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Abstract

The behavior and stability of over-the-counter markets is of central concern to regu-

lators. Little is known, however, about how the structure of these markets determine

their properties. In this paper we consider an over-the-counter market populated by

boundedly rational heterogeneous traders in which the structure is represented by a

network. Stability is found to decrease as the market becomes less well connected,

however, the configuration of connections has a significant effect. The presence of

hubs, such as those found in scale free networks increases stability and decreases

volatility whilst small-world links have the opposite effect. Volatility in the fun-

damental value increases market volatility, however, volatility in the riskless asset

returns has an ambiguous effect.
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1 Introduction

Over-the-counter (OTC) markets are key to the operation of the modern financial system.

Much of the world’s trade in derivatives, foreign currency, and many other assets, is

conducted in these exchanges. They provide flexibility to financial institutions, however,

this comes at a cost. During adverse conditions, their decentralized nature can cause

traders to be unable to identify counter-parties and as a result the markets may lose

liquidity and fail. This happened during the 2008 financial crisis when the sparse structure

of OTC markets was blamed for a lack of transparency and an inability for institutions

to identify prices of assets and to trade (Brunnermeier, 2009). As a result this has led

to calls for trade to be moved away from OTC markets towards centralized exchanges

to increase stability. There is, however, very little work comparing these two types of

institutions. This paper aims to address a key aspect: the stability and dynamics of

prices. In particular it will look at how the pattern of interactions between institutions,

the structure of an OTC market, affects the market behavior. The markets considered in

this paper will contain heterogeneous traders which base their trading decisions on their

valuation of the asset. Each trader’s valuation is itself dependent on their strategy and

the information the trader gains through trading with its counterparts. As a result the

structure of the market will affect the behavior of traders.

OTC markets allow investors to trade assets directly between each other rather than

through centralized exchanges. They are particularly prevalent when assets are illiquid,

are traded in very large quantities or when there is scope for bespoke contracts. The largest

OTC markets are those for currency exchange and swaps. In these markets investors buy

or sell directly from dealers, however, each customer may only know a subset of the dealers

within the market, limiting their ability to observe the best price. The dealers themselves

trade with each other in order to balance inventory , meet liquidity needs and speculate,

again however, each dealer may only interact with a subset of the other dealers. Lyons

(1997) captures this interaction in a formal model and shows that this market setup can

reduce the amount of information in prices. Duffie et al. (2005) show how constrained

trading opportunities and search costs in OTC markets affect prices and the resulting
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bid-ask spread, whilst Koeppl et al. (2012) use a mechanism design approach to examine

the effect of the clearing arrangements (centralized versus bilateral) on stability in both

types of markets.

Inter-bank lending markets also generally operate on an OTC basis. In this case the

‘price’ is the interest rate at which a bank or financial institution may lend or borrow. The

nature of the contracts (length of borrowing, size of borrowing, time) and the participants

(credit ratings of borrower, history, etc.), all affect the interest rate a particular institution

will be offered. An OTC structure provides the flexibility necessary for this type of trade.

Theoretical studies have shown that the linkages between banks (lending and borrowing

relationships) have an important effect on stability (Allen and Gale, 2000). Several papers

have considered the effect of particular network structures e.g. Battiston et al. (2009);

Georg (2013); Iori et al. (2006); Ladley (2013); Lorenz and Battiston (2008) and have

shown that the connectivity (the number of links between traders in the network) and

the configuration of linkages both play a role in market stability.

The structure of OTC markets, as defined by the interactions of the institutions within

them, may be highly complex. Network theory, offers an effective analogy to capture and

analyze their detail. An OTC market may be represented as a graph in which nodes

correspond to traders and edges represent potential trading relationships. Within the

network each financial institution is restricted to only interact and gain information from

those to whom it is directly connected. Seminal work by Watts and Strogatz (1998),

Barabsi and Albert (1999), Newman (2003) and others have provided tools applicable to

a wide range of systems, from friendship groups to gene regulation which may be employed

in this setting.

Within this paper we represent the OTC market as a network. The traders within the

market follow one of two strategies which differ in their estimation of future market prices.

Chartists look at previous trends in the market price to extrapolate future price changes,

whilst fundamentalists know the true value of the asset and assume that the market price

will move back towards this value. We use numerical simulation in order to analyze the

behavior of the model. The results show that the market structure has a significant effect
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on price dynamics and market stability. The more heavily a market is connected, i.e. the

more easily information may flow between traders, the more frequently stable dynamics

are observed. As the number of connections is reduced, the market dynamics deviate

more often from the fundamental, as sections of the market diverge in their valuation of

the asset. The presence of hubs increases stability whilst the inclusion of ‘small world’

type connections has the opposite effect. Markets are also shown to be less stable if

they contain an above average number of chartist traders. Volatility in the underlying

fundamental or riskless asset returns are amplified by the network structure, particularly

the locally connected market. In some markets, however, low levels of riskless asset return

volatility were found to synchronize the traders and reduce price volatility. Overall, the

model is found to have much in common with the underlying Chiarella (1992) model in

terms of the parameter combinations which lead to non-equilibrium prices and the effect of

those parameters on the amplitude of cycles, although the network structure has marked

influence on this.

The paper proceeds as follows. Section 2 discusses literature relevant to our model.

Section 3 details the model of the interaction of heterogeneous traders in OTC markets.

Section 4 presents the results, first focusing on the behavior of individual traders and

then looking at the role of the number of connections, network structure, parameters,

compositions of traders and volatile fundamentals. Section 5 concludes.

2 Related literature

The analogy of a network has been used in a body of work looking at the effects of market

structures on trade.1 Evstigneev and Taksar (2002) show that equilibria within these

markets exist and that the networks formed can maximize overall efficiency (Kranton and

Minehart, 2001) although Gofman (2011) shows that with insufficient numbers of connec-

tions an inefficient allocation becomes almost certain. The dynamics of these markets are

also highly dependent on network structure, e.g. Bell (1998) and Tassier and Menczer

(2008). Both the number of connections and the pattern of connectivity play important

1See Wilhite (2006) for a review.
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roles. For instance, Wilhite (2001) shows that ‘small world’ connections, those connect-

ing otherwise distantly separated sections of the market, have a large effect on reducing

search costs. The behavior of traders within these markets has also been shown to vary

with their location (Ladley and Bullock, 2008). Importantly, this is not just dependent

on their trading opportunities but also on their information linkages (Ladley and Bullock,

2007). Babus and Kondor (2012) considers how information diffuses across OTC markets

showing that with private valuations the information efficiency of prices is maximized

when all traders trade with all others. Information linkages may also be external to the

market. Panchenko et al. (2010) examine this issue explicitly. They extend the model

of Brock and Hommes (1998) to allow traders to adopt one of two strategies based on

the choices and performance of a trader’s social network. By basing this adoption on a

network of connections the stability of the system is changed.2

As described above, and in a similar manner to Panchenko et al. (2010), we ground

our work in the literature of market dynamics under heterogeneous beliefs. The dynamics

of centralized exchanges with chartist and fundamentalist traders have been considered

in detail.3 Chiarella (1992) presents one of the first versions of this type of model in

which the interaction of these two types of speculative traders leads to a range of market

dynamics. This class of models has been employed to answer a range of questions relating

to market structure. For example: Westerhoff (2004) uses a chartist/fundamentalist

model to examine trade in multiple markets. Anufriev and Panchenko (2009) contrast

centralized and order book market mechanisms. Lux (1995) examines the effect of herding

behavior whilst Chiarella et al. (2009b) examine the dynamics of boundedly rational

traders within an order book market. Diks and Dindo (2008) investigate information

costs, whilst Westerhoff (2003) looks at the role of transaction taxes. Here we extend this

line of reasoning to examine the dynamic stability of OTC markets.

