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Abstract

The symmetry of single-peaked preferences is a widely used as-
sumption. When the space of alternatives has a meaningful metric,
such restriction is only justi�ed for its analytical convenience. This
paper analyzes how to deal with asymmetric preferences in a tractable
way. First, we introduce two types of asymmetric preferences (shortfall
and excess avoidance), provide su¢ cient conditions for preferences to
be of one type or the other and a coe¢ cient that measures the degree
of asymmetry. Second, we de�ne the family of generalized distance-
metric utility functions that represents any asymmetric preferences
maintaining analytical tractability and we compare it to previous pro-
posals.
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1 Introduction

Models of political economics commonly assume that preferences of voters
and policy-makers are single-peaked with respect to a linear order of the
policy alternatives. In other words, they assume that agents have a single
bliss point and that deviations from it in any direction generate increasing
utility losses. Single-peaked preferences have usually been restricted to be
symmetric about the bliss point. That is to say, utility losses from sym-
metric deviations above and below the peak have been assumed identical.
In fact, endowing agents with quadratic or euclidean preferences over policy
alternatives is the standard assumption in models of political competition,
monetary policy making or in the literature on �scal response to foreign-aid.1

That is not problematic when the space of policy alternatives does not have
a speci�c and meaningful metric. In other cases, for example when the pol-
icy alternatives correspond to levels of spending, taxation or interest rates,
analytical convenience is the only justi�cation for the symmetry assumption.
There are indeed important reasons that call such simpli�cation into ques-

tion in the context of economic policy analysis. On the one hand, it has been
shown that symmetric single-peaked preferences cannot be deduced from a
standard utility-maximization problem with a well-behaved primitive util-
ity function and a linear constraint (Milyo, 2000). On the other hand, an
increasing body of theoretical and empirical literature points towards the
relevance of relaxing the symmetry restriction in a number of research ar-
eas. In the context of monetary policy, Blinder (1997) notes that: "Academic
macroeconomists tend to use quadratic loss functions for reason of mathemat-
ical convenience, without thinking much about their substantive implications.
The assumption is not innocuous, [...] practical central bankers and acad-
emics would bene�t from more serious thinking about the functional form of
the loss function".
This paper o¤ers a formal analysis of asymmetric single-peaked prefer-

ences. We believe that our results will be useful in the analysis of economic
policy-making and, in general, in any setting where the policy space has

1Among the political economy models that consider symmetric preferences: Enelow
and Hinich (1982), Ansolabehere and Snyder (2000), Groseclose (2001), Aragonés and
Palfrey (2002) who analyze the e¤ect of voters preferences on candidates�personal charac-
teristics; Palfrey (1983), Osborne and Slivinsky (1996) who study the the strategic entry
of candidates; Calvert (1985), Bernhardt, Duggan and Squintani (2007) who account for
candidates�uncertainty about the location of the median voter.

2



a speci�c metric and single-peakedness is an adequate modelling assump-
tion. Within the family of single-peaked preferences, we introduce two basic
types of asymmetric preferences: those that show shortfall avoidance and
those displaying excess avoidance.2 We say that preferences exhibit shortfall
avoidance when they favour alternatives above the peak over their symmetric
counterparts; in the opposite case, we say that they show excess avoidance.
Our contribution is double-fold. On the one hand, we provide su¢ cient

conditions for the underlying preferences to show shortfall avoidance or ex-
cess avoidance, and identify others that allow the comparison of degrees of
asymmetry. Interestingly, we �nd that the coe¢ cient of prudence proposed
by Kimball (de�ned by the third derivative divided by the second derivative of
the utility speci�cation) provides a measure of the asymmetry of preferences.
On the other hand, we de�ne a rich family of utility functions, the generalized
distance-metric utility functions, that can not only represent the two basic
types of preference-bias, accommodating any degree of asymmetry, but also
more complex asymmetries.3 Most importantly, our speci�cation inherits
the analytical tractability of the distance-functions, including smoothness,
for which we believe it could be fruitfully exploited in future theoretical and
empirical research. We then compare our proposal to other utility functions
that have been used in the literature to represent asymmetric preferences.
In particular, we consider the linex function proposed by Varian (1974), and
further studied by Zellner (1986), and the piecewise asymmetric function pro-
posed by Waud (1976). We show that, while these proposals are convenient
in that the direction and degree of asymmetry depend on a single parameter,
they are limited with respect to the asymmetries they can represent.
There are a number of research areas where asymmetric preferences have

