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Abstract

Evidence shows that (i) people overweight low probabilities and underweight high

probabilities, but (ii) ignore events of extremely low probability and treat extremely

high probability events as certain. The main alternative decision theories, rank

dependent utility (RDU) and cumulative prospect theory (CP) incorporate (i) but

not (ii). By contrast, prospect theory (PT) addresses (i) and (ii) by proposing an

editing phase that eliminates extremely low probability events, followed by a decision

phase that only makes a choice from among the remaining alternatives. However, PT

allows for the choice of stochastically dominated options, even when such dominance

is obvious. We propose to combine PT and CP into composite cumulative prospect

theory (CCP). CCP combines the editing and decision phases of PT into one phase

and does not allow for the choice of stochastically dominated options. This, we

believe, provides the best available alternative among decision theories of risk at

the moment. As illustrative examples, we also show that CCP allows us to resolve

three paradoxes: the insurance paradox, the Becker paradox and the St. Petersburg

paradox.
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�... people may refuse to worry about losses whose probability is below some threshold.
Probabilities below the threshold are treated as zero.�Kunreuther et al. (1978, p. 182).
�Obviously in some sense it is right that he or she be less aware of low probability

events, other things being equal; but it does appear from the data that the sensitivity goes
down too rapidly as the probability decreases.�Kenneth Arrow in Kunreuther et al. (1978,
p. viii).
�An important form of simpli�cation involves the discarding of extremely unlikely out-

comes.�Kahneman and Tversky (1979, p. 275).
�Individuals seem to buy insurance only when the probability of risk is above a thresh-

old...� Camerer and Kunreuther et al. (1989, p. 570).

1. Introduction

In this paper we are interested in the best possible decision theory that can address the
following two stylized facts on human behavior over the probability range [0; 1].

S1. For probabilities in the interval [0; 1], that are bounded away from the end-points,
decision makers overweight small probabilities and underweight large probabilities.1

S2. For events close to the boundary of the probability interval [0; 1], extensive evidence,
that we review below, suggests the following. Decision makers (i) ignore events of
extremely low probability and, (ii) treat extremely high probability events as certain.

Events close to the boundary of the interval [0; 1] are of great signi�cance in economic
as well as non-economic domains. Consider some examples, which we discuss in Section 3.
Should one attempt to cross the road when there is a small probability that one might meet
an accident? Should one buy non-mandatory insurance for low probability events, such
as earthquakes, �oods and other natural hazards? Should one run red tra¢ c lights when
there is a small probability of an accident? Should one take-up breast cancer examination
when there could be a small probability of having cancer? Should one wear seat belts
when there is a small probability of an accident? What should one make of a fundamental
proposition in law and economics, due to Becker (1968): �it is optimal to hang o¤enders
with probability zero�? This, of course, only touches the domain of such low probability
events that are of potential interest.
So what decision theory should one choose if one is interested in S1, S2, in addition

to other possible desirable features? EU, because it weights probabilities linearly, fails
to explain both, S1 and S2. The leading alternatives to EU are Quiggen�s (1982, 1993)

1The evidence for stylized fact S1 is well documented; see, for instance, Kahneman and Tversky (1979),
Kahneman and Tversky (2000) and Starmer (2000).
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rank dependent utility (RDU), Kahneman and Tversky�s (1979) prospect theory (PT) and
Tversky and Kahneman�s (1992) cumulative prospect theory (CP).2

PT and CP have proved enormously successful in explaining a wide range of human
behavior in economics, psychology, political science, sociology and other disciplines. In-
deed, some would argue that for situations of risk (i.e., known probabilities but unknown
outcomes), PT and CP provide the most complete and satisfactory descriptions, among
the available alternatives.3 Indeed, PT and CP even have bite in the context of uncer-
tainty.4 In particular, because PT and CP incorporate several psychologically rich features
(e.g., reference dependence, loss aversion, richer attitudes to risk), PT and CP can explain
everything that RDU can, but the converse is not true.
Of the existing decision theories, and as we shall explain in greater detail, below, only

PT addresses S1 and S2. By contrast, RDU and CP address S1 but not S2. However, PT
is subjected to other problems. Notably, that decision makers can choose stochastically
dominated options, even when such dominance is obvious. Furthermore, despite being
extremely psychologically-rich, the treatment of S2 in PT is informal and heuristic in a
manner that does not lend itself easily to formal analysis. Given the empirical importance
of S2, this would seem to be an unsatisfactory and unresolved state of a¤airs in decision
theory.
Ideally one would like a theory of decision making under risk that could (a) incorporate

the psychological-richness of PT, using rigorous, formal, analytical foundations to address
S1 and S2, and (b) yet, like CP not allow decision makers to choose stochastically domi-
nated options when such dominance is obvious. In this paper we show that such a theory
that combines PT and CP can be constructed. We call this theory composite cumulative
prospect theory (CCP). We also show how RDU can be modi�ed to simultaneously take
account of S1 and S2. We call the result of this endeavour as composite rank dependent
utility theory (CRDU). We argue that CCP is more satisfactory as compared to RDU.
Furthermore, we apply CCP to show how it can resolve existing puzzles from concrete
applications such as insurance, law and economics and the St. Petersburg paradox.
The schematic outline of the paper is as follows. Section 2 gives a heuristic discussion

of PT and CP, with particular emphasis on stylized facts S1 and S2. It then outlines
the proposal for CCP. Section 3 describes human behavior for low probability events from

2PT and CP are sometimes known, respectively, as �rst and second generation prospect theories.
3See, for instance, Kahneman and Tversky (1979), Kahneman and Tversky (2000), Starmer (2000),

Barberis and Thaler (2003).
4Tversky and Koehler (1994), Rottenstreich and Tversky (1997) outline �support theory�, an in�uential

approach to uncertainty. In essence, they propose axioms which allow, in the �rst stage, for a situation of
uncertainty to be transformed into a situation of risk. Then, in the second stage, decision makers simply
use PT or CP to choose among risky prospects. This, once again, allows for a central role for PT and CP,
even in situations of uncertainty.
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a wide variety of contexts that is relevant for stylized fact S2. Section 4 discusses non-
linear weighting of probabilities and, in particular, the Prelec (1998) probability weighting
function. Section 5 introduces the composite Prelec weighting function (CPF). Section 6
gives the axiomatic derivation of the CPF. Composite cumulative prospect theory (CCP)
is introduced in section 7. Three applications of CCP to unresolved problems in economics
are given in section 8. Section 9 argues that CCP is possibly the best among the alternative
decision theories under risk. Brief conclusions are give in section 10. All proofs are
collected in Appendix-A, while Appendix-B gives some useful results on Cauchy�s algebraic
functional equations.

2. PT, CP, and CCP: A heuristic discussion of the issues

2.1. Prospect Theory (PT)

PT, which was the outcome of many years of experiments conducted by Kahneman, Tver-
sky, and others, is a psychologically rich theory.5 The psychological foundations of PT rest,
in an important manner, on the distinction between an editing and an evaluation/decision
phase.
From our perspective, the most important and interesting aspect of the editing phase

takes place when decision makers decide which improbable events to treat as impossible
and which probably events to treat as certain.6 This is exempli�ed in the quote from
Kahneman and Tversky (1979, p.282): �On the other hand, the simpli�cation of prospects
can lead the individual to discard events of extremely low probability and to treat events
of extremely high probability as if they were certain. Because people are limited in their
ability to comprehend and evaluate extreme probabilities, highly unlikely events are either
ignored or overweighted...�
Suppose that we have a lottery (x; p; y; 1� p) where x < y are outcomes, and p is a

probability. Let u(x) be the utility of the outcome x. The expected utility of this lottery
is pu(x) + (1� p)u(y). However, under PT and CP, decision makers use decision weights,
�(p), to evaluate the value of the lottery as �(p)u(x) + �(1� p)u(y). In the editing phase,
among other things, Kahneman and Tversky (1979) were interested in the decision weights,
�(p), assigned by individuals to very low and very high probability events. They drew �(p)
as in Figure 2.1.7 This decision function is discontinuous at both ends, re�ecting the vexed
issue of how decision makers behave over these ranges of probabilities.

5Its importance in economics can be gauged from the fact that Kahneman and Tversky (1979) is the
second most cited paper in all of economics. We are grateful to Peter Wakker for pointing this out to us.

6Kahneman and Tversky (1979) also identify the isolation e¤ect as another important heuristic in the
editing phase. This allows decision makers to cancel �nearly common�components of two prospects before
evaluating them. We also show how our theory can also capture some aspects of the isolation e¤ect.

7Formal de�nitions of subjective weights and probability weighting functions are given below.
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Figure 2.1: Ignorance at the endpoints. Source: Kahneman and Tversky (1979, p. 283)

Kahneman and Tversky�s (1979) wrote the following (on p. 282-83) to summarize the
evidence on the end-points of the probability interval [0; 1]. �The sharp drops or apparent
discontinuities of �(p) at the end-points are consistent with the notion that there is a limit
to how small a decision weight can be attached to an event, if it is given any weight at all.
A similar quantum of doubt could impose an upper limit on any decision weight that is less
than unity. This quantal e¤ect may re�ect the categorical distinction between certainty and
uncertainty. On the other hand, the simpli�cation of prospects can lead the individual to
discard events of extremely low probability and to treat events of extremely high probability
as if they were certain. Because people are limited in their ability to comprehend and
evaluate extreme probabilities, highly unlikely events are either ignored or overweighted,
and the di¤erence between high probability and certainty is either neglected or exaggerated.
Consequently �(p) is not well-behaved near the end-points.�
After the prospects are �psychologically cleaned�in the editing phase, the decision maker

chooses the prospect with the highest numerical value assigned by the value function.8 This
is the decision or evaluation phase. The point transformation of probabilities under PT
is unsatisfactory, and undermined the theory. For example, it allows a decision maker to
choose stochastically dominated options, even when such dominance is obvious.
Quiggin (1982, 1993), showed that these problems are solved if a cumulative transfor-

mation of probabilities is adopted rather than a point transformation. When EU is applied
to the transformed probabilities, we get rank dependent expected utility theory (RDU).

Example 1 Quiggin (1982, 1993): Let w(p) be some suitably de�ned probability weighting
function such that w(0) = 0, w(1) = 1 and w(p) : [0; 1]! [0; 1] is 1-1 and onto. In terms
of the lottery (x; p; y; 1� p) where 0 < x < y, the decision weights are derived as follows.

8The construction of the value function is formally described in the paper, below.

4



�(p) = w(p+ 1� p)�w(1� p) = 1�w(1� p) and �(1� p) = w(1� p). This is the sense
in which cumulative transformations of probability are used in both RDU and CP.

2.2. Cumulative Prospect Theory (CP)

Tversky and Kahneman (1992) incorporated Quiggen�s insight into PT, while retaining
the other components of PT such as reference dependence and loss aversion. The result,
cumulative prospect theory (CP), thus ensured (among other things) that stochastically
dominated options would not be chosen. However, a heavy price had to be paid for this
desirable feature. CP dropped the editing phase altogether, hence, also, giving up the
psychological richness of PT.
In contrast to the non-continuous function in Figure 2.1, Tversky and Kahneman (1992)

proposed a continuous decision function. This was achieved by postulating a continuous,
1-1 and onto, probability weighting function, w(p) on [0; 1](see Example 1). The decision
weights in CP (as in RDU) are cumulative transformations of w(p) as, for instance, in
Example 1.9 One such w(p) function, that is consistent with the evidence on non-extreme
probability events, and has axiomatic foundations, is the Prelec (1998) function, plotted
in Figure 2.2.10

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

1.0

p

w

Figure 2.2: A plot of the Prelec (1988) function, w (p) = e�(� ln p)
1
2 .

Remark 1 (In�nite overweighting of in�nitesimal probabilities): Several other weighting
functions have been proposed in the literature and we discuss some below. However,
like the Prelec function, they all have the feature that the decision maker (1) in�nitely
overweights in�nitesimal probabilities in the sense that the ratio w(p)=p goes to in�nity as

9This was the reason that CP was forced to drop the editing phase in PT. The editing phase creates
discontinuities in the weighting function that is not admissible under CP.
10See De�nition 7, below, for the formal de�nition of a Prelec weighting function. Figure 2.2 is a plot

of w (p) = e�(� ln p)
1
2 where the probability p 2 [0; 1] :
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p goes to zero. (2) in�nitely underweight near-one probabilities in the sense that the ratio
[1� w(p)]=[1� p] goes to in�nity as p goes to 1.

Remark 2 Using any of the standard probability weighting functions, CP (and RDU)
can explain S1 but not S2.