2A separate area of the literature examines OTC markets through search based models - see for
example Duffie et al. (2005, 2009); Lagos and Rocheteau (2009).

3See Hommes (2006) and Chiarella et al. (2009a) for summaries.
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3 Model

We analyze a model in which boundedly rational chartist and fundamentalist investors

trade an asset in an OTC market. The majority of previous work using these types

of traders has considered a single centralized exchange in which all traders are able to

interact. Consequently trading opportunities and information are unconstrained and flow

freely across the market. Here we consider OTC markets where this is no longer the

case. We model a market architecture in which traders may only interact with a subset

of individuals, their trading contacts. Each trader may only buy or sell the asset with

these contacts whilst their estimation of the future asset price is based on the prices of

their recent transactions. As such, different traders within the market may have access to

different trading opportunities and information sets and so may have differing valuations.

The underlying behavior of the traders in this model is based on those of Chiarella

(1992). There are, however, several key difference which we discuss below.4 The Chiarella

model captured the behavior of boundedly rational speculative traders, in a relatively

simple setting. This makes it an appropriate base on which to consider the potentially

complex effect of the OTC network structure on market dynamics and speculative trade.

Other models have included factors such as wealth constraints or strategy switching which

could have interesting and important effects. We leave these additions to future work and

focus here on understanding the effect of the the key element of the OTC market: the

structure.

3.1 Markets and Prices

We represent an OTC market architecture as an undirected graph where traders are nodes

and trading connections are edges. There are N traders in the market where L is the

connection matrix. We denote by L(i, j) the potential connection between trader i and

trader j with L(i, j) = 1 if they are connected and L(i, j) = 0 if they are not. For

all traders L(i, i) = 0. Traders may only interact with those individuals to whom they

are directly connected on the network. Here, we restrict our analysis to networks which

4For reference, a description of the Chiarella (1992) model is included in Appendix A.
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consist of a single component, i.e. there exists a path between all pairs of traders in the

market. Whilst an individual trader’s direct interactions are limited, through its indirect

connections (neighbors of neighbors etc.) a trader may affect the entire market. Dis-

jointed networks are excluded as without connections separate components would behave

independently.

To capture the nature of interactions in OTC markets we model traders as acting

asynchronously. In a centralized exchange the presence of a single auctioneer, or order

book, provides some degree of coordination by spreading information to all traders si-

multaneously. In an OTC market, however, there is no equivalent. Traders are only

connected to a subset of other institutions and so will not receive all information. As a

result, without a central coordinating device, it is natural to think of participants acting

asynchronously. The model, therefore, proceeds as a series of discrete time steps, in each

of which a single trader is selected at random with uniform probability to act.

A second key difference between centralized exchange and OTC markets is the mech-

anism of trade. In a centralized exchange all trade occurs through a single mechanism

giving all traders access to the same trading opportunities and prices. In contrast, in OTC

markets trade occurs directly between pairs of traders. As a result there is not a unique

price at which all exchange occurs. Rather, prices vary across the market depending on

the valuations and demands of the traders in a particular neighborhood. In the Chiarella

model a price was determined for all traders by the market maker who updated the price

based on excess demand. In this model we depart from the notion of a centralized price,

and the associated market maker adjusting prices, and instead define trader i’s local price

at time t to be P t
i .

Given the local nature of trades and information, a trader’s estimate of their local

price is based on information gained from the trades in which they have participated. We

model this estimate as the volume weighted average price (VWAP): the total value of all

trades the trader has participated in since the last time they were chosen, divided by the

total quantity traded. This value is frequently used in practice in real financial markets as

an estimate of the current price based on recent trades. For a trader who has participated

7



in K trades since they were last chosen, VWAP is:

P t
i =

∑K
k=1

pk|qk|
∑K

k=1
|qk|

(1)

where pk and qk are the price and quantity of trade k. If there are no trades during the

period the trader maintains the previous valuation. It is important to note this is the

traders estimate of the local price. It is not a price at which the trader can necessarily

trade, unlike that defined by the market maker in the Chiarella model. Details of how

trade prices are determined are given below.

3.2 Traders

As in Chiarella (1992) the market is composed of two varieties of trader chartists and

fundamentalists. The type of each of the N traders is determined at the start of the

simulation and remains fixed throughout.

Fundamentalists believe that the asset price will return to the fundamental value.

Fundamentalist trader i values the asset at the fundamental value V t
i = W and their

demand for the asset is proportional to the difference between the asset’s fundamental

value and the trade price, p:

Di(p) = a(W − p) (2)

where the constant a determines how strongly the traders demand is driven by the differ-

ence between the price and the fundamental asset value, W (note we write this demand

function in terms of W , to match Chiarella’s notation, however, W could be replaced by

V t
i ). Like Chiarella, we assume this is common to all traders.5 Fundamentalist demand

therefore increase in magnitude as the price moves away from the fundamental.

Chartist traders do not have access to, or do not choose to use, the asset’s fundamental

value. Rather trader i’s prediction of the future price is based on a simple linear assessment

5In reality this may not be the case, fundamentalist in different parts of the market could disagree on
the assets true value. We leave this extension to future work.
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of the trend in the local price, ψt
i

ψt
i = ψtl

i + c(P t
i − P tl

i − ψtl
i ) (3)

Traders only update their estimates of the price and trend when they are chosen to act.

Time t is the current time, whilst tl was the previous time the trader was chosen. The

trend is calculated by an exponentially weighted moving average where the constant c

expresses how quickly the chartist’s assessment of the current trend is driven by recent

price changes. Based on this at time t, chartist i’s valuation of the asset, V t
i is the current

local price plus the trend:

V t
i = P t

i + ψt
i (4)

The chartist demand function is then given by the difference between this price and the

trade price:

Di(p) = h(V t
i − p− g), (5)

where g is the return on a riskless asset (like Chiarella (1992) the trade of this asset is

not modeled) and h is defined as:

h(x) =
(

1

1 + e−4bx
− 0.5

)

(6)

h increases monotonically, has a single point of inflection and well defined lower and

upper bounds limx→±∞ h(x) = ±0.5. Moreover h(0) = 0. The steepness of the sigmoid is

parametrized with b where b > 0.6

Chiarella explains this function in terms of chartists wishing to maximize their inter

temporal utility of consumption. Traders have the choice of allocating their wealth be-

tween the risky and riskless asset. In line with Merton (1971) demand is proportional to

the difference in returns. In this case between the return the trader will gain on trading at

a particular price based on their prediction and the return on the riskless asset. If g > 0

and the trade price is only a little below the traders valuation i.e. V t
i −p < g the predicted

6Other functions with similar properties were tested and produced qualitatively similar results.
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return on the risky asset is sufficiently low that the trader would prefer to short the risky

asset and go long in the riskless asset. As the trade price increases the size of the short

position increases, whilst if the trade price decreases the trader may take a long position.

This demand, however, is bounded above and below by non-modeled constraints such as

available wealth or maximum permissible risk level.