been found to play critical roles. For example, following Blinder�s suggestion,
Ruge-Murcia (2003) develops a theoretical model of monetary policy-making
which endows the central bank with an asymmetric loss function and �nds
that some important results (such as the linear relation between unemploy-
ment and the average in�ation deviation from the target) do not extend to
the asymmetric case. Moreover, he provides empirical evidence supporting
the existence of a non-symmetric objective function. Along similar lines,
Dolado et al. (2004) show that asymmetric preferences are theoretically im-

2This terminology is adapted from the one introduced by Cukierman and Muscatelli
(2008). These authors refer to in�ation avoidance and recession avoidance preferences.

3For instance, our proposal can capture cases where preferences display excess avoid-
ance in some parts of the policy space and shortfall avoidance in others.
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portant, as they imply the existence of a non-linear monetary policy rule,
and provide empirical evidence of such non-linearities in the US. Exploiting
the same implication of asymmetric preferences, Surico (2007) o¤ers evidence
supporting that the preferences of the Fed were asymmetric with respect to
target values before 1979, when output contractions triggered stronger re-
sponses than output expansions. Surico stated that " [...] potential evidence
of asymmetries in the central bank objective may be interpreted as evidence
of asymmetries in the representative agent�s utility."
Likewise, within the literature on �scal response to foreign-aid, Heller

(1975) and Feeny (2006) highlight the relevance of policymakers�asymmetric
single-peaked preferences over deviations with respect to target spending
or tax revenues. We conclude this brief and non-exhaustive review of the
literature by recalling the work of Waud (1976) who, in a study of economic
policy-making under uncertainty, revealed that the optimal response of the
policy-maker to changes in uncertainty crucially hinges on the symmetry or
asymmetry of preferences.4

The remaining of the paper is organized as follows. The next section
presents the environment and de�nitions. Section 3 studies conditions on
the utility representation that guarantee the emergence of asymmetric single-
peaked preferences and compares preferences in terms of their degrees of
asymmetry. Section 4 proposes the generalized distance-metric utility repre-
sentation. Section 5 analyzes other utility speci�cations. Section 6 concludes.

2 The environment and de�nitions

An agent has preferences de�ned over alternatives in R.5 The space of al-
ternatives we consider has a speci�c and meaningful metric; thus, it is not
possible to alter the spatial location of the alternatives.6 The preference R
of the agent on the set of alternatives is a complete preorder. The set of

4Prospect theory also accounts for asymmetric preferences, though in a di¤erent sense.
Following empirical and experimental evidence, this literature assumes that agents are
more sensitive to losses than to gains with respect to a reference point (Kahneman and
Tversky, 1991; Benartzi and Thaer 1995). In contrast to our analysis, the reference point
is not a maximizer.

5All our results extend to cases where the set of alternatives is a subset of R. See
Appendix.

6See Eguia (2010) for an analysis that endogeneizes the spatial representation of the
set of alternatives.
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complete preorders on the set of alternatives is R.
The strict and indi¤erence preference relations induced by R are denoted

by P and I respectively. Given R 2 R, the peak of R, when it exists, is an
alternative e 2 R strictly preferred to any other alternative. Let e� denote
the peak of R:

De�nition 1 A preference R 2 R satis�es single-peakedness (SP) if there
exists a peak of R; and for all d0; d1 > 0 such that d0 < d1; e�� d0 P e�� d1
and e� + d0 P e� + d1.

The SP property of preferences requires that, at each side of the peak,
alternatives located closer to the peak are preferred to those located further
away from it. The set of complete preorders satisfying SP on the set of
alternatives is denoted by RSP . We refer to a generic element of RSP as a
SP preference.
Every alternative below the peak can be associated to another alternative

above the peak according to the indi¤erence preference relation. In what
follows, we interpret d > 0 as a deviation o¤ the peak. We next de�ne a
function that assigns to every deviation below the peak, a deviation above
the peak according to the indi¤erence preference relation.