2.3. Composite cumulative Prospect theory (CCP)

We make the ambitious proposal of combining the psychological richness of PT with the
more satisfactory cumulative transformation of probabilities in CP. In other words, we
intend to combine PT and CP into a single theory, that we call composite cumulative
prospect theory, CCP. If it aids intuition, CCP can be described as combining the editing
and decision phases of PT into a single phase, while retaining cumulative transformations
of probability, as in CP. CCP accounts for both stylized facts S1 and S2. Like CP, it does
not allow for the choice of stochastically dominated options. Furthermore, it can explain
everything that RDU and CP can, and more. For that reason, we believe that it is the
most satisfactory theory of decision making under risk.
In order to implement CCP, we introduce a modi�cation to the Prelec (1998) weighting

function (see Figure 2.2). From remark 2, the Prelec weighting function explains S1 but
fails on S2. Our suggestion modi�es the end-points of the Prelec�s weighting function in a
manner that is consistent with the empirical evidence.11 We call our suggested modi�cation
as composite Prelec weighting function (CPF). Figure 2.3 sketches the CPF, which can
potentially address S1, S2.
In Figure 2.3, decision makers heavily underweight very low probabilities in the range

[0; p1] (compare this to remark 1). Akin to Kahneman and Tversky�s (1979) editing phase,
decision makers who use the weighting function in Figure 2.3 would typically ignore very
low probability events by assigning low subjective weights to them. Hence, in conformity
with the evidence (see Section 3) they are unlikely to be dissuaded from low-probability
high-punishment crimes, reluctant to buy insurance for very low probability events (unless
mandatory), reluctant to wear seat belts (unless mandatory), reluctant to participate in
voluntary breast screening programs (unless mandatory) and so on. Similar comments
apply to the probability range [p3; 1] except that events with these probabilities are over-
weighted as suggested by the evidence; see Kahneman and Tversky�s (1979, p.282-83)
quote, above. In the middle segment, p 2 [p1; p3], the probability weighting function in
Figure 2.3 is identical to the Prelec function, and so addresses stylized fact S1. Our pro-
posed probability weighting function in Figure 2.3 is axiomatic, parsimonious and �exible,
as we shall formally see, below.

11Hence, we eliminate the discontinuities at the end-points in Figure 2.1 with empirically-founded as
well as axiomatically-founded behavior.
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Figure 2.3: The composite Prelec weighting function (CPF).

Remark 3 : We refer to otherwise standard CP, when combined with a CPF as composite
cumulative prospect theory (CCP). Analogously, otherwise standard RDU, when combined
with a CPF, will be referred to as composite rank dependent utility (CRDU). CCP and
CRDU can explain S1 and S2. Because CCP, in addition, also incorporates reference
dependence, loss aversion and richer attitudes towards risk, it can explain everything that
CRDU can, but the converse is not true. Furthermore, because CCP incorporates both
S1 and S2, while CP only incorporates S1, CCP can explain everything that CP can, but
the converse is not true.

3. The importance of low probability events and problems for ex-
isting theory: A discussion

In this section, we present the evidence for stylized fact S2 by examining human behavior
for low probability events from several economic and non-economic contexts. This is not
an exhaustive list of such events but one that should su¢ ce.

3.1. Insurance for low probability events

The insurance industry is of tremendous economic importance. The total global gross
insurance premiums for 2008 were 4:27 trillion dollars, which accounted for 6:18% of global
GDP.12 The study of insurance is crucial in almost all branches of economics. Yet, despite
impressive progress, existing theoretical models are unable to explain the stylized facts for
the take-up of insurance for low probability events.

12See Plunkett�s Insurance Industry Almanac, 2010, Plunkett Research, Ltd, for the details.
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The seminal study of Kunreuther et al. (1978)13 provides striking evidence of indi-
viduals buying inadequate, non-mandatory, insurance against low probability events (e.g.,
earthquake, �ood and hurricane damage in areas prone to these hazards). This was a
major study, with 135 expert contributors, involving samples of thousands, survey data,
econometric analysis and experimental evidence; all three methodologies gave the same
conclusion.
Expected utility theory (EU) predicts that a risk-averse decision maker facing an ac-

tuarially fair premium will, in the absence of transactions costs, buy full insurance for
all probabilities, however small. Kunreuther et al. (1978, chapter 7)14 presented subjects
with varying potential losses with various probabilities, keeping the expected value of the
loss constant. Subjects faced actuarially fair, unfair or subsidized premiums. In each case,
they found that there is a point below which the take-up of insurance drops dramatically,
as the probability of the loss decreases (and as the magnitude of the loss increases, keeping
the expected loss constant).15

Remarkably, the lack of interest in buying insurance arose despite active government
attempts to (i) provide subsidy to overcome transaction costs, (ii) reduce premiums below
their actuarially fair rates, (iii) provide reinsurance for �rms, and (iv) provide relevant
information. Hence, one can safely rule out these factors as contributing to the low take-
up of insurance. Furthermore, insurees were aware of the losses (many overestimated
them) and moral hazard issues (expectation of federal aid in the event of disaster) were
not found to be important.
Arrow�s own reading of the evidence in Kunreuther et al. (1978) is that the problem

is on the demand side rather than on the supply side. Arrow writes (Kunreuther et al.,
1978, p.viii) �Clearly, a good part of the obstacle [to buying insurance] was the lack of
interest on the part of purchasers.�Kunreuther et al. (1978, p. 238) write: �Based on
these results, we hypothesize that most homeowners in hazard-prone areas have not even
considered how they would recover should they su¤er �ood or earthquake damage. Rather
they treat such events as having a probability of occurrence su¢ ciently low to permit them
to ignore the consequences.�This behavior is in close conformity to the observations of
Kahneman and Tversky (1979) outlined in section 2.1 above.

13In the foreword, Arrow (Kunreuther et al.,1978, p. vii) writes: �The following study is path breaking
in opening up a new �eld of inquiry, the large scale �eld study of risk-taking behavior.�
14Chapter 7 was written by Paul Slovic, Baruch Fischo¤, Sarah Lichtenstein, Bernard Corrigan and

Barbara Combs; see note page 186.
15These results were shown to be robust to changes in subject population, changes in experimental

format, order of presentation, presenting the risks separately or simultaneously, bundling the risks, com-
pounding over time and introducing �no claims bonuses�.
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3.2. Becker (1968) Paradox

A celebrated result, the Becker (1968) proposition, states that the most e¢ cient way to
deter a crime is to impose the �severest possible penalty with the lowest possible probabil-
ity�. By reducing the probability of detection and conviction, society can economize on
the costs of enforcement such as policing and trial costs. But by increasing the severity
of the punishment, which is not costly, the deterrence e¤ect of the punishment is main-
tained. Indeed, under EU, risk-neutrality and in�nitely severe punishments,16 the Becker
proposition implies that crime would be deterred completely, however small the probabil-
ity of detection and conviction. Kolm (1973) memorably phrased this proposition as it is
e¢ cient to hang o¤enders with probability zero.
Empirical evidence is not supportive of the Becker proposition. For example, Radelet

and Ackers (1996) survey 67 of the 70 current and former presidents of three professional
criminology organizations in the USA. Over 80% of the experts believe that existing re-
search does not support the deterrence capabilities of capital punishment, as would be
predicted by the Becker proposition. Levitt (2004) shows that the estimated contribution
of capital punishment in deterring crime in the US over the period 1973-1991, is zero.
History does not bear out the Becker proposition either. Since the late middle ages, the
severity of punishments has been declining while expenditures on enforcement have been
increasing. In their review, Polinsky and Shavell (2007: 422-23) write that: "...substantial
enforcement costs could be saved without sacri�cing deterrence by reducing enforcement
e¤ort and simultaneously raising �nes.�
Under RDU and CP, because decision makers heavily overweight the small probability

of a punishment (see Remark 1, above), Becker�s proposition can be shown to hold with
even greater force. But this contradicts the empirical evidence that the Becker proposition
does not hold (which is known as the Becker paradox). Under CCP, on the other hand,
because very small probabilities are heavily underweighted (Figure 2.3), Becker�s paradox
can be explained. Again, these results hinge on stylized fact S2.17

3.2.1. The competing explanations for the Becker paradox

The reader may, rightly, wonder if there are explanations other than simply ignoring low
probabilities that might account for Becker�s paradox? Dhami and al-Nowaihi (2010h)
explore nine other possible explanations of the Becker paradox and show that none of
these explanations su¢ ce. It is beyond the scope of this paper to provide the details, so
we simply list these potential explanations here for the interested reader. (1) Risk seeking

16For instance, ruinous �nes, slavery, torture, extraction of body parts (all of which have been historically
important), and modern capital punishment.
17See Dhami and al-Nowaihi (2010h) for these claims.
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behavior. (2) Bankruptcy issues. (3) Di¤erential punishments. (4) Errors in conviction.
(5) Rent seeking behavior. (6) Abhorrence of severe punishments. (7) Objectives other
than deterrence. (8) Risk aversion. (9) Pathological traits of o¤enders.
In particular, all of these explanations are contradicted by the evidence from jumping

red tra¢ c lights, that we examine in section 3.3 below.

3.3. Evidence from jumping red tra¢ c lights

Bar-Ilan (2000) and Bar-Ilan and Sacerdote (2001, 2004) provide near decisive evidence
that the nine explanations in subsection 3.2.1 cannot explain the Becker paradox. They
estimate that there are approximately 260,000 accidents per year in the USA caused by
red-light running with implied costs of car repair alone of the order of $520 million per
year. It stretches plausibility to assume that these are simply mistakes. In running red
lights, there is a small probability of an accident, but, the consequences are self in�icted and
potentially have in�nite costs. Rephrased, running red tra¢ c lights is similar to hanging
oneself with a very small probability, which is similar to the Becker proposition.
Using Israeli data, Bar-Ilan (2000) calculated that the expected gain from jumping one

red tra¢ c is, at most, one minute (the length of a typical light cycle). Given the known
probabilities they �nd that: �If a slight injury causes a loss greater or equal to 0.9 days,
a risk neutral person will be deterred by that risk alone. However, the corresponding
numbers for the additional risks of serious and fatal injuries are 13.9 days and 69.4 days
respectively�.18

Clearly EU combined with risk aversion cannot explain this evidence. Potential ex-
planations 2-8 in section 3.2.1, are not applicable here, because the punishment is self
in�icted. One also cannot argue along the lines of explanation 6, in section 3.2.1, that
there are any particular norms or fairness considerations to jump red tra¢ c lights. Ex-
planation 9 is also inadequate, for Bar-Ilan and Sacerdote (2004) report �We �nd that
red-light running decreases sharply in response to an increase in the �ne...�. This leaves
explanation 1 in section 3.2.1. Unfortunately, the authors do not report the risk-attitudes
of o¤enders. It is clear that o¤enders do have car-insurance, but it is not reported whether
this is mandatory. If it turns out that red-light runners also voluntarily take up insurance
of any sort (such as extended warranties, extra life cover etc.), then the explanation based
on EU with risk seeking behavior, would not be tenable.
A far more natural explanation, along the lines of our framework, is that stylized fact

S2 applies. Thus, red tra¢ c light running is simply caused by some individuals ignoring

18To these, should be added the time lost due to police involvement, time and money lost due to auto-
repairs, court appearances, �nes, increase in car-insurance premiums and the cost and pain of injury and
death.
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(or seriously underweighting) the very low probability of an accident.19

3.4. Driving and talking on car mobile phones

Consider the usage of mobile phones in moving vehicles. A user of mobile phones faces
potentially in�nite punishment (e.g., loss of one�s and/or the family�s life) with low proba-
bility, in the event of an accident. The Becker proposition applied to this situation would
suggest that drivers of vehicles will not use mobile phones while driving or perhaps use
hands-free phones, and so, self-insure to avoid the self in�icted punishments. However, the
evidence is to the contrary.20 None of the explanations in section 3.2.1 applies (simply use
the arguments in section 3.3). A more natural explanation is the individuals simply ignore
or substantially underweight the low probability of an accident as in stylized fact S2.