3.3 Trades

Once the chosen trader has established their valuation they trade with each of their

trading contacts in turn.7 Transactions occur directly between pairs of traders and each

transaction is independent of all others. Each trader (i and j) has an estimated valuation

of the asset (Vi and Vj) and a demand function (Di(p) and Dj(p)), which gives the trader’s

demand at price p relative to their valuation. The form of these demand functions is

given above, both are monotonic in the price p and give positive demands when the price

is below the trader’s valuation and negative demands when the price is above. Since

both functions are monotonic, for any pair of valuations there exists a price such that

Di(p) + Dj(p) = 0. At this price the quantity traded is q = Di(p) = Dj(p). This is an

equilibrium price at which demand and supply (negative values of the demand function for

the trader with higher valuation) are equal. The trader with higher valuation sells to the

one with lower valuation. It is also the price at which the total expected profit, summed

over the two traders, and calculated from each trader’s price expectation, is maximized.

As such, at any other price-quantity pair both traders could increase their expected profits

by making a second simultaneous trade for additional units at the equilibrium price. We,

therefore, set the quantity traded as the equilibrium quantity. We abstract from the

details of the bilateral negotiation and assume this volume is traded at the equilibrium

price. In a real OTC market traders could trade multiple units at different prices based

on their preferences and bargaining power. Modeling this process, however, would require

further assumptions regarding individual preferences which would complicate this model

7Like Chiarella (1992) this model does not consider wealth or net positions. In the context of traders
who can offset positive and negative positions with different partners this is a complex strategic decision.
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and move it away from the underlying Chiarella model.8

In each time step the model proceeds as follows: 1) A single trader is selected at

random. 2) The chosen trader estimates the local price using Equation 1. 3) The chosen

trader forms their valuation of the asset V t
i . For fundamentalist this is the fundamental

value, for chartists this is given by Equation 3. 4) The chosen trader trades with each

of their contacts in turn. The price and quantity of each trade are determined by the

intersection of the demand functions of the traders involved (Equations 2 and 5, as ap-

propriate). It is important to note no other traders update their valuations in a given

step except for the chosen trader.

4 Results

The model set out above is considered under a range of experimental settings. The effect

of connectivity (the number of links between traders), the configuration (the pattern of

the connections), the composition (the distribution of types of traders in the market) and

volatility in the underlying fundamental price and riskless asset return are all examined.

Statistics are collected between steps 10000 and 30000, giving time for the model dynamics

to settle down and avoiding initialization effects. In all cases, unless otherwise stated, the

fundamental value W = 0 and the return on the riskless asset g = 0. In all simulations

there are 100 traders in the market and each trader starts with the same estimate of the

asset price, P 0

i = 0.05.9

4.1 Market Behavior

In order to understand the behavior of the model we first focus on two examples which

demonstrate the possible dynamics. In each case each trader in the market is a chartist

or fundamentalist with equal probability. In Figure 1 we plot the price paths of two

simulations. In all cases the parameters are a = 1.0, b = 4.0 and c = 1.0 and the market

is an Erdős-Rényi random graph (see Appendix B for details of the construction of these

8Other ways of determining the trade price were tested but had little qualitative effect on the results.
9This has little qualitative effect on the long term dynamics presented below.
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Figure 1: Figures (a)-(c) show data from the same simulation. Figure (a) shows the average of
the asset values of all traders. Figure (b) the average asset value in black whilst all other lines
are individual valuations. Figure (c) shows the average asset value (dashed line) and the trade
price at each point in time (solid line). Figure (d) shows the average of the local valuations for
all traders for a separate simulation. In all cases a = 1.0, b = 4.0 and c = 1.0. Both networks are
Erdős-Rényi random graphs with 100 nodes. For Figures (a)-(c) the probability of connection
is 0.1 whilst for Figure (d) it is 0.6.

graphs). In Figures 1a-1c the probability of any pair of traders being connected is 0.1

whilst in Figure 1d it is 0.6.

Figure 1a shows the average of all traders asset values between periods 10,000 and

30,000. A cyclical dynamic is clearly present. There is some variation at the peaks and

troughs of the cycles but generally the cycles appear smooth. This cyclical pattern is

driven by the interaction of the two trader types. Fundamentalist traders wish to buy

the asset for prices lower than the fundamental and sell if for prices above. As such their

demand encourages the price to move back towards the fundamental. If chartist demand

is strong enough, the trend, resulting from a reversion initiated by fundamentalist may
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overshoot the fundamental and result in a further mispricing. As this new mispricing

increases, fundamentalist demand also increases resulting in a higher proportion of trade

at prices closer to the equilibrium price and so local price estimates which are closer to

the fundamental. This in turn reduces the size of price changes and reduces the trend

until it reverses and the process starts again. If chartist demand is strong enough this

cycle may perpetuate, however, if it is not the fundamentalists may damp the swings

caused by the chartists, reducing their size, and eventually resulting in a steady state (see

Figure 1d). The cyclical dynamics may be related to the bubbles and crashes frequently

seen in financial market. Individuals join trends, creating bubbles and overpricing until

a point at which the asset is sufficiently overvalued that the trend reverses and a crash

occurs. This may then result in a period of under pricing before investors again realize

this and reverse the trend.

These cycles occur in a setting where not every trader is connected to every other.

One of the results of this is the uneven peaks to the cycles. Connections in the market

maintain a degree of synchronization, however, different parts of the market may change

price at different speeds. The gradual reaction of traders may be seen in Figure 1b.

The individual asset values generally follow the trend, however, they frequently depart,

increasing when others are decreasing and vice versa. This is driven by the network.

When there is a reversal in trend most chartists will identify this through the changes in

the demands of their neighbors. The incomplete structure, however, means that chartist

traders may occasionally be out of step with others in the market, predicting increases

when all others are predicting the reverse. Similarly some chartists will be connected to

relatively greater numbers of fundamentalists and so experience a greater demand for the

asset towards the equilibrium price. These deviations in valuations create volatility in

prices as observed in Figure 1c.10 This figure shows that whilst the average valuation

appears smooth the trade price is much more volatile due to traders differing in their

valuations of the asset. Chartists differ from fundamentalists and chartists with different

neighbors and trade histories differ between themselves.

10Note, in this example, the trade prices tend to be further from the equilibrium than the average
valuation because chartists have steeper demand than fundamentalists (b > a).
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Figure 1d shows a separate case where the model converges to a steady state at

the fundamental price. In this case the market is better connected and the time series

starts earlier as the model converges prior to the results collection window. The figure

shows that the average price exhibits a decreasing series of cycles. Individual valuations

(not shown) follow a similar pattern. The higher degree of connectivity means that

fundamentalist traders are able to damp the trends created by the chartists traders early

in their development, ensuring that the market converges to the steady state at the

fundamental value. When connectivity is lower fundamentalists are unable to do this -

instead chartists can build up local trends which spread through the market leading to a

divergence in trade prices and non-steady state dynamics.

In this paper we focus on the dynamics of trade prices as these are representative of

the opportunities available to traders within the market. The average valuation, whilst

illustrative, is not a price at which any trader is necessarily able to trade. In the remainder

of this paper we associate the type of volatility seen in Figure 1c with market instability

and the steady state at the fundamental price, as seen at the end of the period in Figure 1d,

with stability. Volatile trade prices indicate that the market has not converged to the

equilibrium valuation whereas a constant trade price indicates the opposite. It should be

noted that in nearly all cases the steady state is the equilibrium price, the only exception

is the extreme market composition consisting of no fundamental traders - in which case

no trade occurs and trader valuations are never updated.