De�nition 2 The preference-bias function � : R+ ! R+ associated to R 2
RSP assigns to every deviation d, the corresponding deviation � (d) for which
e� � d I e� + � (d) :

Observe that every preference-bias function associated to a SP preference
is a strictly increasing function. We propose three basic types of SP pref-
erences. These are the symmetric SP preferences, the shortfall avoidance
preferences and the excess avoidance preferences.

De�nition 3 We say that the preference R 2 RSP is symmetric when �(d) =
d for all d. We say that the preference R 2 RSP shows shortfall avoidance
when �(d) > d for all d: We say that the preference R 2 RSP shows excess
avoidance when � (d) < d for all d.

Symmetric SP preferences induce indi¤erence between alternatives lo-
cated symmetrically around the peak. When a SP preference shows shortfall
avoidance, the comparison between two alternatives symmetrically located
at each side of the peak is such that the alternative located above the peak is
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higher in the preference ordering than the alternative located below the peak.
Of course, it is the opposite when a SP preference shows excess avoidance.
The proposed types of SP preferences do not fully classify the set RSP . Our
aim, however, is to capture two natural and meaningful types of asymmetries
in the set of SP preferences.7

Because the preference-bias function is independent of the location of the
peak, one can compare degrees of asymmetry between pairs of preferences
even when their respective peaks do not coincide. The following de�nition
establishes the binary relation more avoidance than on RSP .

De�nition 4 Let R1; R2 2 RSP with �1; �2 and e�1; e
�
2 denoting their respec-

tive preference-bias functions and peaks. We say that R2 shows more shortfall
avoidance than R1 when �1 (d) � �2(d) for all d (or equivalently, R1 shows
more excess avoidance than R2):

Thus, according to this de�nition, degrees of asymmetry are compara-
ble across pairs of preference relations when their associated preference-bias
functions are such that one is always above the other, i.e., �1 (d) � �2(d)
for all d. Observe, therefore, that the proposed binary relations are partial
preorders (transitive but not complete) on the sets of SP preferences which
show shortfall avoidance or excess avoidance.8

3 Conditions on the utility representation

Every preference R 2 RSP can be represented by a strictly quasi-concave
utility function V : R! R which has a maximizer. The maximizer (or peak
of R) satis�es:

e� = argmax V (e) (1)

In what follows, we consider di¤erentiable utility representations so that the
peak of R satis�es V 0(e�) = 0.

7In particular, these de�nitions do not cover SP preferences which show shortfall avoid-
ance in some ranges of the domain and excess avoidance in others. It would of course be
possible to generalize them to account for any SP preference in R.

8Again, the de�nition could be generalized to compare degrees of asymmetry in speci�c
intervals of the domain of d.
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3.1 Conditions for asymmetric SP preferences

In terms of the utility representation, when the SP preference shows shortfall
avoidance, then V (e�� d) < V (e�+ d) for all d; and when the SP preference
shows excess avoidance, in turn, V (e��d) > V (e�+d) holds for all d. Figure
1 depicts two examples of utility functions representing shortfall avoidance
and excess avoidance respectively.
For SP preferences, V 0(e) > 0 holds for alternatives below the peak,

whereas V 0(e) < 0 is true for alternatives above the peak.
A characterization of symmetric single-peaked preferences in terms of

the properties of the utility representation V is straightforward to establish.
Preferences are symmetric if and only if V 0(e� � d) = �V 0(e� + d) for all
d.9 That is to say, if and only if marginal utility at every pair of symmetric
deviations above and below the peak coincide. Similarly, certain properties of
the slope of V guarantee that preferences show shortfall avoidance or excess
avoidance.

Proposition 1 Let V be the utility representation of R 2 RSP :
Properties (1a) or (2a) guarantee that R shows shortfall avoidance:
(1a) V 0(e� � d) > �V 0(e� + d) for all d
(2a) V 0 strictly convex for all e 2 R
where (2a) )(1a).
Properties (1b) or (2b) guarantee that R shows excess avoidance:
(1b) V 0(e� � d) < �V 0(e� + d) for all d
(2b) V 0 strictly concave for all e 2 R
where (2b) )(1b).