3.5. Other examples

People were reluctant to use seat belts prior to their mandatory use despite publicly avail-
able evidence that seat belts save lives. Prior to 1985, in the US, only 10-20% of motorists
wore seat belts voluntarily, hence, denying themselves self-insurance; see Williams and
Lund (1986). Car accidents may be perceived by individuals as low probability events,
particularly if they are overcon�dent of their driving abilities.21

Even as evidence accumulated about the dangers of breast cancer (low probability
event22) women took up the o¤er of breast cancer examination, only sparingly23

3.6. Conclusion from these disparate contexts

Two main conclusions arise from the discussion in this section. First, human behavior for
low probability events cannot be easily explained by the existing mainstream theoretical

19A more complete model is needed to address all the relevant stylized facts for this problem but this is
beyond the scope of our paper. For instance, some individuals could be so law abiding that they will not
run red tra¢ c lights under any circumstances. For others, with a lower level of civic responsibility, and
in conjunction with stylized fact S2, ocassionally running red lights could be optimal, which explains the
stylized facts.
20Various survey evidence indicates that up to 40 percent of individuals drive and talk on mobile phones;

see, for example, the Royal Society for the Prevention of Accidents (2005). In surveying the evidence,
Pöystia et al. (2004) report that two thirds of Finnish drivers and 85% of American drivers use their
phone while driving. Mobile phone usage, while driving, increases the risk of an accident by two to six
fold. Hands-free equipment, although now obligatory in many countries, seems not to o¤er essential safety
advantage over hand-held units.
21People assign con�dence intervals to their estimates that are too narrow and 90% of those surveyed

report that they have above average levels of intelligence and emotional ability. See Weinstein (1980). For
further references and applications to �nance, see Barberis and Thaler (2003).
22We now know that the conditional probability of breast cancer if there is such a problem in close

relatives is not low. However, we refer here to data from a time when such a link was less well understood.
23In the US, this changed after the greatly publicised events of the mastectomies of Betty Ford and

Happy Rockefeller; see Kunreuther (1978, p. xiii). See also p. 13-14 in Kunreuther (1978)
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models of risk. EU and the associated auxiliary assumptions are unable to explain the
stylized facts, however, in the light of Remark 1, RDU and CP make the problem even
worse. Second, a natural explanation for these phenomena seems to be that individuals
simply ignore or seriously underweight very low probability events, as shown in Figure 2.3.

4. Non-linear transformation of probabilities

The main alternatives to EU, i.e., RDU and CP, introduce non-linear transformation of
probability. In this section we introduce the concept of a probability weighting function
with particular emphasis on the Prelec function. We also introduce some concepts which
are crucial for the rest of the paper.

De�nition 1 (Probability weighting function): By a probability weighting function we
mean a strictly increasing function w(p) : [0; 1] onto! [0; 1].

Proposition 1 : A probability weighting function has the following properties:
(a) w (0) = 0, w (1) = 1. (b) w has a unique inverse, w�1, and w�1 is also a strictly
increasing function from [0; 1] onto [0; 1]. (c) w and w�1 are continuous.

De�nition 2 : The function, w(p), (a) in�nitely-overweights in�nitesimal probabilities, if
lim
p!0

w(p)
p
=1, and (b) in�nitely-underweights near-one probabilities, if lim

p!1
1�w(p)
1�p =1.

De�nition 3 : The function, w(p), (a) zero-underweights in�nitesimal probabilities, if
lim
p!0

w(p)
p
= 0, and (b) zero-overweights near-one probabilities, if lim

p!1
1�w(p)
1�p = 0.

De�nition 4 : (a) w(p) �nitely-overweights in�nitesimal probabilities, if lim
p!0

w(p)
p
2 (1;1),

and (b) w(p) �nitely-underweights near-one probabilities, if lim
p!1

1�w(p)
1�p 2 (1;1).

De�nition 5 : (a) w(p) positively-underweights in�nitesimal probabilities, if lim
p!0

w(p)
p
2

(0; 1), and (b) w(p) positively-overweights near-one probabilities, if lim
p!1

1�w(p)
1�p 2 (0; 1).

Data from experimental and �eld evidence typically suggest that decision makers ex-
hibit an inverse S-shaped probability weighting over outcomes (stylized fact S1). See Fig-
ure 2.2 for an example. Tversky and Kahneman (1992) propose the following probability
weighting function, where the lower bound on  comes from Rieger and Wang (2006).

De�nition 6 : The Tversky and Kahneman probability weighting function is given by

w (p) =
p

[p + (1� p)]
1


, 0:5 �  < 1, 0 � p � 1. (4.1)
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Proposition 2 : The Tversky and Kahneman (1992) probability weighting function (4.1)
in�nitely overweights in�nitesimal probabilities and in�nitely underweights near-one prob-
abilities, i.e., lim

p!0
w(p)
p
=1 and lim

p!1
1�w(p)
1�p =1, respectively.

Remark 4 (Standard probability weighting functions): A large number of other prob-
ability weighting functions have been proposed, e.g., those by Gonzalez and Wu (1999)
and Lattimore, Baker and Witte (1992). Like the Tversky and Kahneman (1992) function,
they all in�nitely overweight in�nitesimal probabilities and in�nitely underweight near-one
probabilities. We shall call these as the standard probability weighting functions.

4.1. Prelec�s probability weighting function

The Prelec (1998) probability weighting function has the following merits: parsimony,
consistency with much of the available empirical evidence (in the sense of stylized fact S1)
and an axiomatic foundation.

De�nition 7 (Prelec, 1998): By the Prelec function we mean the probability weighting
function w(p) : [0; 1]! [0; 1] given by

w (0) = 0, w (1) = 1; (4.2)

w (p) = e��(� ln p)
�

, 0 < p � 1, � > 0, � > 0. (4.3)

Proposition 3 : The Prelec function (De�nition 7) is a probability weighting function in
the sense of De�nition 1.

Remark 5 (Axiomatic foundations): Prelec (1998) gave an axiomatic derivation of (4.2)
and (4.3) based on �compound invariance�, Luce (2001) provided a derivation based on
�reduction invariance�and al-Nowaihi and Dhami (2006) give a derivation based on �power
invariance�. Since the Prelec function satis�es all three, �compound invariance�, �reduc-
tion invariance�and �power invariance�are all equivalent. Note, in particular, that these
derivations do not put any restrictions on � and � other than � > 0 and � > 0.

1. (Role of �) The parameter � controls the convexity/concavity of the Prelec function.
If � < 1, then the Prelec function is strictly concave for low probabilities but strictly
convex for high probabilities, i.e., it is inverse S-shaped, as in w (p) = e�(� ln p)

1
2 (� =

1
2
, � = 1), which is sketched in Figure 2.2, above. The converse holds if � > 1. The
Prelec function is then strictly convex for low probabilities but strictly concave for
high probabilities, i.e., it is S-shaped. An examples is the curve w (p) = e�(� ln p)

2

(� =
2, � = 1), sketched in Figure 4.1 as the light, lower, curve (the straight line in Figure
4.1 is the 45o line).
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Figure 4.1: A plot of w (p) = e�
1
2
(� ln p)2 and w (p) = e�(� ln p)

2

.

2. (Role of �) Between the region of strict convexity (w00 > 0) and the region of strict
concavity (w00 < 0), for each of the cases in Figures 2.2 and 4.1, there is a point of
in�exion (w00 = 0). The parameter � in the Prelec function controls the location of
the in�exion point relative to the 450 line. Thus, for � = 1, the point of in�exion
is at p = e�1 and lies on the 450 line, as in Figures 2.2 and 4.1 (light curve),
above. However, if � < 1, then the point of in�exion lies above the 450 line, as in
w (p) = e�

1
2
(� ln p)2(� = 2; � = 1

2
), sketched as the thicker, upper, curve in Figure

4.1. For this example, the �xed point, w (p�) = p�, is at p� ' 0:14 but the point of
in�exion, w00 (ep) = 0, is at ep ' 0:20.

The full set of possibilities is established by the following two propositions.

Proposition 4 : For � = 1, the Prelec probability weighting function (De�nition 7) takes
the form w (p) = p�, is strictly concave if � < 1 but strictly convex if � > 1. In particular,
for � = 1, w (p) = p (as under expected utility theory).

Proposition 5 : Suppose � 6= 1. Then:
(a) The Prelec function (De�nition 7) has exactly three �xed points, at respectively, 0,

p� = e�(
1
� )

1
��1

and 1.
(b) The Prelec function has a unique in�exion point, ep 2 (0; 1) at which w00(ep) = 0.
(c) If � < 1, the Prelec function is strictly concave for p < ep and strictly convex for p > ep
(inverse S-shaped).
(d) If � > 1, then the converse holds: The Prelec function is strictly convex for p < ep and
strictly concave for p > ep (S-shaped).
(e) If � < 1, then the in�exion point, ep, lies above the 450 line (ep < w (ep)).
(f) If � = 1, then the in�exion point, ep, lies on the 450 line (ep = w (ep)).
(g) If � > 1, then the in�exion point, ep, lies below the 450 line (ep > w (ep)).
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Table 1, below, exhibits the various cases established by Proposition 5.

� < 1 � = 1 � > 1

� < 1
inverse S-shapeep < w (ep) inverse S-shapeep = w (ep) inverse S-shapeep > w (ep)

� = 1
strictly concave
p < w (p)

w (p) = p
strictly convex
p > w (p)

� > 1
S-shapeep < w (ep) S-shape

w (ep) = ep S-shapeep > w (ep)
Table 2, below, gives representative graphs of the Prelec function, w (p) = e��(� ln p)

�

,
for each of the cases in Table 1.

� = 1
2

� = 1 � = 2

� = 1
2

0.0 0.5 1.0
0.0

0.5

1.0

p

w

w (p) = e�
1
2
(� ln p)

1
2

0.0 0.5 1.0
0.0

0.5

1.0

p

w

w (p) = e�(� ln p)
1
2 .

0.0 0.5 1.0
0.0
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1.0

p

w

w (p) = e�2(� ln p)
1
2

� = 1

0.0 0.5 1.0
0.0

0.5

1.0

p

w

w (p) = p
1
2

0.0 0.5 1.0
0.0

0.5

1.0

p

w

w (p) = p

0.0 0.5 1.0
0.0

0.5

1.0

p

w

w (p) = p2

� = 2

0.0 0.5 1.0
0.0

0.5

1.0

p

w

w (p) = e�
1
2
(� ln p)2 .

0.0 0.5 1.0
0.0

0.5

1.0

p

w

w (p) = e�(� ln p)
2

.

0.0 0.5 1.0
0.0

0.5
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p

w

w (p) = e�2(� ln p)
2

Table 2: Representative graphs of w (p) = e��(� ln p)
�

.

Corollary 1 : Suppose � 6= 1. Then ep = p� = e�1 (i.e., the point of in�exion and the
�xed point, coincide) if, and only if, � = 1. If � = 1, then:
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(a) If � < 1, then w is strictly concave for p < e�1 and strictly convex for p > e�1 (inverse-
S shape, see Figure 2.2).
(b) If � > 1, then w is strictly convex for p < e�1 and strictly concave for p > e�1 (S
shape, see Figure 4.1).

In Figure 2.2 (and �rst row in Table 2), where � < 1, note that the slope of w (p)
becomes very steep near p = 0. By contrast, in �gure 4.1 (and last row in Table 2), where
� > 1, the slope of w (p) becomes very gentle near p = 0. This is established by the
following proposition, which will be important for us.

Proposition 6 : (a) For � < 1 the Prelec function (De�nition 7): (i) in�nitely-overweights
in�nitesimal probabilities, i.e., lim

p!0
w(p)
p
=1, and (ii) in�nitely underweights near-one prob-

abilities, i.e., lim
p!1

1�w(p)
1�p =1 (Prelec, 1998, p505); see De�nition 2 and Figure 2.2.

(b) For � > 1 the Prelec function: (i) zero-underweights in�nitesimal probabilities, i.e.,
lim
p!0

w(p)
p
= 0, and (ii) zero-overweights near-one probabilities, i.e., lim

p!1
1�w(p)
1�p = 0; see De�-

nition 3 and �gure 4.1.

According to Prelec (1998, p505), the in�nite limits in Proposition 6a capture the
qualitative change as we move from certainty to probability and from impossibility to
improbability. On the other hand, they contradict stylized fact S2, i.e., the observed
behavior that people ignore events of very low probability and treat very high probability
events as certain; see, e.g., Kahneman and Tversky (1979). These speci�c problems are
avoided for � > 1. However, for � > 1, the Prelec function is S-shaped, see Proposition
5(d) and Figure 4.1. This, however is in con�ict with stylized fact S1.

5. Composite Prelec Weighting Function

We now make progress towards deriving the composite Prelec probability weighting function
(CPF) that was motivated in section 2.3; see Figure 2.3. The CPF is able to simultane-
ously address the two stylized facts S1 and S2 outlined in the introduction. We begin
by providing two numerical examples of CPF, motivated by the empirical evidence from
Kunreuther (1978). The axiomatic derivation is in section 6, below.

5.1. Two numerical examples of CPF

5.1.1. The urn experiment in Kunreuther (1978)

An obvious solution that addresses S1, S2 is to adopt segments from 3 Prelec functions,
as outlined in Figure 2.3, above. Figure 5.1, below gives a numerical example of such a
composite Prelec function (CPF).
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Figure 5.1: The composite Prelec function.