The dynamics of the average price were investigated. For the parameter regions con-

sidered in this paper we did not observe patterns in the average price which appeared

chaotic. These patterns were only observed when c > 2, however, c is a moving aver-

age parameter and so is not economically meaningful in this range. This lack of chaotic

behavior may at first appear strange to those used to models of chartists and fundamen-

talist. The trade price, however, should be the main focus. Empirical financial data and

models of this type are principally concerned with the market price at which trade occurs

rather than average valuations. Examination of trade prices in this model is therefore

more natural and the volatile nature of this is in line with real world data. The smooth
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pattern in average valuation is not readily comparable to market data.

4.2 Connectivity

Each trader within the market is connected to a number of trading contacts. As this

number increases the trader may enter more trades, gaining a better picture of local trends.

If every trader is connected to every other, the market essentially becomes a centralized

exchange in which all participants have access to the same opportunities. Several papers,

particularly in the inter-bank market literature, have considered the effect of connectivity

e.g. Gai and Kapadia (2010) and Ladley (2013). These papers have shown how the

collapse of one participant may spread through the network of credit linkages and affect

the remainder of the market. A potentially significant question, which has received little

attention, however, is how the connectivity of markets affects the dynamics of prices. It

is this issue we address here.

We consider markets based on Erdős-Rényi random graphs with connectivities in the

range 0.05 to 1.0. For each connectivity 1000 random networks are generated (see Ap-

pendix B for details) and 100 repetitions of the simulation for each network are run.

Multiple repetitions are important because there is path dependence. Due to the net-

work structure, the order in which traders are selected may influence the market dynam-

ics. Markets consist of 50 chartists and 50 fundamentalists. Any network consisting of

more than a single component is rejected and regenerated. We initially present a single

parametrization of the model (a = 1.0, b = 4.0, c = 0.7). These values exhibit diverse

dynamics, however, for a large range of other parameter combinations the behavior is

qualitatively similar. In Section 4.3 we examine the sensitivity of the model to these

parameters.

In this section we are principally interested in the number of runs which arrive at

stable, steady state dynamics vs. the number that do not. In analyzing the simulations

we use a simple test to identify those runs which achieve a steady state. Steady state

dynamics are defined as those in which the sum of squared price changes is less than
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10−6.11 In later sections we go on to investigate how the market structure affects other

quantities of interest such as volatility and price deviations from the fundamental value.
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Figure 2: Graph showing the percentage of runs exhibiting steady state dynamics for parameters
a = 1.0, b = 4.0 and c = 0.7 and for varying levels of connectivity within Erdős-Rényi markets.
Each data point is calculated over 100 repetitions for each of 1000 networks (100,000 simulations
for each point). Max (Non-)Steady is the largest number of runs for any one of the 1000 markets
which exhibit (non-)steady state dynamics.

Figure 2 shows the percentage of runs which exhibit stable dynamics for different levels

of market connectivity. There is a clear pattern: as markets become more connected their

dynamics change. They exhibit more stable behavior. Increased connectivity means that

traders have more trading partners. As such chartists will tend to be more synchronized

in their trends and fundamentalists will have more opportunity to bring deviations back

towards the fundamental. As a result, divergences are rare and the prices of traders across

the market will tend to converge. In less connected markets traders will have less partners

in common, producing more varied valuations and more divergence in trade prices. The

11This value was chosen based on empirical observation. There is, however, a wide difference in this
measure between those runs achieving a steady state, which often exhibit values close to 10−12 and those
which do not, which often have values of 10−1 or higher. This measure was chosen for it’s similarity,
however, there are many alternative measures based on aspects, such as price dispersion, volatility etc.,
which give qualitatively similar result.
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sparser connectivity will mean that in some areas of the market fundamentalist traders

will be a relative minority, and so prices away from the fundamental will be corrected

more slowly allowing cycles to develop.

The results, however, are not as simple as the average implies. Figure 2 also presents

the maximum percentage of steady states observed for a single market at each connectivity.

These results show that, whilst poorly connected markets exhibit steady states rarely on

average, this can vary a lot between market structures. For instance with connectivity

equal to 0.15 only 19% of the total observations are stable, however, in one case a market

exhibited steady state behavior 100% of the time. A similar story may be told for better

connected markets. With connectivity equal to 0.3 on average 6% of the runs are non-

steady state, however, one case exhibits non-steady state dynamics on 65% of occasions.

Whilst connectivity has a large effect on stability, the configuration of connections also

plays a role. The exact set of links between traders may allow information and trade to

flow freely and for fundamentalist traders to damp fluctuations. Alternatively they may

allow groups of chartist traders to deviate from the market and create disagreements in

prices. The next section will consider the importance of the configuration of connections.12

4.3 Configuration

The previous section showed that whilst connectivity is important in determining market

dynamics the configuration of the market also plays an important role. This finding sup-

ports previous work in this area. Both Ladley and Bullock (2008) and Wilhite (2001) find

that small world type connections can reduce search costs and make the price formation

process quicker, whilst Georg (2013) finds that the configuration of an inter-bank mar-

ket, not just the connectivity, is important in determining the susceptibility to systemic

shocks.

In this section, we investigate the role of the market configuration on price stability.

12An individual traders connectivity also effects how they may trade - better connected traders have
access to a larger fraction of the market. Due to the cyclicality of the price dynamics and the zero sum
nature of trade in this model all traders wealth’s have periods of being both positive and negative. This
means that whilst better connected traders trade more and so have more variable wealths, individual
connectivity has no effect on the average.

17



We consider seven fixed market architectures with similar numbers of connections (with

one exception) but qualitatively different patterns of connections in order to identify

aspects of market structure, other than connectivity, that affect the dynamics of prices.

The type of each trader, chartist or fundamentalist, is determined at random with the

probability of them being a chartist Pc = 0.5. The parameters are a = 1.0, b = 4.0 and c

in the range 0.1...1.0. For each parameter combination we perform 100,000 repetitions of

the model.

The first network structure we consider is completely connected - all traders are con-

nected to all others. The second market architecture, core-periphery, has a completely

connected core, comprising a fraction of the traders. The remainder of the traders form

the periphery and are weakly connected to the traders in the core. The next two markets

have random patterns of connections. The first is a Erdős-Rényi random graph whilst

the second is based on a scale free network. This means the structure is random but

the degree distribution, the distribution of node connectivity’s, follows a power law. The

fifth network structure is a torus in which each trader’s configuration of connections is

the same: each has the same number of partners connected in the same manner result-

ing in a homogeneous market structure. The final two structures relax the assumption

of homogeneity. The sixth market exhibits local connectivity, in this case groups of ten

traders form completely connected cliques. Each of these sub-markets, however, is only

weakly connected to the other groups. As a result sub-markets are homogeneous but the

market structure as a whole is not. The final structure introduces additional ‘small world’

connections between sub-markets. These connections allow trade between groups which

would otherwise have been separated by a large number of links. Details of how these

networks are constructed are provided in Appendix B.