Proof. The following claims prove our statement.10

Claim 1: (1a) ) �(d) > d for all d:
Proof of Claim 1: Utility loss derived from reducing e� to e��d is measured byR e�

e��d V
0(e)de, whereas utility loss from increasing e� to e�+d is measured by

�
R e�+d

e� V 0(e)de: By (1a),
R e�

e��d V
0(e)de > �

R e�+d

e� V 0(e)de for all d. Solving
for the integral and simplifying V (e��d) < V (e�+d) for all d, i.e., preferences
show shortfall avoidance.

9This result is derived by di¤erentiating V (e� � d)� V (e� + d) = 0 with respect to d.
10The analogous statements on preferences showing excess avoidance can be proved

following a similar reasoning (that we omit in the interest of brevity).
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Claim 2: (2a) )(1a)
Proof of Claim 2: By strict convexity of V 0 we have V 0(e�) < V 0(e��d)+V 0(e�+d)

2

for all d. By SP, V 0(e�) = 0; and substituting in the inequality yields V 0(e��
d) > �V 0(e� + d) for all d.
By conditions (1a) and (1b), the comparison of the slopes of the utility

representation of SP preferences at every symmetric deviation with respect
to the peak reveals the direction of the asymmetry. Conditions (2a) and (2b)
also reveal the direction of the asymmetry by checking whether the marginal
utility function is strictly concave or strictly convex.11

3.2 Conditions for comparing degrees of asymmetry

Figure 2 depicts two utility representations of preferences R1; R2 2 RSP

where R2 (represented by V2) shows more excess avoidance than R1 (rep-
resented by V1). We put together both utility representations around their
respective peaks in order to compare their associated preference-biased func-
tion.
Next, we show that the comparison between the slopes of di¤erent util-

ity representations indicates the strength of the asymmetry across di¤erent
preferences. For each pair of preferences R1; R2 2 RSP ; we denote by e�1, e

�
2

their respective peaks.

Proposition 2 Let V1; V2 be two utility representations of R1; R2 2 RSP ,
respectively. If V 02(e

�
2 + ) � V 01(e

�
1 + ) for all  2 R; then R2 shows more

excess avoidance than R1(or equivalently, R1 shows more shortfall avoidance
than R2):

Proof. Condition V 02(e
�
2�d) � V 01(e�1�d) for all d implies that the utility loss

derived from reducing e�2 to e
�
2 � d; which is measured by

R e�2

e�2�d
V 02(e)de = B;

in comparison to the utility loss derived from reducing e�1 to e
�
1 � d; which is

measured by
R e�1

e�1�d
V 01(e; )de = A; is such that B � A. By de�nition of the

preference-bias function, there is �1 > 0 for which A =
R e�1+�1
e�1

V 01(e)de, at the

11For a concrete application of conditions (2a) and (2b) see Cukierman and Muscatelli
(2008) where central banks�preferences show excess avoidance over in�ation and shortfall
avoidance over output. As shown by these authors, this asymmetry of preferences is not
innocuous as it induces a non-linear Taylor rule.
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same time, and given that 0 > V 01(e
�
1 + d) � V 02(e�2 + d) for all d;Z e�2+�1

e�2

V 02(e)de � A: (2)

By de�nition of the preference-bias function there is �2 > 0 for whichZ e�2+�2

e�2

V 02(e)de = B: (3)

Because B � A; conditions (2) and (3) imply
R e�2+�2
e�2

V 02(e)de �
R e�2+�1
e�2

V 02(e)de

from where we derive that �2(d) � �1(d) for all d:
In other terms, the proposed su¢ cient condition for R2 to show more

excess avoidance than R1 implies that V 02(e
�
2�d) � V 01(e�1�d) and V 02(e�2+d) �

V 01(e
�
1 + d), for all d; i.e., below the peak, equal-distance deviations generate

more disutility with V1 than with V2, and above the peak, equal-distance
deviations generate more disutility with V2 than with V1:
The degree of asymmetry can also be compared using the degree of con-

cavity or convexity of the marginal utility function. For this, one of the
marginal utility speci�cations must be obtained as an increasing transforma-
tion of the other.