The CPF in Figure 5.1 is composed of segments from three Prelec functions, and is
given by

w (p) =

8><>:
e�0:61266(� ln p)

2

i:e: � = 2; � = 0:61266 if 0 � p < 0:25
e�(� ln p)

1
2 i:e: � = 0:5; � = 1 if 0:25 � p � 0:75

e�6:480 8(� ln p)
2

i:e: � = 2; � = 6:4808 if 0:75 < p � 1
(5.1)

The three segments of the CPF in (5.1) are described as follows.

1. For 0 � p < 0:25, the CPF is identical to the S-shaped Prelec function, e��0(� ln p)�0 ,
with �0 = 2, �0 = 0:61266. �0 is chosen to make w (p) continuous at p = 0:25.

2. For 0:25 � p � 0:75, the CPF is identical to the inverse S-shaped Prelec function of
Figure 2.2 (� = 0:5; � = 1).

3. For 0:75 < p � 1, the CPF is identical to the S-shaped Prelec function, e��1(� ln p)�1 ,
with �1 = 2, �1 = 6:4808. �1 is chosen to make w (p) continuous at p = 0:75.

Remark 6 (Fixed points, concavity, convexity): The CPF in Figure 5.1 has �ve �xed
points: 0, 0:19549, e�1 = 0:36788, 0:857 01 and 1. It is strictly concave for 0:25 < p < e�1

and strictly convex for e�1 < p < 0:75 (a bit hard to see in Figure 5.1).24 The CPF is
strictly convex for 0 < p < 0:25 and strictly concave for 0:75 < p < 1.

Remark 7 (Underweighting and overweighting of probabilities): The CPF in Figure 5.1
overweights �low�probabilities, in the range 0:19549 < p < e�1 and underweights �high�
probabilities, in the range e�1 < p < 0:85701. These regions, therefore, address stylized

24For � 2
�
0; 12

�
or � 2

�
1
2 ; 1
�
the concavity/convexity is even milder than for � = 1

2 , with the slope
being less steep for � 2

�
0; 12

�
but more steep for � 2

�
1
2 ; 1
�
. In fact, w0 (p)! 0 as �! 0 and w0 (p)! 1

as �! 1.
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fact S1. Furthermore, the CPF underweights �very low�probabilities, in the range 0 < p <
0:19549 and overweights �very high�probabilities, in the range 0:85701 < p < 1. For p close
to zero, the CPF is nearly �at, thus capturing Arrow�s astute observation: �Obviously in
some sense it is right that he or she be less aware of low probability events, other things
being equal; but it does appear from the data that the sensitivity goes down too rapidly as
the probability decreases.�(Kenneth Arrow in Kunreuther et al., 1978, p. viii). Note that
this probability weighting function is also nearly �at near 1. These two segments, i.e.,
p 2 (0; 0:19549) [ (0:85701; 1) are able to address stylized fact S2.

The parameters in (5.1) were chosen primarily to clarify the properties in Remarks
6 and 7. The cuto¤ points 0:25 and 0:75 in (5.1) and Figure 5.1 were motivated by
actual evidence. Kunreuther et al. (1978, chapter 7) report that in one set of their
experiments (the �urn�experiments) 80% of subjects (facing actuarially fair premiums)
took up insurance against a loss with probability 0:25. But the take-up of insurance
declined when the probability of the loss declined (keeping the expected loss constant).
When the probability of the loss reached 0:001, only 20% of the subjects took up insurance
(although the premiums were fair). Thus, although Figure 5.1 was chosen primarily for
illustrative purposes, its qualitative features do match the evidence reported in Kunreuther
et al. (1978).

5.1.2. The farm experiments in Kunreuther (1978)

In a second set of experiments, the �farm�experiments, Kunreuther et al. (1978, ch. 7)
report that the take-up of actuarially fair insurance declines if the probability of the loss
(keeping the expected loss constant) goes below 0:05. This is captured by Figure 5.2.
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Figure 5.2: The composite Prelec function.

The CPF in Figure 5.2 is composed of segments from three Prelec functions, and is
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given by

w (p) =

8><>:
e�0:19286(� ln p)

2

i:e: � = 2; � = 0:19286 if 0 < p < 0:05

e�(� ln p)
1
2 i:e: � = 0:5; � = 1 if 0:05 � p � 0:95

e�86:081(� ln p)
2

i:e: � = 2; � = 86:081 if 0:95 < p � 1
(5.2)

The three segments of the CPF in (5.2) are described as follows.

1. For 0 � p < 0:05, the CPF is identical to the S-shaped Prelec function, e��0(� ln p)�0 ,
with �0 = 2, �0 = 0:19286. �0 is chosen to make w (p) continuous at p = 0:05.

2. For 0:05 � p � 0:95, the CPF is identical to the inverse S-shaped Prelec function of
Figure 2.2 (� = 0:5, � = 1).

3. For 0:95 < p � 1, the CPF is identical to the S-shaped Prelec function, e��1(� ln p)�1 ,
with �1 = 2, �1 = 86:081. �1 is chosen to make w (p) continuous at p = 0:95.

Remark 8 (Fixed points): This CPF has �ve �xed points: 0, 0:0055993, e�1, 0:98845 and
1. It is strictly concave for 0:05 < p < e�1 and strictly convex for e�1 < p < 0:95. It is,
strictly convex for 0 < p < 0:05 and strictly concave for 0:95 < p < 1.

Remark 9 (Underweighting and overweighting of probabilities): The CPF overweights
�low�probabilities, in the range 0:0055993 < p < e�1 and underweights �high�probabilities,
in the range e�1 = 0:36788 < p < 0:98845. This accounts for stylized fact S1. Behavior
near 0, and near 1, is not obvious from Figure 5.2. So, Figures 5.3 and 5.4, below,
respectively, magnify the regions near 0 and near 1.
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Figure 5.3: Behaviour of Figure 5.2 near 0.

From Figure 5.3, we see that (5.2) underweights very low probabilities, in the range
0 < p < 0:0055993. For p close to zero, we see that this probability weighting function
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is nearly �at, thus, again capturing Arrow�s observation �...it does appear from the data
that the sensitivity goes down too rapidly as the probability decreases.�From Figure 5.4,
we see that (5.2) overweights very high probabilities, in the range 0:98845 < p < 1. For p
close to one, we see that this probability weighting function is nearly �at.
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Figure 5.4: Behaviour of Figure 5.2 near 1.

5.2. A more formal treatment of the CPF

Notice that the upper cuto¤points for the �rst segment of the CPF�s in Figures 5.1 and 5.2
are respectively, at probabilities 0:25 and 0:05. Denote this cuto¤ point as p. Similarly,
the upper cuto¤ point for the second segment of the CPF in Figures 2.3 and 5.2 are
respectively, at probabilities 0:75 and 0:95. Denote this cuto¤ point as p. Now de�ne,

p = e
�
�
�
�0

� 1
�0��

; p = e
�
�
�
�1

� 1
�1��

(5.3)

The CPF�s in (5.1), (5.2) and their graphs, Figures 5.1, 5.4, suggest the following
de�nition.

De�nition 8 (Composite Prelec weighting function, CPF): By the composite Prelec weight-
ing function we mean the probability weighting function w : [0; 1]! [0; 1] given by

w (p) =

8>><>>:
0 if p = 0

e��0(� ln p)
�0

if 0 < p � p
e��(� ln p)

�

if p < p � p
e��1(� ln p)

�1
if p < p � 1

(5.4)

where p and p are given by (5.3) and

0 < � < 1, � > 0; �0 > 1, �0 > 0; �1 > 1, �1 > 0; �0 < 1=�
�0�1
1�� , �1 > 1=�

�1�1
1�� . (5.5)

Proposition 7 : The composite Prelec function (De�nition 8) is a probability weighting
function in the sense of De�nition 1.
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The restrictions � > 0, � > 0, �0 > 0 and �1 > 0, in (5.5), are required by the
axiomatic derivations of the Prelec function (see Prelec (1998), Luce (2001) and al-Nowaihi
and Dhami (2006)). The restriction �0 < 1=�

�0�1
1�� guarantees that the �rst segment of

the CPF, e��0(� ln p)
�0 , crosses the 450 to the left of p and the restriction �1 > 1=�

�1�1
1��

guarantees that the third segment of the CPF, e��1(� ln p)
�1 , crosses the 450 degree line to

the right of p. Together, they imply that the second segment of CPF, e��(� ln p)
�

, crosses
the 450 between these two limits. It follows that the interval

�
p; p
�
is not empty. These

interval limits are chosen so that the CPF in (5.4) is continuous across them. These
observations lead to the following proposition. First, de�ne p1, p2, p3 that correspond to
the notation used in our proposal for a CPF in Figure 2.3 (see section 2.3).

p1 = e
�
�
1
�0

� 1
�0�1

, p2 = e
�( 1� )

1
��1
, p3 = e

�
�
1
�1

� 1
�1�1

(5.6)

Proposition 8 : (a) p1 < p < p2 < p < p3. (b) p 2 (0; p1) ) w (p) < p. (c) p 2
(p1; p2)) w (p) > p. (d) p 2 (p2; p3)) w (p) < p. (e) p 2 (p3; 1)) w (p) > p.

By Proposition 7, the CPF in (5.4), (5.5) is a probability weighting function in the sense
of De�nition 1. By Proposition 8, a CPF overweights low probabilities, i.e., those in the
range (p1; p2), and underweights high probabilities, i.e., those in the range (p2; p3). Thus
it accounts for stylized fact S1. But, in addition, and unlike all the standard probability
weighting functions, it underweights probabilities near zero, i.e., those in the range (0; p1),
and overweights probabilities close to one, i.e., those in the range (p3; 1) as required in the
narrative of Kahneman and Tversky (1979, p. 282-83). Hence, a CPF also accounts for
the second stylized fact, S2.
The restrictions �0 > 1 and �1 > 1 in (5.5) ensure that a CPF has the following prop-

erties, listed below as Proposition 9, that will help explain human behavior for extremely
low probability events; see below.

Proposition 9 : The CPF (5.4):
(a) zero-underweights in�nitesimal probabilities, i.e., lim

p!0
w(p)
p
= 0 (De�nition 3a),

(b) zero-overweights near-one probabilities, i.e., lim
p!1

1�w(p)
1�p = 0 (De�nition 3b).

6. Axiomatic derivation of the composite Prelec probability weight-
ing function (CPF).

Recall from remark 5 that al-Nowaihi and Dhami (2006) gave an axiomatic derivation of
the Prelec probability weighting function, based on power invariance. Here we introduce
a version of power invariance that we call local power invariance. On the basis of this
behavioral property, we derive the CPF. First, we give a general de�nition of a CPF.
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De�nition 9 (Composite Prelec function, CPF): By the composite Prelec function we
mean the function w : [0; 1]! [0; 1] given by

w (p) =

�
0 if p = 0

e��i(� ln p)
�i if pi�1 < p � pi, i = 1; 2; :::n,

(6.1)

where �i > 0, �i > 0, p0 = 0, pn = 1 and

e��i(� ln pi)
�i
= e��i+1(� ln pi)

�i+1 , i = 1; 2; :::n� 1. (6.2)

The restriction (6.2) is needed to insure that w is continuous.

Proposition 10 : The composite Prelec functions (De�nition 9) are probability weighting
functions in the sense of De�nition 1.

De�nition 10 (Power invariance, al-Nowaihi and Dhami, 2006): A probability weighting
function, w, satis�es power invariance if: 8p; q 2 (0; 1), (w (p))� = w (q) )

�
w
�
p�
���

=

w
�
q�
�
, �; � 2 f2; 3g.

De�nition 11 (Local power invariance): Let 0 = p0 < p1 < ::: < pn = 1. A probability
weighting function, w, satis�es local power invariance if, for i = 1; 2; :::; n, w is C1 on
(pi�1; pi) and 8p; q 2 (pi�1; pi), (wi (p))� = wi (q) and p�; q� 2 (pi�1; pi) imply

�
w
�
p�
���

=

w
�
q�
�
.

Proposition 11 (al-Nowaihi and Dhami, 2006) The following are equivalent.
1. The probability weighting function, w, satis�es power invariance.
2. 8p; q 2 (0; 1), 8�; � 2 (0;1), (w (p))� = w (q))

�
w
�
p�
���

= w
�
q�
�
.

3. There is a function, ' : R++ ! R, such that, 8p 2 (0; 1), 8� 2 (0;1), w
�
p�
�
=

(w (p))'(�). Moreover, for some � 2 (0;1), ' (�) = ��.
4. w is the Prelec function (De�nition 7).

The interested reader can consult al-Nowaihi and Dhami (2006) for the proof of Propo-
sition 11.