We first consider the effect of configuration on the probability of steady state dynamics

and then present the effect on volatility and the difference between the market price

and fundamental. Table 1 shows the percentage of runs which achieve steady states for

different market configurations and values of c. In all cases, when c is low the market

is stable. Chartists are relatively unresponsive to recent price changes and so regardless
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Core Erdős Scale Small
Complete Periphery Rényi Free Torus Local World

Connections 4950 505 495 485 500 480 485
0.1 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.2 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.3 1.000 1.000 1.000 1.000 0.965 0.999 1.000
0.4 1.000 1.000 0.996 1.000 0.824 0.991 0.979
0.5 1.000 0.981 0.878 1.000 0.506 0.968 0.924
0.6 0.995 0.889 0.437 0.977 0.216 0.925 0.850
0.7 0.921 0.651 0.115 0.793 0.064 0.859 0.766
0.8 0.638 0.361 0.015 0.433 0.010 0.774 0.673
0.9 0.275 0.154 0.002 0.152 0.001 0.673 0.572
1.0 0.070 0.046 0.001 0.033 0.000 0.555 0.459

Table 1: Fraction of runs showing steady state dynamics for different market structures and
values of c. Results calculated over 100 repetitions for each of 1000 instantiations of each
market type. In all cases Pc = 0.5, a = 1.0 and b = 4.0. The number of connections in each
market are also shown.

Core Erdős Scale Small
C Complete Periphery Rényi Free Torus Local World
0.1 - - - - - - -

- - - - - - -
0.2 - - - - - - -

- - - - - - -
0.3 - - - - 0.001 0.000 -

- - - - (0.006) (0.000) -
0.4 - - 0.000 - 0.008 0.000 0.000

- - (0.001) - (0.025) (0.000) (0.004)
0.5 - 0.000 0.004 - 0.029 0.000 0.003

- (0.003) (0.014) - (0.049) (0.001) (0.017)
0.6 0.000 0.004 0.032 0.000 0.069 0.001 0.007

(0.001) (0.018) (0.053) (0.003) (0.070) (0.003) (0.029)
0.7 0.002 0.018 0.099 0.006 0.117 0.001 0.012

(0.010) (0.046) (0.081) (0.020) (0.094) (0.006) (0.039)
0.8 0.014 0.049 0.168 0.032 0.175 0.002 0.017

(0.034) (0.073) (0.078) (0.050) (0.413) (0.009) (0.047)
0.9 0.051 0.093 0.215 0.082 0.314 0.004 0.023

(0.062) (0.089) (0.063) (0.073) (2.504) (0.013) (0.054)
1.0 0.105 0.138 0.245 0.137 2.553 0.007 0.030

(0.075) (0.090) (0.053) (0.075) (68.449) (0.018) (0.061)

Table 2: Absolute difference between trade price and fundamental value for different market
structures and values of c. Standard deviations in parentheses. Results calculated for those runs
not exhibiting steady state dynamics from 100 repetitions for each of 1000 instantiations of each
market type. In all cases Pc = 0.5, a = 1.0 and b = 4.0.
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Core Erdős Scale Small
C Complete Periphery Rényi Free Torus Local World
0.10 - - - - - - -

- - - - - - -
0.20 - - - - - - -

- - - - - - -
0.30 - - - - 0.002 0.000 -

- - - - (0.011) (0.000) -
0.40 - - 0.000 - 0.013 0.000 0.001

- - (0.001) - (0.042) (0.002) (0.007)
0.50 - 0.000 0.004 - 0.045 0.001 0.005

- (0.003) (0.016) - (0.074) (0.005) (0.025)
0.60 0.000 0.005 0.036 0.000 0.099 0.002 0.012

(0.001) (0.023) (0.059) (0.004) (0.104) (0.010) (0.042)
0.70 0.002 0.023 0.112 0.007 0.162 0.004 0.020

(0.011) (0.057) (0.090) (0.022) (0.178) (0.016) (0.057)
0.80 0.016 0.063 0.188 0.036 0.281 0.007 0.030

(0.037) (0.091) (0.085) (0.055) (1.910) (0.024) (0.070)
0.90 0.056 0.121 0.240 0.092 0.874 0.012 0.041

(0.068) (0.112) (0.069) (0.081) (13.608) (0.032) (0.083)
1.00 0.115 0.179 0.271 0.149 3.161 0.022 0.058

(0.141) (0.213) (0.278) (0.170) (154.772) (0.051) (0.114)

Table 3: Volatility of trade price for different market structures and values of c. Standard
deviations in parentheses. Results calculated for those runs not exhibiting steady state dynamics
from 100 repetitions for each of 1000 instantiations of each market type . In all cases Pc = 0.5,
a = 1.0 and b = 4.0.

of the market structure there are no trends established. As c increases, chartists become

more sensitive leading to potential deviations. The size of the deviations also increase.

Tables 2 and 3 show the average distance of trade prices from the fundamental and

the volatility in trade prices conditional on non-stable dynamics. As traders react more

strongly to trends, this causes larger deviations from the fundamental and greater price

volatility. The configuration, however, has a strong effect on the pattern.

The core-periphery market may be viewed as a completely connected network with

additional periphery nodes attached. The effect of these traders are to make the market

less stable in comparison to the completely connected market. The periphery nodes only

have a single connection to the core, limiting the signals they receive. As a result their

prices may become disconnected from the rest of the market and result in them providing

a destabilizing influence. These nodes also increase the size of deviations even after
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controlling for the lower number of stable markets (Table 2 and 3). In comparison to

the Erdős-Rényi network with the same number of connection the core-periphery market

is more stable. The completely connected center reduces price divergences and allows a

greater proportion of steady state dynamics.

Both the Erdős-Rényi and scale free networks exhibit steady state dynamics less fre-

quently than the completely connected market. These markets also show higher volatility

and price deviations from the fundamental. Unlike the the completely connected mar-

ket some traders are not directly connected and are therefore able to trade at different

prices leading to more volatility in trade prices and more frequent deviations from the

fundamental. There is, however, a significant difference between the two network types,

the scale free market shows stable dynamics more frequently and lower volatility than the

Erdős-Rényi network. This difference is driven by differences in the degree distribution of

the two networks. The scale free network is characterized by a greater number of hubs -

high connectivity nodes - relative to the Erdős-Rényi network. The hub traders connect

to large numbers of individuals across the market. As a result they provide a coordinating

influence, bringing the valuations of different traders together towards the fundamental

making them more stable and only slightly more volatile than a centralized market.

Whilst possessing approximately the same number of connections as both random

networks, the torus network exhibits much higher volatility and steady state behavior less

frequently than either of them. Unlike the random networks the structure of the torus

is homogeneous and connections are local in the sense that the distance between pairs

of nodes on opposite sides of the torus is very long. This structure means that there

can be substantial deviations in valuation in different areas of the market. With traders

trading in random order this produces much higher volatility than any other structure.

As a result for relatively low values of c, the market does not achieve a steady state. The

lack of ‘long range’ connections means that traders are unable to synchronize and bring

the market price back to the fundamental or even coordinate on a single price.

The locally connected market is characterized by small groups of heavily connected

traders with few connections between them. Whilst this is similar to the torus network,
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in the sense that there are relatively long distances between traders, the results are very

different. The locally connected market is more stable and much less volatile. Relative

to the completely connected market, the locally connected market exhibits a reduction in

stability for low values of c but an increase for high values. The statistics for volatility

and price deviations give an indication as to why this occurs. These values are much

lower than any other market, suggesting that relatively few traders trade away from the

fundamental value even during non-steady state dynamics. At any given time most of

the groups are in, or very near, the steady state. Deviations may occur in some areas

of the market and not spread beyond a single group. Some segments may be less stable

than others - perhaps containing a higher fraction of chartist traders. As a result of

this heterogeneity an individual section may deviate from the fundamental more easily

at lower values of c making the whole market more prone to non-steady state behavior.