Proposition 3 Let V1; V2 be strictly concave utility representations of R1; R2 2
RSP . If V 01 ; V

0
2 are strictly concave and

V 0002 (e)

V 002 (e)
� V 0001 (e��)

V 001 (e��)
for all e 2 R where

� = e�2 � e�1, then R2 shows more excess avoidance than R1.12

Proof. By strict concavity of V1 and V2; the functions V 01 and V
0
2 are strictly

decreasing functions and they can be related by a strictly increasing trans-
formation g such that V 02(e) = g(V

0
1(e� �)) where � = e�2 � e�1. This implies

that when e = e�2, g(0) = 0:
13 Di¤erentiating the expression,

V 002 (e) = g
0(V 01(e� �))V 001 (e� �)

V 0002 (e) = g
00(V 01(e� �)) [V 001 (e� �)]

2 + g0(V 01(e� �))V 0001 (e� �):

12Similarly, if V 01 ; V
0
2 are strictly convex and �

V 000
2 (e)
V 00
2 (e)

� �V 000
1 (e��)
V 00
1 (e��)

for all e 2 R, then R2
shows more shortfall avoidance than R1.
13If e�2 = e

�
1, then � = e

�
2 � e�1 = 0; and it is possible to compare degrees of asymmetry

just by comparing V 000
1 (e)
V 00
1 (e)

to V 000
2 (e)
V 00
2 (e)

.
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From where

V 0002 (e)

V 002 (e)
=
V 0001 (e� �)
V 001 (e� �)

+
g00(V 01(e� �))V 001 (e� �)

g0(V 01(e� �))
:

By strict concavity of V 01 and V
0
2 , V

000
1 < 0 and V 0002 < 0. Then, V

000
2 (e)

V 002 (e)
� V 0001 (e��)

V 001 (e��)
implies g00(V 01(e� �)) � 0 (g concave).
By de�nition of �2; it follows that V2(e�2�d) = V2(e�2+�2(d)); or equivalently,R e�2+�2(d)
e�2�d

V 02(e)de = 0: Substituting function g,

0 =

Z e�2+�2(d)

e�2�d
V 02(e)de =

Z e�2+�2(d)

e�2�d
g(V 01(e� �))de:

By concavity of g;
R e�2+�2(d)
e�2�d

g(V 01(e��))de � g(
R e�2+�2(d)
e�2�d

V 01(e��)de); whereR e�2+�2(d)
e�2�d

V 01(e��)de = V1(e�1+�2(d))�V1(e�1�d): Since g is strictly increasing
and g(0) = 0; then V1(e�1 + �2(d)) � V1(e�1 � d) � 0: Since V 01 < 0 for all
e > e�1; and by de�nition of �1(d); V1(e

�
1�d) = V1(e�1+�1(d)); we deduce that

�1(d) � �2(d) for all d.
This proposition reveals an analogy between our analysis and the theories

developed by Arrow (1971), Pratt (1964) and Kimball (1990). In Arrow-
Pratt�s theory of risk aversion, concavity of the utility function over con-
sumption indicates the presence of risk aversion, while according to Kimball�s
theory of precautionary savings, concavity of the marginal utility function
entails precautionary saving behavior. In each case, the degree of concavity
of the utility function or the degree of concavity of the marginal utility func-
tion measures risk aversion or precautionary savings respectively.14 These
behavioral traits become thus comparable across pairs of concave functions
such that one is a concave transformation of the other. In our context, as
long as V is strictly concave, the curvature of the marginal utility function
determines the degree of asymmetry. We can therefore apply the coe¢ cient
of prudence proposed by Kimball (1990) to measure whether preferences
show more shortfall avoidance for the more convex marginal utility repre-
sentation, and more excess avoidance for the more concave marginal utility
representation.

14Arrow-Pratt�s coe¢ cient of risk aversion is de�ned by �u00

u0 , whereas Kimball�s coe¢ -
cient of prudence is de�ned by �u000

u00 where u measures utility over private consumption.
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De�nition 5 Let V be strictly concave utility representation of R 2 RSP .
If V 0 is strictly concave, we refer to the ratio V 000(e)

V 00(e) as the coe¢ cient of

excess avoidance. If V 0 is strictly convex, we refer to the ratio �V 000(e)
V 00(e) as the

coe¢ cient of shortfall avoidance.

The proposed coe¢ cients of asymmetry can be classi�ed into three types:
constant, increasing or decreasing in e. Thus, we say that V satis�es con-
stant excess avoidance when V 000(e)

V 00(e) is constant for all e 2 R, and we say that
V satis�es increasing (decreasing) excess avoidance when it is increasing (de-
creasing) in e. Likewise, we say that V satis�es constant shortfall avoidance
when �V 000(e)

V 00(e) is constant for all e 2 R; and we say that V satis�es increasing
(decreasing) shortfall avoidance when it is increasing (decreasing) in e.

