ti), all tj ∈ Tj and all

j 6= i.

Definition 24 : A static evidential game of incomplete information, Γ = 〈G,P〉, is a
static game of incomplete information, G (Definition 14), that is augmented with a family
of social projection functions, P (Definition 20).

Definition 25 (Ingroups and Outgroups): Suppose that players use evidential reasoning.
(a) Player i of type ti regards player j (j 6= i) of type tj as an outgroup member if
Piti,jtj (σi (., ti)) is independent of σi (., ti), i.e., if Piti,jtj (σi (., ti)) = Piti,jtj (σ′i (., ti)) for
all σi (., ti) , σ′i (., ti) ∈ ∆i (ti). Otherwise, type ti of player i regards type tj player j (j 6= i)
as an ingroup member.
(b) Let M ⊂ N be a non-empty set of players. If every type of every player in M regards
every type of every other player in M as an ingroup member, then M is an ingroup.
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(c) Let L ⊂ N and M ⊂ N be disjoint non-empty sets of players. Suppose every type of
every player in L regards every type of every player in M as an outgroup member. Then
we say that M is an outgroup relative to L.

Definition 26 (Optimal strategies): An optimal strategy for type ti of player i, σ∗i (., ti) ∈
∆i (ti), in the static evidential game of incomplete information, Γ = 〈N,T,p,A,∆,U,P〉
(Definition 24), is one that maximizes the anticipated payoff, Ui

(
σi (., ti) ,σ

e
−i (σi (., ti))

)
,

for type ti of player i, i.e., Ui
(
σ∗i (., ti) ,σ

e
−i (σ

∗
i (., ti))

)
≥ Ui

(
σi (., ti) ,σ

e
−i (σi (., ti))

)
, for

all σi (., ti) ∈ ∆i (ti) (recall Definition 21).

As in static games of complete information, each type ti of each player i solves a decision
theoretic problem conditional on the privately held beliefs,

{
Piti,jtj : j ∈ N − {i} , tj ∈ Tj

}
.

If the payoff functions are continuous and the choice space is compact then an optimal
value for the anticipated payoff is assured.

Definition 27 (Evidential equilibria and consistent evidential equilibria under incom-
plete information): Consider the static evidential game of incomplete information, Γ =

〈N,T,p,A,∆,U,P〉. Let σ = (σ1,σ2, ...,σn) be a profile of strategy vectors, one for each
player, where σj =

(
σj (., tj1) , σj (., tj2) , ..., σj

(
., tjnj

))
is a vector of strategies for player

j, one for each type of player j. Let Piti,jtj (σi (., ti)) = σej (., tj) , j 6= i. Let σej (σi (., ti)) =(
σej (., tj1) , σ

e
j (., tj2) , ..., σ

e
j

(
., tjnj

))
, j 6= i. Let σe−i (σi (., ti)) =

(
σe1 (.) ,σe2 (.) , ...,σei−1 (.) ,σei+1 (.) , ...,σen (.)

)
.

Then:
(a) σ = (σ1,σ2, ...,σn) is an evidential equilibrium if σi (., ti) is an optimal strategy for
each type, ti, of player i and for each player i ∈ N (recall Definitions 13, 21 26).
(b) σ = (σ1,σ2, ...,σn) is mutually consistent if σe−i (σi (., ti)) = σ−i (σi (., ti)) for each
type, ti, of player i and for each player i ∈ N .
(c) σ = (σ1,σ2, ...,σn) is a consistent evidential equilibrium if it satisfies both (a) and
(b), above.

Proposition 4 : (a) Let the profile of strategy vectors σ∗ be a Nash equilibrium in the
static game of incomplete information, G = 〈N,T,p,A,∆,U〉. Let

σj =
(
σj (., tj1) , σj (., tj2) , ..., σj

(
., tjnj

))
, j ∈ N .

Consider the (constant) social projection functions: Piti,jtj (σi (., ti)) = σ∗j (., tj), ti ∈ Ti,
i ∈ N , j ∈ N − {i}, ti ∈ Ti. Then σ∗, is a consistent evidential equilibrium in the
evidential game Γ = 〈G,P〉. Furthermore, Γ is a causal game.
(b) Let the profile of strategy vectors σ∗ be an evidential equilibrium in the evidential game
Γ = 〈N,T,p,A,∆,U,P〉, where P is the family of constant social projection functions
Piti,jtj (σi (., ti)) = σ∗j (., tj), ti ∈ Ti, i ∈ N , j ∈ N − {i}, ti ∈ Ti (hence, σ∗ is a consistent
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evidential equilibrium and Γ is a causal game). Then σ∗ is a Nash equilibrium in the static
game of incomplete information G = 〈N,T,p,A,∆,U〉.

Proof of Proposition 4: Similar to that of Proposition 1. �.