For higher c, however, this relative effect is reversed. Whilst local groups are increasingly

prone to non-steady state behavior the limited connections mean that fluctuations are

often not spread throughout the market, whereas in a completely connected network they

would be. Relative to completely connected markets, cycles in locally connected markets

may be damped or eliminated more easily.

The addition of small world connections to the locally connected market has an am-

biguous effect. They provide a small increase in stability for most values of c but a large

reduction for high c. For low c the small world connections reduce the scope of mispric-

ings by providing additional connections to other groups, who, assuming they are also

not away from the steady state, provide a small damping effect. When chartists are more

sensitive to price changes, rather than enhancing the flow of information and therefore

price stability, the cross linkages instead let destabilizing prices changes spread more eas-

ily. The aspect of the structure which meant that the locally connected market was more

stable than the completely connected market is weakened. This result is in contrast to

that of Georg (2013) who finds that small world markets are more stable than random

networks. Similarly Ladley and Bullock (2007, 2008) observe that small world connections

stabilize the market allowing information to flow more quickly and so leading to faster
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price discovery. In this previous work traders had pricing rules which did not permit trend

following, instead traders learned the asset price based on local information. In this paper

the ability of traders to respond to local patterns means that rather than stabilizing the

market, the cross connections can propagate mispricings. In all cases volatility and price

deviations increase, indicating that whilst the links may spread or damp price deviations

the added connections involve more traders in this process resulting in more trades away

from the steady state.

4.4 Composition

In earlier sections all markets had, on average, equal numbers of each type of trader,

in reality, however, this will frequently not be the case. There may be some markets

which are dominated by fundamental traders, whilst others may have higher proportions

of chartist traders. There may also be variation over time as traders switch strategies,

e.g. Panchenko et al. (2010) or move between asset markets, e.g. Westerhoff (2004).

The probability of a trader being a chartist, Pc, is varied in the range 0 to 1. Connec-

tivity is varied between 0.05 and 1.0. For each connectivity level and composition, 1000

random Erdős-Rényi networks are generated. In each case 100 repetitions are performed

and the aggregate statistics reported. As before, the parameters are a = 1.0, b = 4.0 and

c = 1.0.

The effect of market composition is shown in Figure 3. More chartists traders generally

lead to less frequent steady state behavior. In markets with large numbers of fundamen-

talists, there is greater pressure to move the asset price back towards the fundamental

value producing, for large parameter ranges, a fixed price. This effect combines with mar-

ket connectivity such that even relatively highly connected markets with high numbers of

chartists exhibit non stable dynamics. For the market composed solely of chartists there

are no individuals able to identify the initial mispricings of the asset and so no price trend

develops resulting in a steady state being maintained.

Figure 4 demonstrates the effect of trader behavior by varying the three parameters

a, b and c for a range of markets architectures. For brevity we restrict out presentation
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Figure 3: Fraction of simulations which result in a steady state dynamic (white indicates 100%,
black 0%) for different values of connectivity and population composition Pc. In all cases a = 1.0,
b = 4.0 and c = 1.0.

here to three architectures: completely connected, Erdős-Rényi and locally connected.13

Each graph shows the percentage of runs for each parameter combination which result in

the steady state and the region in which the Chiarella model would exhibit steady state

behavior (those parameters for which 1

c
> b−1

a
). In all cases for low c non-steady state

dynamics are restricted to parameter combinations with low fundamental demand and

high chartist demand, i.e. when chartists only weakly follow trends, prices only deviate

from the fundamental if chartists have very strong demand (to push the weak trends)

and fundamentalists have weak demand (so they are unable to damp the trends). As

chartists react more strongly to trends (c increases) the non-stable region also increases

in size such that this dynamic is observed for lower levels of chartist demand and higher

levels of fundamentalist demand.

The completely connected market demonstrates the sharpest dynamics - a greater

13The patterns for the other markets are qualitatively similar and are available upon request.
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(d) Erdős Rényi c = 0.1
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(e) Erdős Rényi c = 0.5
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(f) Erdős Rényi c = 1.0
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(g) Local c = 0.1
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(h) Local c = 0.5
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Figure 4: Each graph shows the fraction of simulations which result in a steady state dynamic
(white indicates 100%, black 0%) for different values of a and b. Figures show the statistics for
different values of c and different network structures. Grey line indicates the boundary of the
region (below and to the right) of stability under the Chiarella model.

fraction of the parameter combinations exhibit either all or no steady state behavior and

very few exhibit both. This is because the greatest source of variation, the configuration

of links, is identical across runs. The Erdős-Rényi network exhibits a much larger region

of gray cells. The exact combination of random links effect the stability resulting in a

less precise, but larger, area in which both stable and non-stable dynamics are seen for

particular parameter combinations. The locally connected model is most sensitive to

changes in c, showing the largest area of steady state dynamics for low c and the smallest

area for high c. This indicates the significance of the local groups - if the strength of

trend following is weak even if there is a divergence from the equilibrium in one area, it
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is unlikely to spread and may eventually be damped. If, however, c is high and trends

are able to develop, the local structure has the opposite effect reducing the ability of the

market to synchronize and damp prices.

The stable regions have similar shapes to those demonstrated in the Chiarella (1992)

model. The degree of correspondence is relatively high. Only for low a and b and high

c are non-stable dynamics observed for parameter combinations which would result in a

steady state in the Chiarella model. For high a and b, steady state dynamics are observed

in some cases when a steady state would not be found in the Chiarella model.
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Figure 5: Each graph shows the amplitude of cycles for different market structures, along with
the value for the Chiarella model. Figures show the statistics for different values of a and b. All
results averaged over those runs of 100,000 simulations not resulting in steady state dynamics.
Amplitude of zero indicates all runs were steady state. Standard deviations in parentheses.

Chiarella (1992) also gives an analytic expression for the amplitude of cycles14, how-

ever, we have shown that the price process in the OTC model is volatile and does not follow

14This expression is presented in Appendix A.

26



a simple cyclic pattern. In contrast the average of local valuations is cyclic and is linked

to the trade prices in that these values are used to construct trader valuations. Given the

different measures, market prices vs. average valuation, a direct quantitative comparison

is not possible, however, an examination of the relative effects of the parameters on the

amplitudes is still insightful.15

We estimate the amplitude as the difference between the maximum and minimum of

the average valuations within each run. The dynamics of the average valuation are suffi-

ciently smooth and regular that this is a reasonable estimate of the amplitude. Figure 5

shows these values for three networks and a range of parameter values along with the

calculated Chiarella model value. In line with the previous results for price volatility

the local network generally has a lower amplitude than the completely connected market

whilst the random network has a higher amplitude. The behavior of the model in re-

sponse to parameters a and c for all networks is in line with the theoretical predictions.

The parameter a leads to a reduction in amplitude as higher fundamentalist demand leads

to damped oscillations. Whilst an increase in the sensitivity to recent trends (increase in

c) leads to an increase in the amplitude. The effect of b is more complex. The numerical

calculations suggest this will have an ambiguous effect, sometimes increasing and some-

times decreasing the amplitude. For the OTC model, however, an increase in b nearly

always increase the size of the amplitude. Greater chartist demand creates stronger trends

and therefore greater oscillations. This difference in the relationships may be due to con-

straints on the derivation of the analytical formula underlying the theoretical predictions.