De�nition 12 (Useful notation): Let 0 = p0 < p1 < ::: < pn = 1. De�ne P1 = (0; p1],
Pn = [pn�1; 1) and Pi = [pi�1; pi], i = 2; 3; :::; n� 1. Given p 2 Pi, i = 1; 2; :::; n, de�ne �i
as follows. �1 = [

ln p1
ln p
;1), �n = (0; ln pn�1ln p

], �i =
h
ln pi
ln p
; ln pi�1

ln p

i
, i = 2; 3; :::; n� 1.

Remark 10 : The problem with the notation
h
ln pi
ln p
; ln pi�1

ln p

i
is that it is not de�ned for the

two special cases i = 1; p = p0 = 0 and i = n; p = pn = 1. We have, therefore, introduced
De�nition 12 to avoid this, by excluding the points 0 and 1.
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Lemma 1 : Let pi, Pi and �i be as in De�nition 12. Then,

Let p 2 (pi�1; pi) . Then p� 2 (pi�1; pi), � 2
�
ln pi
ln p

;
ln pi�1
ln p

�
, (6.3)

furthermore, 0 <
ln pi
ln p

< 1 <
ln pi�1
ln p

. (6.4)

Let p 2 Pi. Then p� 2 Pi , � 2 �i. (6.5)

Proposition 12 (CPF representation): The following are equivalent.
(a) The probability weighting function, w, satis�es local power invariance.
(b) There are functions, 'i : �i ! R++, such that 'i is C1 on

�
ln pi
ln p
; ln pi�1

ln p

�
, i = 1; 2; :::; n,

where 0 = p0 < p1 < ::: < pn = 1, and, 8p 2 Pi, 8� 2 �i, w
�
p�
�
= (w (p))'i(�). Moreover,

for each i = 1; 2; :::; n, 9 �i 2 (0;1), 'i (�) = ��i.
(c) w is a composite Prelec function (De�nition 9).

7. Composite Cumulative Prospect Theory (CCP)

Composite prospect theory (CCP) requires standard cumulative prospect theory (CP) to
use the axiomatically founded cumulative Prelec probability weighting function CPF. As
noted in section 5, the CPF is consistent with S1 and S2 in contrast to the standard
probability weighting functions in CP which are inconsistent with S2. Since the other
components of CP and CCP are identical, and CP is well known, we restrict ourselves to
a brief formal statement of CCP. Consider a lottery in the form

L = (y�m; p�m; y�m+1; p�m+1; :::; y�1; p�1; y0; p0; y1; p1; y2; p2; :::; yn; pn) ;

where y�m < ::: < y�1 < y0 < y1 < ::: < yn are the outcomes or the �nal positions of
aggregate wealth and p�m; :::; p�1; p0; p1; :::pn are the corresponding objective probabilities,
so
Pn

i=�m pi = 1 and pi � 0. In CCP, as in CP, decision makers derive utility from wealth
relative to a reference point for wealth, y0.25

De�nition 13 (Lotteries in incremental form) Let xi = yi � y0; i = �m;�m + 1; :::; n

be the increment in wealth relative to y0 and x�m < ::: < x0 = 0 < ::: < xn. Let the
restriction on probabilities be �ni=�mpi = 1, pi � 0, i = �m;�m+1; :::; n. Then, a lottery
is presented in incremental form if it is represented as:

L = (x�m; p�m; :::;x�1; p�1;x0; p0;x1; p1; :::;xn; pn) , (7.1)

25y0 could be initial wealth, status-quo wealth, average wealth, desired wealth, rational expectations of
future wealth etc. depending on the context.
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De�nition 14 (Set of Lotteries): Denote by LP the set of all lotteries of the form given
in (7.1) subject to the restrictions in de�nition 13.

De�nition 15 (Domains of losses and gains): The decision maker is said to be in the
domain of gains if xi > 0 and in the domain of losses if xi < 0. The reference point x0 lies
neither in the domain of gains nor in the domain of losses.

7.1. The value function under CCP

The utility function under CCP is de�ned over the set LP .

De�nition 16 (Tversky and Kahneman, 1979). A utility function, v(x), is a continuous,
strictly increasing, mapping v : R! R that satis�es:
1. v (0) = 0 (reference dependence).
2. v (x) is concave for x � 0 (declining sensitivity for gains).
3. v (x) is convex for x � 0 (declining sensitivity for losses).
4. �v (�x) > v (x) for x > 0 (loss aversion).

Tversky and Kahneman (1992) propose the following utility function:

v (x) =

�
x if x � 0

�� (�x)� if x < 0
(7.2)

where ; �; � are constants. The coe¢ cients of the power function satisfy 0 <  < 1; 0 <
� < 1. � > 1 is known as the coe¢ cient of loss aversion. Tversky and Kahneman (1992)
assert (but do not prove) that the axiom of preference homogeneity ((x; p) � y ) (kx; p) �
ky) generates this value function. al-Nowaihi et al. (2008) give a formal proof, as well as
some other results (e.g. hat  is necessarily identical to �). Tversky and Kahneman (1992)
estimated that  ' � ' 0:88 and � ' 2:25. The reader can check the properties listed in
de�nition 16 for the utility function, (7.2), drawn in �gure 7.1 for the case:�

v(x) =

p
x if x � 0

�2:5
p
�x if x < 0

(7.3)

7.2. Construction of decision weights under CCP

Let w(p) be the CPF in De�nition 8. We could have di¤erent weighting functions for
the domain of gains and losses, respectively, w+ (p) and w� (p). However, we make the
empirically founded assumption that w+ (p) = w� (p); see Prelec (1998).
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Figure 7.1: The utility function under CCP for the case in (7.3)

De�nition 17 (Tversky and Kahneman, 1992). For CCP, the decision weights, �i, are
de�ned as follows:

Domain of Gains Domain of Losses
�n = w (pn) ��m = w (p�m)
�n�1 = w (pn�1 + pn)� w (pn) ::: ��m+1 = w (p�m + p�m+1)� w (p�m) :::
�i = w

�
�nj=i pj

�
� w

�
�nj=i+1 pj

�
::: �j = w

�
�ji=�m pi

�
� w

�
�j�1i=�m pi

�
:::

�1 = w
�
�nj=1 pj

�
� w

�
�nj=2 pj

�
��1 = w

�
��1i=�m pi

�
� w

�
��2i=�m pi

�
7.3. The objective function under prospect theory

As in EU, a decision maker using CCP maximizes a well de�ned objective function, called
the value function, which we now de�ne.

De�nition 18 (The value function under CCP) The value of the lottery, LP , to the de-
cision maker is given by

V (LP ) = �ni=�m�iv (xi) (7.4)

Note that the decision weights across the domain of gains and losses do not necessarily
add up to 1.26 To see this, from de�nition 17, we get thatPn

j=�m �j = w
�
�nj=1 pj

�
+ w

�
��1i=�m pi

�
6= 1 (7.5)

26This contrasts with the case of RDU, in which there is no conception of di¤erent domains of gains
and losses and the decision weights add up to one.
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If all outcomes were in the domain of gains then we get
Pn

j=1 �j = w
�
�nj=1 pj

�
= 1 because

�nj=1 pj = 1 and w(1) = 1 (as in RDU). If all outcomes were in the domain of losses then
similarly

P�1
j=�m �j = w

�
��1j=�m pj

�
= 1 because ��1j=�m pj = 1 and w(1) = 1 (as in RDU).

For the general case when there are some outcomes in the domain of gains and others in
loss then, since v (0) = 0, the decision weight on the reference outcome, �0, can be chosen
arbitrarily. We have found it technically convenient to de�ne �0 = 1� ��1i=�m�i � �ni=1�i,
so that �ni=�m�i = 1:

8. Some Applications of CCP

We give three applications of CCP in this section. The �rst application is the take-
up of insurance for low probability events (see section 3.1). Using one of Kunreuther�s
(1978) experiments, it shows, numerically, that the data is consistent with CCP but not
CP (or RDU). The second application shows how CCP can address the Becker paradox
(see section 3.2) but CP (and RDU) cannot. The third application shows how the St.
Petersburg paradox that re-emerges under CP can be solved under CCP.

8.1. Insurance

Suppose that a decision maker can su¤er the loss, L > 0, with probability p 2 (0; 1).
He/She can buy coverage, C 2 [0; L], at the cost rC, where r 2 (0; 1) is the premium rate,
which is actuarially fair, so r = p. Hence, with probability, 1 � p, the decision maker�s
wealth is W � rC, and with probability p, her wealth is W � rC � L + C � W � rC.
Suppose that the reference point of the individual is the status quo i.e. y0 = W .
Expressed in incremental form, the lottery faced by the decision maker under CCP is

(�L+ C � rC; p;�rC; 1� p). Thus, in both states of the world the outcomes are in the
domain of loss. In terms of our exposition of CCP in section 7, we have a lottery of the
form: (x1; p;x2; 1� p), i.e., loose x1 with probability p or lose x2 with probability 1 � p,
x1 < x2, 0 � p � 1. In this case, using the construction of decision weights in de�nition
17, and the utility function v (x) in (7.2), the value function in (7.4) implies

V (x1; p;x2; 1� p) = w (p) v (x1) + [1� w (p)] v (x2) , (8.1)

Now consider a decision maker whose behavior is described by CCP and who faces the
insurance problem, given above. For such a decision maker, the value function from the
act of purchasing some level of coverage C 2 [0; L] is given by

VI (C) = w (p) v (�L+ C � rC) + [1� w (p)] v (�rC) . (8.2)
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Since VI (C) is a continuous function on the non-empty compact interval [0; L], an optimal
level of coverage, C�, exists. For full insurance, C = L, (8.2) gives:

VI (L) = v (�rL) . (8.3)

On the other hand, if the decision maker does not buy any insurance coverage (i.e. C = 0),
the value function is (recall that v (0) = 0):

VNI = w (p) v (�L) . (8.4)

For the decision maker to buy full coverage, under the actuarially-fair condition, the fol-
lowing participation constraint must be satis�ed:

VNI � VI (C�) . (8.5)

We now provide an example that is motivated by Kunreuther�s (1978) empirical results.

Example 2 : Suppose that a decision maker faces a loss, L, of $200,000 with probability
p = 0:001. Under CP, the decision maker uses a standard probability weighting function,
say, the Prelec function, w (p) = e��(� ln p)

�

with � = 1 and � = 0:50. Using experimental
values suggested by Kahneman and Tversky (1979), the utility function (7.2) is

v (x) =

�
x0:88 if x � 0

�2:25 (�x)0:88 if x < 0
:

For CCP, we take the CPF in (5.1) from Kunreuther�s urn experiments. For p = 0:001, for
CCP, (5.1) gives w (0:001) = e�0:612 66(� ln 0:001)

2

. We now see if it is optimal for a decision
maker under, respectively, CP and CCP, to fully insure, i.e., C = L. Using (8.5), we need
to check, in each case, the following condition that ensures full insurance (we have used
the actuarially fair condition r = p):

w (p) v (�L) � v (�pL) (8.6)

(a) Decision maker uses CP: In this case, (8.6) requires that

e�(� ln 0:001)
0:50
�
�2:25

�
2� 105

�0:88� � ��2:25 �0:001� 2� 105�0:88�
, �7510:2 � �238:28;

which is true. Hence, a decision maker who uses CP will fully insure. However, as noted in
section 5.1.1, Kunreuther�s (1978) data shows that only 20% of the decision makers insure.
(b) Decision maker uses CCP: In this case, (8.6) requires that

e�0:612 66(� ln 0:001)
2
�
�2:25

�
2� 105

�0:88� � ��2:25 �0:001� 2� 105�0:88�
, �2: 093� 10�8 � �238:28,

which is not true. Hence, a decision maker using CCPwill not insure, which is in conformity
with Kunreuther�s (1978) data.
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Example 3 : Now continue to use the set-up of Example 2. However, let the probability
of a loss be p = 0:25 (instead of p = 0:001). Kunreuther�s (1978) data shows that 80%
of the experimental subjects took up insurance in this case. For CCP, as in Example 2,
we take the CPF in (5.1) from Kunreuther�s urn experiments. For p = 0:25 the Prelec
and CCP functions coincide and w (p) = e��(� ln p)

�

: Thus, in each case the full insurance
condition w (p) v (�L) � v (�pL) in (8.6) is given by

e�(� ln 0:25)
0:50
�
�2:25

�
2� 105

�0:88� � ��2:25 �0:25� 2� 105�0:88�
, �32044 � �30710;

which is true. Hence, for losses whose probability is bounded well away from the end-
points, the predictions of, both, CP and CCP are in conformity with the evidence.