4 Asymmetric SP utility representation

In this section, we show that a generalization of any distance-metric utility
function allows for the utility representation of any asymmetric SP preference
relation.
A distance-metric utility function is de�ned by V (e) = �f(e� e�) where

f is a continuous and strictly increasing distance function between the peak
e� and the alternative e. Particular examples of f are the quadratic function,
in which f(e � e�) = [e� e�]2 ; or the distance function induced by a norm,
in which f(e � e�) = ke� e�k ; or any function f(e � e�) = je� e�j� where
� > 0:
Given a preference R 2 RSP , the preference-bias function � associated

to R assigns to each deviation below the peak, the deviation above the peak
for which the agent is indi¤erent. Let ��1 : R+ ! R+ be the inverse of the
preference-bias function.15 The generalized distance-metric utility function
is de�ned by

V (e) =

�
�f(e� e�) when e � e�

�f(��1(e� e�)) when e > e�
:

Below the peak, the proposed utility function coincides with the distance-
metric utility function. In order to capture the preference-bias, the level

15Because the preference satis�es the SP condition, the preference-bias function � is
biyective and it has an inverse.
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of utility derived from any alternative above the peak is equal to the cor-
responding distance-metric utility value at its indi¤erent alternative below
the peak. If the SP preference relation is symmetric, i.e., ��1(d) = d, the
generalized distance-metric utility function collapses to the distance-metric
utility function. In the Appendix we specify the generalized distance-metric
utility function for the case in which the set of alternatives is bounded.
Arguably, an advantage of the generalized distance-metric utility function

is that it is derived from the set of indi¤erent alternatives of the primitive
preference relation. Another is that it maintains the tractability of the dis-
tance functions (including smoothness if the distance function is smooth).
Moreover, it can accommodate every SP preference, including those which
satisfy our de�nition of shortfall and excess avoidance.

Theorem 1: Every preference R 2 RSP can be represented by the generalized
distance-metric utility function. Furthermore, this utility speci�cation can
be used to compare pairs of preferences such that one of them shows more
shortfall avoidance (or less excess avoidance) than the other.

Proof. First, we show that every preference relation R 2 RSP is repre-
sented by the generalized distance-metric utility function. The preference
ordering across alternatives located at the same side of the peak is cap-
tured by the distance-metric utility function below the peak, and above the
peak, by a function that is strictly decreasing in distance (given that ��1

is a strictly increasing function in all its domain). The preference order-
ing of pairs of alternatives located at opposite sides of the peak can be de-
duced by identifying the pairs of alternatives yielding equal utility. Thus,
V (e� + �(d)) = �f

�
��1(e� + �(d)� e�)

�
and simplifying V (e� + �(d)) =

�f(d): Since V (e� � d) = �f(d), we deduce that e� � d I e� + �(d) for all d.
Second, we show that the generalized distance-metric utility function can be
used to compare degrees of asymmetries across pairs of preferences. Suppose
that �1 (d) � �2(d) for all d. Then, because � is always a strictly increasing
function, �1 (d) � �2(d) implies that �

�1
1 (d) � ��12 (d). Plugging this in-

equality into the generalized distance-metric utility function we obtain that
V 02(e

� + d) � V 01(e� + d) for all d. In addition, V 02(e� � d) = V 01(e� � d) for all
d.16 We deduce, using Proposition 2, that R2 shows more shortfall avoidance
than R1.

For instance, if we take a linear preference bias-function �(d) = kd with

16Observe that, o¤ the peak, all the proposed distance functions are di¤erentiable.
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k > 0; the corresponding generalized distance-metric utility function is

V (e) =

�
�f(e� e�) when e � e�
�f( e�e�

k
) when e > e�

:

Under this utility speci�cation, k > 1 represents a particular class of SP
preferences that show shortfall avoidance, while k < 1 corresponds to another
class of SP preferences that exhibit excess avoidance.
Of course, the preference-bias function does not need to be linear; we can

think of diverse functional forms yielding di¤erent asymmetric SP prefer-
ences. Thus, it is possible to represent more complex asymmetries than the
basic types previously de�ned. For instance, we can represent preferences
that display excess avoidance for some values of d; and shortfall avoidance
for others.17

Our proposal accommodates every continuous and strictly increasing dis-
tance metric function. For instance, a rich family of utility speci�cations are
given by:

V (e) =

(
� je� e�j� when e � e�

�
����1(e� e�)��� when e > e�

where di¤erent values of � > 0 yield di¤erent utility functions. It is straight-
forward to check that these functions are smooth, i.e. that they are contin-
uously di¤erentiable in all the domain, including the peak.