Chiarella suggests that the amplitude increasing effect may dominate, however, this must

be interpreted with caution.

In addition to the network structure, the OTC model presented here and the original

model of centralized trade differ significantly in the representation of time: asynchronous

discrete updates vs. continuous time. The qualitative similarity in their behavior, both

in terms of the stable region and the response to parameter changes is, therefore, surpris-

ingly close. This suggest that the underlying equations governing trader behavior play

15Furthermore, as Chiarella notes the formula for calculating the amplitude is derived through the
method of averaging and so is only valid for a limited range of parameters.
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a very significant role. Whilst the market structure itself modulates the market dynam-

ics, the traders may be the dominant factor. It is particularly enlightening to compare

the completely connected market with the theoretical predictions in this setting. In the

completely connected OTC market everyone trades with everyone, effectively the market

becomes centralized. Differences in behavior are then principally due to differences in the

representation of time. In general this change makes the markets more stable - exhibiting

steady state dynamics more frequently. This may be understood by realizing that updat-

ing traders one at a time effectively makes the valuation process more gradual which acts

to smooth the overall market dynamics.

4.5 Volatile Fundamentals

Finally, we consider volatility in the underlying fundamental asset value and riskless asset

return. Previously both of these components were assumed to be constant, however, this

is not representative of real financial markets. In this section the fundamental price and

riskless asset return follow random walks. Both variables are updated after each trader is

chosen as follows:

W (t+ 1) = W (t) + σWη
t
W (7)

g(t+ 1) = g(t) + σgη
t
g (8)

where σW and σg control the scale of the volatility of the fundamental value and return

of the riskless asset and ηtW and ηtg are standard normally distributed random variables.

Initially W (0) = 0 and g(0) = 0. As before 100,000 simulations are conducted and the

parameters are a = 1.0, b = 4.0, c = 1.0 and Pc = 0.5.

Table 4 presents results showing the effect of volatility in the riskless asset return and

fundamental value on the volatility of the trade price.16 In all cases, increases in the

volatility of the fundamental results in an increase in the price volatility by at least an

order of magnitude. This may be explained as follows - Traders are on average chosen once

16The effects of the two volatility’s are considered separately for clarity, however, the effects are additive.
Tables of data showing this are available from the authors.
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Asset Riskless Core Erdős Scale Small
Volatility Volatility Complete Periphery Rényi Free Torus Local World
0.000 0.000 0.115 0.179 0.271 0.149 3.161 0.022 0.058

(0.141) (0.213) (0.278) (0.170) (154.8) (0.051) (0.114)
0.001 0.000 0.145 0.200 0.275 0.169 3.206 0.126 0.143

(0.157) (0.223) (0.281) (0.181) (161.1) (0.146) (0.166)
0.002 0.000 0.187 0.234 0.291 0.204 3.163 0.188 0.199

(0.194) (0.250) (0.297) (0.212) (161.5) (0.202) (0.215)
0.000 0.000 0.115 0.179 0.271 0.149 3.161 0.022 0.058

(0.141) (0.213) (0.278) (0.170) (154.8) (0.051) (0.114)
0.000 0.001 0.224 0.236 0.243 0.224 1.859 0.206 0.214

(0.230) (0.243) (0.248) (0.230) (50.4) (0.215) (0.223)
0.000 0.002 0.295 0.304 0.298 0.294 1.746 0.261 0.266

(0.300) (0.310) (0.302) (0.298) (45.8) (0.269) (0.274)

Table 4: Volatility of trade price for different market structures and volatilities of riskless asset
return and fundamental value. Results calculated over 100 repetitions for each of 1000 instan-
tiations of each market type. In all cases Pc = 0.5, a = 1.0, b = 4.0 and c = 1.0.

every 100 time steps. The noise is normally distributed and therefore, to an individual

trader, the change in the underlying asset value between times they are active will scale

with the square root of this time span i.e.
√
100σW . Some markets, however, exhibit much

greater increases. The locally connected markets show the greatest increase in volatility.

This structure was previously shown to damp variations between the weakly connected

regions, however, changes in the fundamental price act to create shocks which effect all

areas, bypassing the weak connections. For instance, an increase in the fundamental

would create positive demand amongst all fundamentalists at the current market price

and therefore an upwards trend. The Erdős-Rényi random graph shows an almost flat

pattern. It should, however, be noted that this is from a very high starting point and

is subject to a very high standard deviation making reliable interpretation of a pattern

difficult.

The magnitude of the effect on price volatility should be an order of magnitude greater

than the volatility in the riskless asset for the same reason as given for the fundamental

volatility. In general this is the case, with some markets such as the locally connected

market exhibiting considerably greater increases. For the Erdős-Rényi and torus net-

works, however, the results are more ambiguous. For the torus network riskless asset

volatility always decreases price volatility whilst for the Erős-Rényi network a large in-
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crease in the riskless asset volatility increases price volatility and a small increase has the

opposite effect. This patterns is due to the presence of the riskless asset return in the

chartists demand functions. Changes in the riskless asset return have a common effect

on the chartist traders. When they increase (decrease) all chartist traders will tend to

decrease (increase) their estimate of the trend. This acts to increase the synchronization

of chartist’s demands and therefore prices across the network - reducing price volatility. A

similar effect is not observed for volatility of the fundamental because fundamentalists all

have the same valuation and are already coordinated. This only has an effect in the torus

and random networks which are relatively decentralized and in which prices diverge the

most (as seen by the high volatility in the base case). Of these the random network has

more coordinated prices and so as the volatility of the riskless asset return increases the

synchronization effect becomes secondary to the increase in underlying volatility resulting

in a general increase in price volatility. The larger dispersion permitted by the regular

structure of the torus network means that higher levels of riskless asset volatility still

coordinate traders.

5 Conclusion

This paper has examined the effect of the structure of OTC markets on the stability and

dynamics of prices. We have considered a model in which heterogeneous investors interact

with a subset of individual in the market and base their strategies on local prices. It was

found that the structure of an OTC market has a strong effect on the price dynamics.

As markets become less heavily connected, and trade is more constrained, the market

becomes less stable. The occurrence of steady states decreases and is instead replaced

by volatile prices. The sparseness of connections means that different traders within the

market may diverge in their estimates of the price and the fundamental traders are unable

to bring the price back to the fundamental.

Connectivity, however, is only part of the story, the configuration of the connections

and the composition of the market also play roles. Small world links were shown to

have an ambiguous effect, in some cases increasing stability whilst in others decreasing
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it. In random networks the presence of hubs leads to lower volatility and more accurate

pricing in scale free networks than the equivalent Erdős-Rényi network. This was further

confirmed in the torus market in which the large distances between some traders results

in the greatest volatility. The composition of the market was also shown to play a role

with greater numbers of chartist traders found to be a destabilizing factor. The OTC

market structures were found to amplify the effect of fundamental and riskless asset

volatility, however, in some cases low levels of riskless asset return volatility were found

to reduce price volatility. Despite the influence of the network structure the behavior

of the model has much in common with the underlying Chiarella (1992) model in terms

of the relationship between parameters and stable behavior. This was particularly true

for completely connected markets - suggesting that highly connected OTC markets may

behave similarly to centralized exchanges. As connections are removed, the relationship

became less clear cut and the exact configuration of connections was found to play a role.