In conjunction, Examples 2 and 3 illustrate how CCP can account well for the evidence
for events of all probabilities while CP�s predictions for low probability events are incorrect.
In reality, of course, the insurance problem is much more complicated.27 In particular,

there could be considerations of �xed costs of insurance, and insurance premiums might
not be actuarially fair. A more satisfactory treatment of the insurance problem is beyond
the scope of this paper. However, al-Nowaihi and Dhami (2010i) give a full treatment
of the insurance problem that includes �xed costs and actuarially unfair premiums. It
turns out that the central insight of Examples 2 and 3 survives in these more complicated
settings. Decision makers who use CCP exhibit much more realistic insurance behavior as
compared to decision makers who use CP or RDU.
We note here the intuition, more generally, for why CP fails to address the insurance

problem but CCP is able to address it. For � < 1, the Prelec function in�nitely-overweights
in�nitesimal probabilities (De�nitions 2a and 7 and Proposition 6(ai)). In this case, and as
illustrated in Figure 2.2, the probability weighting function is very steep near 0 (becoming
in�nitely steep in the limit as p ! 0) and considerably overweights probabilities close to
0. Now return to (8.1). Recall that x1 < x2 < 0 in this case. Hence, x1 is the di¤erence
between wealth if the loss occurs (with probability, p) and reference wealth. On the other
hand, x2 is the di¤erence between wealth if the loss does not occur (with probability 1�p)
and reference wealth. In the latter case, the only costs incurred are the minor ones of
the premium payment. As p ! 0, w (p) increasingly overweights p. This increases the
relative salience of the term, w (p) v (x1) but reduces the relative salience of the term,

27Much of the economics of insurance literature operates under an EU framework. However, EU is unable
to explain many important stylized facts in insurance. First, it does not explain the lack of insurance for
very low probability events. Second, EU is unable to explain why many people simultaneously gamble
and insure (PT, CP, CCP easily explain this). Third, EU recommends probabilistic insurance which is
contradicted by the experimental evidence (Kahneman and Tversky, 1979: 269-271).
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[1� w (p)]u (x1). This makes insurance even more attractive under CP than under EU
(which was already too high, given the evidence).
The converse occurs under CCP. Here, the probability weighting function zero under-

weights in�nitesimal probabilities (De�nition 3a). This is the case for the Prelec function
with � > 1 (De�nition 7 and Proposition 6(bii)). In this case, and as illustrated in Figure
4.1, and section 5, the probability weighting function is very shallow near 0 (and the slope,
in fact, approaches zero) and considerably underweights probabilities close to 0. Now re-
turn to (8.1). As p ! 0, w (p) underweights p. This reduces the relative salience of the
term, w (p) v (x1) but increases the relative salience of the term, [1� w]u (x2). This makes
insurance against very low probability events unattractive under CCP, in conformity with
the evidence.

8.2. Is it optimal to hang o¤enders with probability zero?

We now examine the Becker proposition that we outlined in section 3.2. Suppose that an
individual receives income y0 � 0 from being engaged in some legal activity and income
y1 � y0 from being engaged in some illegal activity. Hence, the bene�t, b, from the illegal
activity is b = y1 � y0 � 0. If engaged in the illegal activity, the individual is caught with
some probability p, 0 � p � 1. If caught, the individual is asked to pay a �ne F ,

b � F � Fmax � 1. (8.7)

Thus, it is feasible to levy a �ne that is at least as great as the bene�t from crime, b.
Society also imposes an upper limit on the �ne, Fmax. Given the enforcement parameters
(p; F ) the individual makes only one choice: to commit the crime or not.
We consider a hyperbolic punishment function which encapsulates in a simple manner,

the idea that p; F are substitutes in deterrence,28

F = '(p) = b=p: (8.8)

Notice that in (8.8), �nes vary continuously with p.

8.2.1. Illustration of the Becker proposition under EU

We �rst show that Becker�s proposition holds under EU. Consider an individual with
continuously di¤erentiable and strictly increasing utility of income, u. So, from the activity

28Dhami and al-Nowaihi (2010h) show that the hyperbolic punishment function is optimal for a wide
class of cost of deterrance and damage from crime functions. Furthermore, they show that it provides
an upper bound on punishments for a large and sensible class of cost and damage functions. Thus, if
the hyperbolic punishment function is not able to support the Becker proposition, then the optimal
punishment functions with a weaker level of punishment cannot support the proposition either.
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�no-crime�, his payo¤, UNC , is UNC = u (y0). His payo¤ from the activity �crime�, EUC , is
given by

EUC = pu (y1 � F ) + (1� p)u (y1) . (8.9)

It is not worthwhile to engage in crime if the no-crime condition (NCC ), EUC � UNC , is
satis�ed. Substituting UNC , EUC in the NCC we get

pu (y1 � F ) + (1� p)u (y1) � u (y0) . (8.10)

Since y1�b = y0, (8.10) is clearly satis�ed for p = 1 and F = b. The NCC (8.10) continues
to hold, as p is reduced from 1, if, and only if, the following is the case,

d

dp
[pu (y1 � ' (p)) + (1� p)u (y1)] � 0, (8.11)

Since F = '(p) = b=p, (8.11) can be written as:

u0 (y1 � ' (p)) �
u (y1)� u (y1 � ' (p))

' (p)
. (8.12)

If the decision maker is risk averse or risk neutral, so that u is concave, then the NCC
(8.12) will hold for all p 2 (0; 1].

Proposition 13 (Becker Proposition): Under EU if the individual is risk neutral or risk
averse, so that u is concave, then the hyperbolic punishment function ' (p) = b

p
will deter

crime. It follows that given any probability of detection and conviction, p > 0, no matter
how small, crime can be deterred by a su¢ ciently large punishment.

8.2.2. The Becker paradox under CP and CCP

Recall from section 3.2 that the empirical evidence is not supportive of the Becker propo-
sition (Becker paradox). We now show how the Becker paradox can be resolved. Suppose
that the reference incomes for the two activities, crime and no-crime, are, respectively, yR
and yr. Then the payo¤ from not committing crime is

VNC = v (y0 � yr) . (8.13)

Assume that if an individual commits a crime which gives income y1, and is caught with
probability p, then the outcome (y1�F ) is in the domain of losses (i.e. y1�F � yR < 0).
On the other hand, if he commits a crime and is not caught, then the outcome, y1, is
assumed to be in the domain of gains (i.e. y1 � yR > 0). Thus, we have one outcome
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each in the domain of losses and gains,29 with respective decision weights, w� (p) and
w+ (1� p).30 Then, under CP, the individual�s payo¤ from committing a crime is given
by the value function

VC = w
� (p) v (y1 � F � yR) + w+ (1� p) v(y1 � yR): (8.14)

De�nition 19 (Elation): We shall refer to v(y1 � yR) as the elation from committing a
crime and getting away with it.

Substituting (8.13), (8.14) into the �no crime condition�(NCC), VC � VNC ,

w (p) v (y1 � F � yR) + w (1� p) v(y1 � yR) � v (y0 � yr) . (8.15)

The NCC in (8.15) depends on the two reference points, yr and yR. The recent litera-
ture has suggested that the reference point should be the rational expectation of income.31

Our model is consistent with a perfect foresight rational expectations path. Hence, the
rational expectation of income from an activity is the expected income from that activity.
Thus,

yr = y0; yR = y1 � p' (p) . (8.16)

Since the carrier of utility under CP and CCP is income relative to the reference point, we
get y1 � yR = p' (p), y1 � ' (p)� yR = � (1� p)' (p), y0 � yr = 0. Hence, and recalling
that v(0) = 0, the NCC (8.15) becomes

w� (p) v (� (1� p)' (p)) + w+ (1� p) v(p' (p)) � 0. (8.17)

For the power function form of utility (7.2) with � =  (which is consistent with the
empirical evidence), the NCC (8.17) becomes:

�� (1� p) ' (p) w� (p) + p' (p) w+ (1� p) � 0. (8.18)

For ' (p) > 0, this simpli�es to

w�(p)

p
� w+(1� p)
� (1� p) . (8.19)

29This accords with basic intuition: If a criminal gets away with the crime, he/she is in the domain of
gains, otherwise, if caught, the criminal is in the domain of losses.
30In this case, CP reduces to PT. We have superscripted the decision weights to indicate if the outcome

is in the domain of gains or losses. For the Prelec weighting function, however, the weighting function is
identical in the domain of gains and losses, so w�(p) = w+(p) = w(p):
31See, for instance, Koszegi and Rabin (2006).
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Proposition 14 : As the probability of detection approaches zero, a decision maker using
CP who (i) faces a strictly positive punishment, i.e., ' (p) > 0, (ii) satis�es preference
homogeneity32 and (iii) whose reference points are given by (8.16),
(a) does not engage in the criminal activity if the probability weighting function satis�es
the condition

lim
p!0

w�(p)

p
>
1

�
. (8.20)

(b) On the other hand, the same individual engages in crime if

lim
p!0

w�(p)

p
<
1

�
. (8.21)

Lemma 2 : For Prelec�s function, and for  > 0, lim
p!0

w(p)
p
=1 and lim

p!0
w(p)
p
=1.

In view of Proposition 14(a), Lemma 2, the Becker paradox reemerges under CP for
any �standard�probability weighting function, for which lim

p!0
w(p)
p

= 1. However, under

CCP, using the CPF in De�nition 8 we get that lim
p!0

w�(p)
p

= 0. The Becker paradox can

then be explained under CCP by directly using Proposition 14(b).
We have considered a simpli�ed model of crime that can admit several possible modi-

�cations. For instance, issues of heterogeneity among the population with respect to their
reference points could be important. It is also desirable to explicitly model the costs of
deterrence and damages from crime functions explicitly, in the tradition of Becker (1968).
These extensions are beyond the scope of the current paper. The interested reader can con-
sult Dhami and al-Nowaihi (2010h) for these extension, but the results for the elementary
model, that we presented above, continue to hold.

8.3. The St. Petersburg paradox

Blavatskyy (2005) and Rieger and Wang (2006) have shown that the St. Petersburg para-
dox reemerges under CP. They prove that, even with a strictly concave utility function,
the Bernoulli lottery will have an in�nite expected utility under CP. Their analysis shows
that this is due to the fact that all the standard probability weighting functions (see De-
�nition 4) in�nitely overweight in�nitesimal probabilities. To solve this problem, Rieger
and Wang (2006) propose a probability weighting which (in our terminology) �nitely over-
weights in�nitesimal probabilities.

32This ensures that the value function under CP and CCP has the power form in (7.2); see al-Nowaihi
et al. (2008).
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De�nition 20 : The Rieger and Wang (2006) probability weighting function is given by33

w (p) = p+
3 (1� b)
1� a+ a2

�
ap� (1 + a) p2 + p3

�
, a 2

�
2

9
; 1

�
, b 2 (0; 1) , 0 � p � 1. (8.22)

The following proposition can be proved using a simple proof that we omit.

Proposition 15 : The Rieger and Wang function (8.22) �nitely-overweights in�nitesimal
probabilities, i.e., lim

p!0
w(p)
p
2 (1;1); see De�nition 4. Depending on the values of the

parameters a and b, the Rieger and Wang function (8.22) �nitely underweights near-one
probabilities, or positively overweights near-one probabilities, i.e., lim

p!1
1�w(p)
1�p 2 (1;1) or

lim
p!1

1�w(p)
1�p 2 (0; 1), respectively; see De�nition 4b and De�nition 5b.

Rieger and Wang then go on to show that the probability weighting function (8.22)
solves the St. Petersburg paradox under CP by generating a �nite expected utility.34 It
does so, because, although it overweights low probabilities, it only �nitely overweights
them. However, because it overweights in�nitesimal probabilities it, like the other prob-
ability weighting functions, is unable to explain the insurance paradox and, also like the
other probability weighting functions, it does not capture the fact that decision makers
code very small probability events as impossible.
In contrast to the Rieger and Wang function, CCP because it zero underweights near

zero probabilities, can also explain the St. Petersburg paradox (a simple proof, that
we omit, will demonstrate this fact). However, in applications (for instance, insurance
implications) the CPF (and, hence, CCP) is a signi�cant improvement. Furthermore,
there are no known axiomatic foundations of the Rieger and Wang function, unlike the
CPF which is axiomatically founded.

9. Why is CCP possibly the best available decision theory?

It is widely accepted that EU is refuted by a large body of literature.35 For this reason,
we shall focus here only on the salient mainstream alternatives to EU. As the reader will
appreciate, our observations will apply to a much larger set of theories.
One could combine the Composite Prelec weighting functions (CPF) in our paper with

Quiggen�s (1982) RDU to propose composite rank dependent utility (CRDU). However, we
believe that composite prospect theory (CCP) is a much better alternative than CRDU.