5 Other asymmetric SP utility representations

In this section we analyze other utility representations of asymmetric SP
preferences in the literature and compare them to our proposal. We study
the linex loss function proposed by Varian (1974) and further studied by Zell-
ner (1986), and a simple piecewise asymmetric function proposed by Waud
(1976).

17A preference-bias function that creates such kind of asymmetry is � (d) = [d (1� a)]� ,
where a 2 [0; 1), � > 0 and � 6= 1; � determines whether preferences exhibit excess
avoidance near the peak and shortfall avoidance from some distance onwards, or viceversa.
In particular, if � < 1, then � (d) � d, 8d � d� and � (d) < d, 8d > d� so that preferences
show shortfall avoidance below d� and excess avoidance above d�. The opposite case occurs
when � > 1, which implies that � (d) � d 8d � d�, and � (d) > d 8d > d�. The threshold
distance is given by d� = (1� a)

�
1�� .
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5.1 The linex loss function

The linex (for linear-exponential) loss function has been used to represent
policy makers�preferences over in�ation and output gap (e.g. Ruge-Murcia,
2003; Dolado et al, 2004; Surico, 2007) as well as in Bayesian econometrics
(Zellner, 1986) and optimal forecasting (Christo¤ersen and Diebold, 1997).
According to our notation, this utility speci�cation is de�ned by:

V (e) = � exp(� [e� � e]) + � [e� � e] + 1

where � 2 R. Observe that this speci�cation yields V (e�) = 0:
Solving for the �rst, second and third derivatives we obtain:

V 0 = � exp(� [e� � e])� �
V 00 = ��2 exp(� [e� � e])
V 000 = �3 exp(� [e� � e])

The second derivative guarantees concavity of the utility speci�cation. By
Proposition 1, the sign of the third derivative implies that the linex utility
function represents shortfall avoidance when � > 0 and excess avoidance
when � < 0: Additionally, using Proposition 3, we can obtain the coe¢ cient
of asymmetry, which is equal to �� when there is excess avoidance and to �
when there is shortfall avoidance. Note that the coe¢ cient of asymmetry of
the linex function is constant.
Therefore, according to our results, the linex function is able to represent

preferences with the two types of asymmetry (shortfall and excess avoidance).
Moreover, given that its coe¢ cient of asymmetry is constant, it is easy to
represent and compare di¤erent degrees of asymmetry just by changing or
comparing the value of �. This utility representation, however, cannot repre-
sent every preference R 2 RSP . For instance, it cannot represent preferences
which show excess avoidance for some values of d; and shortfall avoidance for
others. Likewise, it cannot represent preferences with increasing or decreas-
ing avoidance.

5.2 The piecewise asymmetric function of Waud

Waud (1976) proposes another utility representation of asymmetric prefer-
ences. Using our notation, this utility speci�cation is de�ned by:

V (e) =

�
��f(e� � e) when e � e�
�f(e� e�) when e > e�

(4)
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where f is a strictly increasing and convex function, f(0) = 0 and � > 0.
Observe that � < 1 represents preferences showing shortfall avoidance, while
� > 1 corresponds to preferences showing excess avoidance. Additionally, by
Proposition 2, when � > 1, the higher the coe¢ cient �; the more excess avoid-
ance the preferences show (likewise, when � < 1, the smaller the coe¢ cient
�; the more shortfall avoidance the preferences display). Thus, the function
proposed by Waud can represent preferences of the two basic asymmetric
types (shortfall and excess avoidance). Furthermore, it allows for compar-
isons of degrees of asymmetry just by checking the value of �. Nevertheless,
this utility representation cannot represent every preference R 2 RSP .
By the de�nition of the preference-bias function, V (e��d) = V (e�+�(d))

for all d, which implies � = f(�(d))
f(d)

for all d: Given a convex function f; that
condition imposes a restriction on the preference-bias function and thereby
on the preferences it can represent. To illustrate such restriction, let f
be the quadratic function; then, the preference-bias function must satisfy
�(d) = �

1
2d; i.e., � has to be linear in d. This example illustrates that this

utility speci�cation cannot represent every preference R 2 RSP : Addition-
ally, there are preference-bias functions for which no function f exists such
that Expression (4) represents these preferences (consider again the case of
preferences which show excess avoidance for some values of d; and shortfall
avoidance for others).

6 Conclusion

Symmetric single-peaked preferences are usually represented by distance-
metric utility functions. Our analysis revealed that such utility speci�ca-
tions can be easily transformed to accommodate single-peaked preferences
with any direction and degree of asymmetry, including the two basic types
(shortfall and excess avoidance) as well as more complex asymmetries. Our
utility speci�cation, which we named the generalized distance-metric utility
function, maintains the analytical tractability and smoothness of the distance
functions. Another advantage is that it is directly derived from the set of
indi¤erent alternatives of the primitive preference relation. Our proposal can
be used to capture the preferences of policy-makers, investors, politicians, the
media or, in general, in any context where the policy space has a meaningful
metric and where single-peakedness is a relevant modelling assumption. This
is for instance the case in the models studied by Blinder (1997), Ruge-Murcia
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(2003), Feeny (2006) or Dolado et al. (2004) among others. We believe our
proposal could also be fruitfully exploited in Bayesian econometrics and in
optimal forecasting, as it would allow to incorporate richer asymmetries in
the loss function.
On the other hand, we identi�ed su¢ cient conditions on standard utility

representations that reveal the direction (if any) of the asymmetry of prefer-
ences and another that allows the comparison of degrees of asymmetry across
di¤erent preference relations. We found that an analogous of Kimball�s co-
e¢ cient of prudence can be used to measure the degree of asymmetry of
preferences and, hence, to compare degrees of shortfall or excess avoidance.
Finally, we analyzed two proposals of asymmetric utility representations �
the linex function and the piecewise asymmetric function of Waud (1976).
We explained that the sign and degree of asymmetry of these utility speci-
�cations depend on a single parameter, for which they are able to represent
preferences exhibiting di¤erent degrees of shortfall or excess avoidance. For
the same reason and in contrast to our proposal, however, these utility (or
loss) functions are limited in the range of single-peaked preferences they can
represent.

Appendix

If the set of alternatives were bounded, as for instance it is the case
when e 2 [0; �e] ; we could also de�ne the distance-metric utility function.
For that, suppose that we take �e su¢ ciently large as to guarantee that there
exists an alternative ~e � �e such that 0 I ~e, i.e., such that the agent is
indi¤erent between 0 and ~e. This implies that e� 2 (0; ~e): The preference-
bias function is then de�ned so that � : [0; e�]! [0; ~e� e�].18 The inverse of
the preference-bias function ��1 is then bounded above by ��1(~e� e�) = e�;
which corresponds to the indi¤erence relation 0 I ~e. We can extend the
domain of ��1 to every d 2 (~e� e�; �e� e�] in a strictly increasing way. Thus,
the generalized distance-metric utility function is de�ned by

V (e) =

�
�f(e� e�) when e 2 [0; e�]

�f(��1(e� e�)) when e 2 (e�; e] :

18The assumption that 0 I ~e, ~e 2 (e�; �e] is made only to simplify the exposition. Alter-
natively, if there exists an alternative be 2 [0; e�) such that e I be then the preference-bias
function is de�ned on � : [0; e� � be]! [0; e� e�] and the analysis remains unchanged.
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Observe that the utility derived from alternatives e 2 (~e; �e] is below V (~e) and
that the utility function is strictly decreasing in e 2 (~e; �e]. If we take a linear
preference bias-function �(d) = kd with k > 0; the corresponding generalized
distance-metric utility function would be

V (e) =

�
�f(e� e�) when e 2 [0; e�]
�f( e�e�

k
) when e 2 (e�; e] :

Note that this function extends, in a natural way, the domain of ��1 to
alternatives in the interval e 2 (~e; e].
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