Several aspects of this model invite future extensions. Here we focused on price dy-

namics and ignored aggregate trader positions and partner selection. An extension to

consider these aspects in detail would allow the inclusion of portfolio and leverage effects.

In this setting traders would be constrained in the size of the positions that they could

take based on their wealth. As a result, trader demand, and therefore market dynamics,

would be dependent on recent performance. A further extension would be to consider the

endogenous formation of the network structure. In this paper the network was specified

exogeneously, however, in reality traders may choose their connections. The model could

be extended to incorporate this feature and examine equilibrium network structures, in a

similar manner to Condorelli and Galeotti (2012), under speculative trade.
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A Chiarella’s Model

Chiarella’s (1992) model considers a market populated by two groups of traders - fun-

damentalists and chartists. The asset price P (t) is set by an auctioneer based on excess

demand D(t) as follows:

Ṗ = D(t) (9)

where D(t) is the sum of fundamentalist D0(t) and chartist demand d(t):

D(t) = D0(t) + d(t) (10)

Fundamentalist demand is a linear function of the price difference between the market

and Walrasian equilibrium price (W (t)):

D0(t) = a(W (t)− P (t)) (11)

Where a controls the slope of the demand function. The chartist demand function is

given by:

d(t) = h(ψ(t)− g(t)), (12)

where ψ(t) is the chartist assessment of the current trend in P (t), g(t) is the return on

the riskless asset, and h() is a sigmoid function with the following properties: h increases

monotonically, has a single point of inflection and well defined lower and upper bounds.

Moreover h(0) = 0. The steepness of the sigmoid is parametrized with b(b > 0), indeed

b = h′(−g(t)). Assuming that the trading dynamics occur at a much faster time scale

than changes in the equilibrium priceW , or the return on the safe investment g, the latter

two variables can be assumed to be constant. Chiarella’s model is, therefore, defined by

the following set of differential equations:

Ṗ = a(W − P + h(ψ − g) (13)

ψ̇ = −acP − cψ + ch(ψ − g) + acW (14)
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The steady state of system 14 is given by:

ψ̄ = 0 and P̄ = W + h(−g)/a (15)

The stability of the system can be analyzed in terms of the Jacobian J of system 14,

showing that there is no saddle point behavior, i.e. either a stable equilibrium or a limit

cycle occurs. The condition for equilibrium is:

τ > (b− 1)/a. (16)

Where τ = 1/c. There is, therefore, a clear boundary between equilibrium and limit cycle

behavior that is easily computable. Moreover, the amplitude of the limit cycle can be

calculated analytically from:

Ȧ = A(K(A)− aǫ/2)/τ (17)

where A is the amplitude, ǫ = τ − b−1

a
and

K(A) =
1

2

∫

2π

0

[k′(Asiny)− k′(0)]cos2ydy (18)

where k(x) = h(x− g)− h(−g).

B Network Structures

In all descriptions below networks consist of X vertexes (in this paper X = 100) con-

nected by varying configurations of edges. The network parameters were chosen to give

approximately the same number of edges in different configurations.

B.1 Erdős Rényi Random Graph

Are named after the early work of Erdős and Rényi (1959). The presence of edges in Erdős-

Rényi random graphs is determined by a connectivity parameter. The probability of an
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edge existing between any pair of nodes is equally likely. This relatively simple structure

means that many of the properties of these graphs, such as the degree distribution (the

distribution of node connectivity’s), may be determined analytically for large graphs.

Whilst these networks are rarely found in reality their simplicity has resulted in them

being used in studies in many fields. See Newman (2010) for a detailed discussion of their

properties and variants.

These graphs are constructed as follows. For each pairs of nodes i and j the connecting

edge is added with probability p. We consider a range of values of p.

B.2 Completely Connected

In this case every vertex is connected to every other vertex in the network. This may be

considered a special case of the random graph with p = 1. Every trader in the market is

able to interact with every other.

B.3 Core Periphery

Several systems, including inter bank markets (Becher et al., 2008; van Lelyveld and in t

Veld, 2012), are characterized by a core-periphery or hierarchical structure. In this type of

network a proportion of the nodes form a highly connected core. The remaining periphery

nodes are weakly connected to core but there are few if any connections directly between

the periphery nodes. Markets structured in this way contain a group of traders who

all know of and interact with each other. The remaining traders only have one or two

connections to these central parties.

This network structure consist of a core of m nodes which are completely connected.

Each of the remaining X −m periphery nodes is connected to a single randomly chosen

core node. There are no direct connections between periphery nodes. In this paper we

consider m = 30.
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B.4 Scale Free

In scale free networks the degree distribution, the distribution of the number of nodes each

node is connected to, follows a power law. This means that there are many nodes with

very few connections and a small number of nodes with very large numbers of connections.

There are many real world networks which have this type of structure for instance citation

networks and the world wide web. These networks are also seen in economic systems, for

instance Soramäki et al. (2007) finds that the network of payments on the FedWire Funds

system follows a scale free distribution. They are characterized by generative processes

often based on preferential attachment. This means that individuals are more likely to

connect to other individuals who are already well connected. There has been a great

deal of research in this area both in identifying examples of scale free networks and

understanding the manner in which they come about. For a recent review see Newman

(2010)

To generate scale free networks we use the preferential attachment model of Albert

and Barabsi (2002). The algorithm for generating these networks is given below (as

presented by Barabsi and Albert, 1999) The graph starts with a core of m0 nodes which

are completely connected. Nodes are then added to the network one at a time. When

a node is added m (such that m ≤ m0) connections are made to existing nodes. The

probability of the new node being connected to an existing node i is xi
∑

X

i=1
xi

where xi is

the number of edges connected to vertex i. As such nodes with more connections are

likely to gain further connections. Here we consider m = m0 = 5.

B.5 Ring

The ring is a regular network structure. Whilst not a realistic structure it provides a

useful baseline as a market with low connectivity and high separation between traders.

The network is constructed as follows. Consider the nodes arranged in a circle. Each

trader is connected to the N nodes immediately to the left and N nodes immediately to

the right.
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B.6 Local Structure

This network consists of several groups of nodes. Each group is strongly connected inter-

nally but weakly connected to other groups. We can liken this to a market with several

sub-markets. The majority of traders only trade in one of these submarkets. Those that

trade in more than one tend to trade in submarkets which are close in some dimension.

Formally we consider N groups each containing X/N nodes. The vertexes in each group

form a completely connected graph. These groups are arranged in a circle. Each group is

connected to the adjacent group to the left and right. For each connection M members of

the group are chosen at random and connected to each of M randomly chosen members

of the other group. No node may be chosen to be connected to both adjacent groups. In

this paper we use N = 10 and M = 2.

B.7 Small World

Small world networks have received much attention in the scientific and popular literature.

They typically feature multiple cliques of densely connected nodes which are connected

by a small number of edges. In network theoretic terms this means that in comparison to

random graphs they have relatively high clustering coefficients and a relatively low average

path lengths. These type of properties are found in many systems including science

collaboration networks and power networks (Albert and Barabsi, 2002). It is relatively

easy to extend the example given for local structure to include small world connections

by the addition of a small number of traders willing to trade over long distances in the

separated markets.

There are many algorithms for generating small world networks (e.g. Watts and Stro-

gatz, 1998). In this paper the small world networks are based on the local network

described above. After the local network is constructed S additional edges are added.

For each edge, two disconnected vertexes are randomly selected with uniform probability

and an edge is added between them. In this paper we consider S = 5.
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