33Rieger and Wang state, incorrectly, that a 2 (0; 1). For su¢ ciently low a and p ' 1
3 , w (p), as given

by (8.22), is decreasing in p. The lower bound of 29 on a is su¢ cient, but not necessary, for w (p) to be
strictly increasing.
34We omit the proof; the interested reader can directly consult their paper.
35See, for instance, Kahneman and Tversky (2000) and Starmer (2000) for surveys.
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CRDU could be thought of as a special case of CCP with a reference point of zero and
absence of the domain of gains and losses. However, this rules out the psychologically
powerful notion of loss aversion and reference dependence, which have strong explanatory
power in a variety of contexts.36 Our strong hunch is that this will considerably weaken the
power of theory. Reference dependence and loss aversion are robust �ndings from exper-
imental and �eld data, that have enormous explanatory potential and are too important
to be ignored. For that reason, we have not focussed on CRDU in this paper.
Regret theory tries to incorporate the ideas of regret, and its counterpart, rejoice, into

decision theory.37 It postulates the existence of a regret function over binary comparisons
of outcomes and then choose an action that has the lowest regret, using objective weighting
of probabilities. There is no notion of loss aversion and reference dependence; problems
that it shares with RDU. Furthermore, regret theory is not able to account for the two
important stylized facts S1 and S2 outlined in section ?? in the introduction. Hence, it
would, for instance, �nd it hard to solve the 3 applications that we discuss in section 8.
Similar comments apply to the case based decision theory of Gilboa and Schmeidler

(2001) although it would seem to have greater applicability in situations of uncertainty
rather than risk. However, in one important approach to uncertainty, Tversky and Koehler
(1994), Rottenstreich and Tversky (1997) outline �support theory�.38 In essence, they pro-
pose axioms which allow, in the �rst stage, for a situation of uncertainty to be transformed
into a situation of risk. Then, in the second stage, decision makers simply use PT or CP
(and by implication, CCP) to choose among risky prospects. This, once again, allows for
a central role for PT, CP, and CCP, even in situations of uncertainty.
These observations lead us to assert that, of the available alternatives at the moment,

CCP is possibly the best decision theory, particularly under risk.

10. Conclusions

Kahneman and Tversky�s (1979) prospect theory (PT) revolutionized decision theory. It
was a psychologically rich, empirically corroborated and rigorous account of decision mak-
ing under risk. The psychological richness stemmed, partly, from a distinction between an
editing phase and an evaluation/decision phase. An important part of the editing phase
was to determine which low probability events to ignore and which high probability events

36See, for instance, the applications discussed in Camerer (2000), Kahneman and Tversky (2000) and
Barberis and Thaler (2003).
37Important early ideas that formed the basis of subsequent developments in this area are Bell (1982),

Loomes and Sugden (1982) and Fishburn (1982).
38Existing theories of uncertainty have been recently strongly criticised by al-Najjar and Weinstein

(2009). See the same issue of Economics and Philosophy for replies by emiment theorists working in the
area and the rejoinder by al-Najjar and Weinstein. However, support theory is not subjected to these
critiques.
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to treat as certain. But this was not rigorously formalized. Furthermore, PT allowed for
the choice of stochastically dominated options, which was not well received.
In their update to PT, Tversky and Kahneman (1992) proposed cumulative prospect

theory (CP), which eliminated the editing phase altogether but ensured, using insights
introduced by Quiggen�s (1982) rank dependent utility (RDU), that decision makers would
not choose stochastically dominated options. Thus, the gains from introducing CP were
somewhat diminished by substantial loss in psychological realism.
In this paper, we combine PT and CP into composite prospect theory (CCP). In CCP,

the editing and decision phases are combined into a single phase. Thus, we are able to
combine the psychological richness of PT with the more satisfactory attitudes towards
stochastic dominance under CP. CCP is consistent with the evidence, which shows that
(i) people overweight low probabilities and underweight high probabilities, but (ii) ignore
events of extremely low probability and treat extremely high probability events as certain.
We also provide three applications of CCP to outstanding puzzles in economics: insurance
behavior towards low probability events, St. Petersburg paradox, and the ine¢ cacy of
low-probability capital punishment.
We believe that CCP o¤ers, at the moment, the best choice, among the alternatives.

11. Appendices

11.1. Appendix-A: Proofs of the results

Proof of Proposition 1: These properties follow immediately from De�nition 1. �.
We shall use the following simple lemma.

Lemma 3 : Let w (p) be a probability weighting function (De�nition 1). Then:
(a) If w (p) is di¤erentiable in a neighborhood of p = 0, then lim

p!0
w(p)
p
= lim

p!0
w0 (p).

(b) If w (p) is di¤erentiable in a neighborhood of p = 1, then lim
p!1

1�w(p)
1�p = lim

p!1
w0 (p).

Proof of Lemma 3: (a) Let p ! 0. Since w is continuous (Proposition 1c), w (p) !
w (0) = 0 (Proposition 1a). By L�Hospital�s rule, w(p)

p
! dw(p)=dp

dp=dp
= w0 (p).

(b) Similarly, if p ! 1, then w (p) ! w (1) = 1. By L�Hospital�s rule, 1�w(p)
1�p !

d[1�w(p)]=dp
d(1�p)=dp = w0 (p). �.
Proof of Proposition 2: w(p)

p
= 1

[p+(1�p) ]
1
 p1�

!1, as p! 0.

1�w(p)
1�p ! w0 (p) =

n

p
+ 1

p+(1�p)
h

1
(1�p)1� �

1
p1�

io
w (p)!1, as p! 1. �.

Proof of Proposition 3: Straightforward from De�nition 7. �.
Proof of Proposition 4: Obvious from De�nition 7. �.
The following lemmas will be useful.
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Lemma 4 : For � 6= 1, the Prelec function (De�nition 7) has exactly three �xed points,

at 0, p� = e�(
1
� )

1
��1

and 1. In particular, for � = 1, p� = e�1.

Proof of Lemma 4: From Propositions 1a and 3 it follows that 0 and 1 are �xed
points of the Prelec function. For � 6= 1 and p� 2 (0; 1), a simple calculation shows that

e��(� ln p
�)� = p� , p� = e�(

1
� )

1
��1
. In particular, � = 1 gives p� = e�1. �.

Lemma 5 : Let w (p) be the Prelec function (De�nition 7) and let

f (p) = �� (� ln p)� + ln p+ 1� �, p 2 (0; 1) , (11.1)

then
f 0 (p) =

1

p

�
1� �2� (� ln p)��1

�
, p 2 (0; 1) , (11.2)

w00 (p) =
w0 (p)

p (� ln p)f (p) , p 2 (0; 1) , (11.3)

w00 (p) Q 0, f (p) Q 0, p 2 (0; 1) . (11.4)

Proof of Lemma 5: Di¤erentiate (11.1) to get (11.2). Di¤erentiate (4.3) twice and use
(11.1) to get (11.3). � ln p > 0, since p 2 (0; 1). w0 (p) > 0 follows from De�nitions (1)
and (7) and Proposition (3). (11.4) then follows from (11.3). �.

Lemma 6 : Let w (p) be the Prelec function (De�nition 7). Suppose � 6= 1. Then
(a) w00 (ep) = 0 for some ep 2 (0; 1) and, for any such ep:

(i) For � < 1 : p < ep) w00 (p) < 0, p > ep) w00 (p) > 0 (11.5)

(i) For � > 1 : p < ep) w00 (p) > 0, p > ep) w00 (p) < 0 (11.6)

(b) The Prelec function has a unique in�exion point, ep 2 (0; 1), and is characterized by
f (ep) = 0, where f(p) is de�ned in (11.1) i.e., �� (� ln ep)� + ln ep+ 1� � = 0.
(c) � = 1) ep = e�1.
(d) @ep

@�
= �ep(� ln ep)1+�

(��1)(��ln ep) .
(e) @[w(ep)�ep]

@�
= ep(� ln ep)1+�

(��1)(��ln ep)
�
e
1��
� (ep) 1��� � �

�
.

(f) ep Q w (ep), � Q 1.

Proof of Lemma 6: (a) Suppose � < 1. From (11.1) we see that

lim
p!1
f (p) = 1� � > 0; lim

p!0
f (p) =

�
��

(� ln p)1��
+ 1

�
ln p+ 1� � = �1
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Since f is continuous, it follows that f (ep) = 0, for some ep 2 (0; 1). From (11.4), it follows
that w00 (ep) = 0. Since � < 1, (11.1) gives �� (� ln ep)� + ln ep < 0 and, hence,

ep < e�(��) 1
1�� . (11.7)

Consider the case, p < ep. From (11.7) it follows that p < e�(��)
1

1�� and, hence, 1 �
�2�

(� ln p)1�� > 1 � � > 0. Thus, from (11.2), f 0 (p) > 0. Since f (ep) = 0, it follows that
f (p) < 0. Hence, from (11.4), it follows that w00 (p) < 0. This establishes the �rst part of
(??). The derivation of the second part of (??) is similar. The case � > 1 is similar.
(b) follows from (a) and (11.1), (11.4).
(c) Since f (e�1) = 0 for � = 1, it follows from (b) that ep = e�1 in this case.
(d) Di¤erentiating the identity f (ep) = 0 with respect to � gives @ep

@�
= �ep(� ln ep)�

�2�(� ln ep)��1�1 ,
then using f (ep) = 0 gives @ep

@�
= �ep(� ln ep)1+�

(��1)(��ln ep) .
(e) Di¤erentiate w (ep)�ep = e��(� ln ep)��ep with respect to �, and use (d) and f (ep) = 0,

to get @[w(ep)�ep]
@�

= ep(� ln ep)1+�
(��1)(��ln ep)

�
e
1��
� (ep) 1��� � �

�
.

(f) Assume � < 1. For � = 1, ep = e�1 and, hence, e 1��� (ep) 1��� �� = e 1��� (e�1)
1��
� �� =

1 � � > 0. Since @ep
@�
< 0 for � < 1, it follows that e

1��
� (ep) 1��� � � > 0 for � � 1. Hence,

@[w(ep)�ep]
@�

< 0 for � � 1. We have w (ep) � ep = w (e�1) � e�1 = w (p�) � p� = 0 for � = 1
(recall part c and Lemma 4). Hence, w (ep) > ep for � < 1. The case � � 0 is similar. The
case � > 1 is similar. �.
Proof of Proposition 5: (a) is established by Lemma 4. (b) is established by Lemma

6b. (c) follows from Lemma 6a(i). (d) follows from Lemma 6a(ii). (e), (f) and (g) follow
from Lemma 6f �.
Proof of Corollary 1: Immediate from Proposition 5. �.
Proof of Proposition 6: From (4.3) we get ln w(p)

p
= lnw (p)�ln p = �� (� ln p)��ln p =

(� ln p)�
�
(� ln p)1�� � �

�
. Hence, if � < 1, then lim

p!0
ln w(p)

p
= 1 and, hence, lim

p!0
w(p)
p
=

1. This establishes (ai). On the other hand, if � > 1, then lim
p!0

ln w(p)
p
= �1 and, hence,

lim
p!0

w(p)
p
= 0. This establishes (bi). From (4.3) we get w0 (p) = ��

p
(� ln p)��1w (p). If

� < 1, then lim
p!1
w0 (p) = 1. Part (aii) then follows from Lemma 3b. If � > 1, then

lim
p!1
w0 (p) = 0. Part (bii) then follows from Lemma 3b. �.
Proof of Proposition 7: Straightforward from De�nition 8. �.
Proof of Proposition 8: Follows by direct calculation from (5.4) and (5.5). �.
Proof of Proposition 9: Part (a) follows from part (bi) of Proposition 6, since �0 > 1.