6.3.1 An example

We can now use the machinery of evidential games of incomplete information to formalize
the discussion in Example 5. Let player 1 be the row player in Table 6, and player 2
the column player. Player 1 has only one type, T1 = {t11} while player 2 has two types,
T2 = {t21, t22}. In Example 5, we assume that: (1) Player 1 assigns a probability p that
player 2 is of type t21; a type who always defects (2) Player 1 assigns the identity social
projection function to type t22. Thus, the social projection function of player 1 is given by{

P11,21 (C|C) = 0, P11,21 (D|C) = 1;P11,21 (D|D) = 1, P11,21 (C|D) = 0,
P11,22 (C|C) = 1, P11,22 (D|C) = 0;P11,22 (C|D) = 0, P11,22 (D|D) = 1,

(31)

thus, for example, P11,21 (D|C) = 1 says that the first (and only) type of player 1 anticipates
that if he plays C then the first type of player 2 will defect. In the first row of (31), Player
1 uses causal reasoning towards type t21 of player 2 and in the second row he uses the
identity social projection function towards type t22 of player 2. For illustrative purposes,
we assume that type t21 of player 2 uses causal reasoning towards player 1, while type
t22 of player 2 uses evidential reasoning towards player 1. This gives rise to the following
social projection functions for the two types of player 2.{

P21,11 (C|C) = 0, P21,11 (D|C) = 1;P21,11 (D|D) = 1, P21,11 (C|D) = 0,
P22,11 (C|C) = 1, P22,11 (D|C) = 0;P22,11 (C|D) = 0, P22,11 (D|D) = 1.

(32)

Given (31), for player 1, cooperation is better than defection if p × 0 + (1 − p)2 ≥ 1 or
p ≤ 1

2
. Thus, if player 1 assigns more than an even probability of player 2 being like-

minded then he will cooperate. Using (32), since type t21 of player 2 uses causal reasoning
to form beliefs about player 1, he always finds it optimal to defect. On the other hand,
since type t22 of player 2 believes that player 1 is like-minded, he always finds it optimal
to cooperate.
Suppose that p ≤ 1

2
. Then player 1 and type t22 of player 2 both find it optimal to

cooperate. Should they be matched, their initial beliefs are fulfilled. If however, player 1
and type t21 of player 2 are matched then player 1 will get a payoff of 0 and player 2 will
unexpectedly get a higher payoff of 3; initial beliefs are not fulfilled in this case.
Suppose that p > 1

2
. In this case, if player 1 and type t21 of player 2 are matched then

both defect and initial beliefs are fulfilled. If, however player 1 and type t22 of player 2
are matched then player 1 unexpectedly gets a higher payoff of 3 and initial beliefs are not
upheld. Recall that since the social projection functions of players are not known to others,
other players cannot exploit their social projection functions for strategic advantage.
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7 Conclusions

In static games of complete or incomplete information, players are uncertain about which
actions the other players will take. Aumann and Brandenburger (1995) gave epistemic
conditions under which the play of a game would result in a Nash equilibrium. A very
large number of experimental subjects do not play a Nash equilibrium in well known games
such as prisoners’dilemma, voting games, public goods games and oligopoly games. A
violation of Nash equilibrium is also a violation of the epistemic conditions that underlie
it. It would seem that this constitutes strong grounds for game theory to be open to
alternative equilibrium concepts in static games.
A great deal of evidence suggests that in resolving uncertainty about what other like-

minded players will do, players assign diagnostic significance to their own actions. Such
reasoning is described as evidential reasoning (ER) but it is disallowed by the epistemic
conditions in Aumann-Brandenburger (1995). Often players use ER without being aware of
using it. Other evidence suggests that it is an automatic response. In other words, humans
might be hard-wired to use ER (possibly for evolutionary reasons). Finally, players using
ER do not believe that their actions cause others to take any particular actions.
The aim of our paper is to explore the significance of ER for the class of static games

of complete and incomplete information. We define evidential games (EG) in which some
players use ER. We also propose the relevant solution concepts for such games: Eviden-
tial equilibrium (EE) and consistent evidential equilibrium (CEE). In the latter (but not
necessarily the former) beliefs turn out to be correct in equilibrium.
We give applications of EE in several common games, in particular, the prisoners’

dilemma and oligopoly games. In each case, ER produces a greater degree of cooperation
relative to a NE. If the cooperative outcome is associated with a higher payoff that players
prefer, then they often take their own preference for cooperation as being of diagnostic
significance about the likely cooperation of others. The evidence shows that the coopera-
tive outcome in prisoners’dilemma is played about 50% of the times despite the strategy
defect strictly dominating the strategy cooperate. Similarly a great deal of evidence shows
that the outcome in oligopoly games, particularly when players have uncertainty about
others, is not a Cournot Nash equilibrium and the collusive outcome is not uncommon. In
each of these cases, players do not require an infinite horizon (or a finite horizon with the
conventional degree of irrationality) or other regarding preferences in order to cooperate.
These factors may well be very important but ER provides an alternative foundation for
cooperative behavior.
It is very likely that there could be a mixture of players: Some use ER while others

use the conventional reasoning in game theory (following standard usage in psychology,
we call it causal reasoning). Indeed in our analysis, we allow for such a mixture. Future
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research, both empirical and theoretical, could fruitfully explore this idea and work on the
estimation of such mixtures.
Our framework can naturally be extended to dynamic games but we lack a body of

evidence that could underpin such an extension. Hence, we leave such developments for
future research as more evidence accumulates.
Acknowledgements: We are very grateful to Chris Wallace and Andrew Colman for

their comments on the paper.
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