Part (b) follows from part (bii) of Proposition 6, since �1 > 1. �.
Proof of Proposition 13: If ' (p) = b

p
then the NCC (8.12) holds for concave u and,

hence, the result follows.�
Proof of Proposition 10: Straightforward from De�nitions 1 and 9. �.
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Proof of Lemma 1: Straightforward from De�nition 12. �.
Proof of Proposition 12: (a))(b). Suppose the probability weighting function, w,

satis�es local power invariance.
Let

f (x; �) = w
��
w�1

�
e�x
����

, x; � 2 R++, (11.8)

and
' (�) = � ln f (1; �) = � lnw

��
w�1

�
e�1
����

, � 2 R++. (11.9)

Clearly,
' maps R++ into R++. (11.10)

Since w�1 (e�1) 2 (0; 1), it follows that (w�1 (e�1))� is a strictly decreasing function of �,
and so are w

�
(w�1 (e�1))

�
�
and lnw

�
(w�1 (e�1))

�
�
. Hence, from (11.9),

' is a strictly increasing function of �. (11.11)

From (11.8) we get

f (�� lnw (p) ; �) = w
��
w�1 ((w (p))�)

���
, p 2 (0; 1) , �; � 2 R++. (11.12)

Let 0 = p0 < p1 < ::: < pn = 1.
Since w is C1 on (pi�1; pi) it follows, from (11.9) and (6.3), that

' is C1 on
�
ln pi
ln p

;
ln pi�1
ln p

�
. (11.13)

Let
p; q 2 (pi�1; pi) , (w (p))� = w (q) , p�; q� 2 (pi�1; pi) . (11.14)

From (??) we get
q = w�1 ((w (p))�) . (11.15)

From (11.14) and local power invariance, we get�
w
�
p�
���

= w
�
q�
�
. (11.16)

Substituting for q from (11.15) into (11.16), we get�
w
�
p�
���

= w
��
w�1 ((w (p))�)

���
, p; p� 2 (pi�1; pi) . (11.17)

From (11.17) and (11.12) we get

f (�� lnw (p) ; �) =
�
w
�
p�
���

, p; p� 2 (pi�1; pi) . (11.18)
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In particular, for � = 1, (11.18) gives

f (� lnw (p) ; �) = w
�
p�
�
, p; p� 2 (pi�1; pi) . (11.19)

From (11.19) we get

(f (� lnw (p) ; �))� =
�
w
�
p�
���

, p; p� 2 (pi�1; pi) . (11.20)

From (11.18) and (11.20) we get

f (�� lnw (p) ; �) = (f (� lnw (p) ; �))� , p; p� 2 (pi�1; pi) . (11.21)

Put
z = � lnw (p) . (11.22)

From (11.21) and (11.22) we get

f (�z) = (f (z; �))� , p; p� 2 (pi�1; pi) . (11.23)

From (11.9) and (11.23) we get

f (�) = (f (1; �))� = e��'(�), p; p� 2 (pi�1; pi) , (11.24)

and, hence,
f (� lnw (p) ; �) = (w (p))'(�) , p; p� 2 (pi�1; pi) . (11.25)

From (11.19) and (11.25) we get

w
�
p�
�
= (w (p))'(�) , p; p� 2 (pi�1; pi) , (11.26)

from which we get,

' (�) =
lnw

�
p�
�

lnw (p)
, p; p� 2 (pi�1; pi) . (11.27)

Let p; p�; p�; p�� 2 (pi�1; pi). From (11.26) and (11.27) we get

' (��) =
lnw(p��)
lnw(p)

=
lnw((p�)�)
lnw(p)

=
ln[(w(p�))'(�)]

lnw(p)
= '(�) ln(w(p�))

lnw(p)
=

'(�) ln[(w(p))'(�)]
lnw(p)

=
'(�)'(�) lnw(p)

lnw(p)
= ' (�)' (�), i.e.,

' (��) = ' (�)' (�) , p; p�; p�; p�� 2 (pi�1; pi) . (11.28)

From (6.3), (6.4), (11.13) and (11.28) we have: ' is C1 on
�
ln pi
ln p
; ln pi�1

ln p

�
, 0 < ln pi

ln p
< 1 <

ln pi�1
ln p

, 8�; � 2
�
ln pi
ln p
; ln pi�1

ln p

�
, s.t. �� 2

�
ln pi
ln p
; ln pi�1

ln p

�
, ' (��) = ' (�)' (�). Hence, by

Theorem 4 (see Appendix 2, below), we have,

9�i 2 R, 8� 2
�
ln pi
ln p

;
ln pi�1
ln p

�
, ' (�) = ��i. (11.29)
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But, by (11.11), ' is a strictly increasing function of �. Hence,

�i > 0. (11.30)

Let Pi and �i be as in De�nition12. Let p 2 Pi. De�ne 'i : �i ! R++ by 'i (�) = ��i.
Then, clearly, 'i is C

1 on
�
ln pi
ln p
; ln pi�1

ln p

�
. A simple calculation veri�es that 8p 2 Pi, 8� 2 �i,

w
�
p�
�
= (w (p))'i(�). This completes the proof of part (b).

(b))(c). Since e�1 2 (0; 1), e�1 2 Pi for some i = 1; 2; :::; n. We �st establish the result
for Pi, then we use induction, and the continuity conditions (6.2), to extend the result to
Pi+1, Pi+2, ... , Pn and Pi�1, Pi�2, ... , P1. Let �i = � lnw (e�1). Then w (e�1) = e��i.
Let p 2 Pi. Let � = � ln p. Then p = e��. Hence w (p) = w

�
e��
�
= w

�
(e�1)

�
�
=

(w (e�1))
'i(�) =

�
e��i

���i
= e��i�

�i = e��i(� ln p)
�i . Thus we have shown

w (p) = e��i(� ln p)
�i , p 2 Pi. (11.31)

Let p 2 Pi. Let � =
ln p
ln pi
. Then p = p�i . Hence, w (p) = w

�
p�i
�
= (w (pi))

'i+1(�) =

(w (pi))
��i+1 =

�
e��i(� ln pi)

�i
���i+1

=
�
e��i+1(� ln pi)

�i+1
���i+1

= e��i+1(�� ln pi)
�i+1

= e��i+1(� ln p
�
i )

�i+1

=

e��i+1(� ln p)
�i+1 . Thus we have shown

w (p) = e��i+1(� ln p)
�i+1 , p 2 Pi+1. (11.32)

Let p 2 Pi�1. Let � = ln p
ln pi�1

. Then p = p�i�1. Hence, w (p) = w
�
p�i�1

�
= (w (pi�1))

'i�1(�) =

(w (pi�1))
��i�1 =

�
e��i(� ln pi�1)

�i
���i�1

=
�
e��i�1(� ln pi�1)

�i�1���i�1
= e��i�1(�� ln pi�1)

�i�1
=

e��i�1(� ln p
�
i�1)

�i�1
= e��i�1(� ln p)

�i�1 . Thus we have shown

w (p) = e��i�1(� ln p)
�i�1 , p 2 Pi�1. (11.33)

Continuing the above process, we get

w (p) = e��i(� ln p)
�i , p 2 Pi, i = 1; 2; :::; n, (11.34)

which establishes part (c).
Finally, a simple calculation shows that (c) implies (a). �.
Proof of Proposition 14: First, note that lim

p!0
w+(1�p)
(1�p) = 1 because w(1) = 1. If (8.20)

holds, then the NCC (8.19) will hold with strict inequality in some non-empty interval
(0; p1).39 Hence, no crime will occur if p 2 (0; p1). If (8.21) holds, then the converse of
the NCC (8.19) holds with strict inequality in some non-empty interval (0; p2). Hence, for
punishment to deter in this case, we must have p > p2. �
39For the Prelec weighting function, for all suitably high values of 1� p; w(1� p) < 1� p. However as

p! 0 and so 1� p! 1; w(1) = 1:
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Proof of Lemma 2: Since p� = e� ln p, (4.3) gives w(p)
p

= e
(� ln p)

�
� �

(� ln p)1��

�
. Note

that lim
p!0

(� ln p) = 1. Since 0 < � < 1, we get lim
p!0

ln (� ln p)1�� = 1. Hence, since

 > 0, we get lim
p!0

w(p)
p

= 1. This must also hold for  = 1; so lim
p!0

w(p)
p
= 1, i.e., in�nite

overweighting of zero probabilities. �
Proof of Proposition 15: w (p) = 1+ 3(1�b)

1�a+a2 [a� (1 + a) p+ p
2]! 1 + 3a(1�b)

1�a+a2 2 (1;1),
as p! 0. 1�w(p)

1�p ! w0 (p) = 3(1�b)
1�a+a2 [2p� (1 + a)]!

3(1�b)
1�a+a2 (1� a) =

3(1�b)
1+ a2

1�a
2 (0; 2: 820 9),

as p! 1, since a 2
�
2
9
; 1
�
, b 2 (0; 1). �.

11.2. Appendix-B: Cauchy�s algebraic functional equations.

We start with Cauchy�s �rst algebraic functional equation, with its classic proof. Our
notation is standard. In particular: R: reals, R+: non-negative reals, R++: positive reals
and C1: class of continuous functions with continuous �rst derivatives.

11.3. Cauchy�s �rst algebraic functional equation

Theorem 1 : If f : R �! R is continuous and satis�es 8x 2 R, 8y 2 R, f (x+ y) =
f (x) + f (y), then 9c 2 R, 8x 2 R, f (x) = cx.

Proof. By mathematical induction it follows that, 8n 2 N, 8x1; x2; :::; xn 2 R,
f (�ni=1xi) = �

n
i=1f (xi). In particular, 8n 2 N, 8x 2 R; f (nx) = nf (x). Let n 2 N, x 2 R.

Let y = 1
n
x. Then x = ny. Hence, f (x) = f (ny) = nf (y) = nf

�
1
n
x
�
. Thus, 8n 2 N,

8x 2 R, f
�
1
n
x
�
= 1

n
f (x). And, so, 8m;n 2 N, 8y 2 R, f

�
m
n
y
�
= 1

n
f (my) = m

n
f (y).

From the continuity of f it follows that 8x; y 2 R, f (xy) = xf (y). In particular, for
y = 1, we get 8x 2 R. f (x) = xf (1). Letting c = f (1), we get 8x 2 R. f (x) = cx. �.

Remark 11 : Note that the rational number, m
n
, can be arbitrarily large. Hence, for the

proof to go through, we do need f : R �! R (or f : R+ �! R+ or f : R++ �! R++).
In particular, this proof in not valid for the case f : (a; b) �! R when (a; b) is a bounded
interval; which is what we need. This is why we need a local form of this theorem.

11.4. Local forms of Cauchy�s algebraic functional equations.

The third Cauchy equation arises naturally in the course of our proof of Proposition
12. However, we need a local form of it. That is, a form restricted to a bounded real
interval around zero, rather than the whole real line (recall Remark11). We achieve this
by replacing the assumption of continuity with the stronger assumption of di¤erentiability.
As in the classical approach, we give the proof for the �rst equation. We then transform
the third equation to the second which, in turn, we transform to the �rst. There is a fourth
Cauchy algebraic functional equation, but we need not be concerned with it here.
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Theorem 2 : Let f : (a; b) �! R be C1, a < 0 < b, 8x; y 2 (a; b), s.t. x + y 2 (a; b),
f (x+ y) = f (x) + f (y). Then 9c 2 R, 8x 2 (a; b), f (x) = cx.

Proof. f (0) = f (0 + 0) = f (0) + f (0). Hence, f (0) = 0.
f(x+�x)�f(x)

�x
= f(x)+f(�x)�f(x)

�x
= f(�x)

�x
. Hence, f 0 (x) = lim

�x!0
f(x+�x)�f(x)

�x
= lim

�x!0
f(�x)
�x
,

which is independent of x, thus, 9c 2 R, f 0 (x) = c and so f (x) = cx + C. Hence,
0 = f (0) = C. It follows that 9c 2 R, f (x) = cx. �.

Theorem 3 : Let g : (A;B) �! R be C1, 0 < A < 1 < B, 8X; Y 2 (A;B), s.t.
XY 2 (A;B), g (XY ) = g (X) + g (Y ). Then 9c 2 R;8X 2 (A;B) ; g (X) = c lnX.

Proof. Let ai = lnA, bi = lnB. Then ai < 0 < bi, x 2 (ai; bi) , ex 2 (A;B) and
x; y; x+ y 2 (ai; bi)) ex; ey; exey = ex+y 2 (A;B).
De�ne f : (ai; bi) �! R by 8x 2 (ai; bi), f (x) = g (ex). Since ex 2 (A;B), f is well

de�ned. Since g is C1, f is also C1 and for x; y; x + y 2 (ai; bi), f (x+ y) = g (ex+y) =

g (exey) = g (ex) + g (ey) = f (x) + f (y). Hence, from Theorem 1, 9c 2 R, 8x 2 (ai; bi),
f (x) = cx. Hence, 8x 2 (ai; bi), g (ex) = cx. Let X 2 (A;B), x = lnX, then x 2 (ai; bi),
g (X) = g (ex) = cx = c lnX , i.e.,8X 2 (A;B), g (X) = c lnX. �.

Theorem 4 : Let G : (A;B) �! R++ is C1, 0 < A < 1 < B, 8X; Y 2 (A;B), s.t.
XY 2 (A;B), G (XY ) = G (X)G (Y ). Then 9c 2 R, 8X 2 (A;B), G (X) = Xc.

Proof. De�ne g : (A;B) �! R by 8X 2 (A;B), g (X) = lnG (X). Since G (X) > 0,
g is well de�ned. Since G is C1, g is also C1 and for X; Y 2 (A;B), s.t. XY 2 (A;B),
g (XY ) = lnG (XY ) = ln (G (X)G (Y )) = lnG (X) + lnG (Y ) = g (X) + g (Y ). Hence,
from Theorem 3, 9c 2 R, 8X 2 (A;B), g (X) = c lnX. Hence, 8X 2 (A;B), lnG (X) =
c lnX = lnXc. Hence, 8X 2 (A;B), G (X) = Xc. �.
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