
 

 
 

 

 

DEPARTMENT OF ECONOMICS 
  

 
 
 
 

The Nonexistence of Instrumental Variables  
 
 
 
 

 
 
 

P. A. V. B. Swamy, Federal Reserve Board (Retired), USA 
George S. Tavlas, Bank of Greece, Economics Research Department, Greece 

Stephen G. Hall, University of Leicester, UK 
 
 
 
 
 
 
 
 

Working Paper No. 09/16 
September 2009 

 
 



1 

 

The Nonexistence of Instrumental Variables  

P.A.V.B. Swamy a
, George S. Tavlas b,  and Stephen G. Hall

c,b
                                                                                               

a Board of Governors of the Federal Reserve System (retired), Washington, DC, USA                                
b Bank of Greece, 21, El, Venizelos Ave, 102 50 Athens, Greece. Tel.++30210 320 2370; Fax: 

++30210 320 2432. Email: gtavlas@bankofgreece.gr  
c 
Department of Economics, University of Leicester 

 

Abstract 

The method of instrumental variables (IV) and the generalized method of moments 

(GMM) and their applications to the estimation of errors-in-variables and simultaneous equations 

models in econometrics require data on a sufficient number of instrumental variables which are 

(insert space)both exogeneous and relevant. We argue that in general such instruments (weak or 

strong) cannot exist.     

JEL classification: C32, C51 

   

1. Introduction    

Researchers are becoming increasingly aware that there are often serious problems with 

the use of instrumental variable based techniques (both instrumental variable (IV) estimation and 

versions of generalized methods of moments (GMM) which use instrumental variables). A valid 

instrument must be uncorrelated with the errors in an equation (exogeneous) and correlated with 

the explanatory variable (relevant), see Greene (2008, p. 316). The exogeneity condition is 

criticized in the statistics literature and the relevancy condition is criticized in the econometric 

literature. Pratt and Schlaifer ( 1988) point out that without knowing what the errors represent, it 

is not possible to decide whether or not the exogeneity condition is correct. They further point 

out that the condition is meaningless if the errors are included in an equation to represent the 
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variables excluded from the equation. Increasingly, econometricians are finding that when a set 

of instruments are independent of the error they often have little relevance; this is the problem of 

„weak instruments‟. In this paper we argue that this should not be a surprising result and that in 

general it is not possible to find valid instruments. The next section presents a proof of this 

statement.  

2. A General Representation of Misspecification 

In general, economic theory suggests relationships between variables, but it does not 

usually give clear guidance as to the correct functional form or the complete set of variables that 

are relevant. For example, consider an economic variable, denoted by *

ty , and its complete set of 

determinants, denoted by 
*

jtx , j = 1, …, tL . Here the total number tL  of determinants may be 

time dependent. Typically, data on *

ty  and on a subset K - 1 of the tL  determinants are available. 

The remaining tL  - K + 1 determinants are omitted from the model either because they are 

unobserved or for some other reason. Moreover, these data may contain measurement errors. Let 

ty  = *

ty  + 0tv  and 
jtx  = 

*

jtx  + 
jtv , j = 1, …, K – 1, where the variables without an asterisk are 

observable, the variables with an asterisk are unobservable, and v s are measurement errors. The 

theoretical relationship is 

          
* * *

1( ,..., )
tt t t L ty f x x      (t = 1, …, T)                                                                                      (1) 

with unknown functional form.  

Without misspecifying the relationship in (1), we can write  

          
1

* * *

0

1

tLK

t t jt jt gt gt

j g K

y x x                                                                                             (2) 

where the time profiles of the coefficients are determined by the correct functional form of 
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model (1). These time profiles are unknown, since the correct functional form is unknown.     

Allowing the coefficients of equation (2) to vary freely defines an infinite class of functional 

forms, which surely encompasses the correct (but unknown) functional form of (1) as a special 

case. If spline-, cubic-spline-, P-spline-, or any other-type restrictions are imposed on the 

functional form of model (1), then it can have an incorrect functional form; for examples of 

spline- and cubic-spline-type restrictions, see Greene (2008, p. 111) and Judge, Griffiths, Hill, 

Lutkepohl and Lee (1985, p. 803). A main benefit of model (2) is the certainty that the infinite 

class of functional forms will encompass the correct functional form.  

Clearly, the explanatory variables of (2) can be correlated with each other, leading to the 

well-known problem of multicollinearity. In particular, the K – 1 observable determinants (the 

*

jtx ‟s) in equation (2) can be correlated with the tL  - K + 1 unobserved determinants (the 
*

gtx ‟s). 

To assume otherwise would, in the words of Pratt and Schlaifer (1988), be a “meaningless” 

assumption. The correlations between the omitted determinants and the observed determinants 

are implied by  

          

1
* *

0

1

K

gt gt jgt jt

j

x x           (g = K, …, tL )                                                                          (3) 

where 
0gt

 is a portion of 
*

gtx  remaining after the effects of the 
*

jtx ‟s have been removed from 

*

gtx . Since we do not have data on the tL  - K + 1 
*

gtx  variables, we can eliminate them from 

equation (2) by substituting (3) into (2), which gives  

          
1

* *

0 0

1

( )
t tL LK

t t gt gt jt gt jgt jt

g K j g K

y x                                                                     (4)  

Note that equation (4) shows *

ty  as a function of K – 1 included determinants and the 

reminders of the excluded variables - - i.e., what remains after subtracting the effects on the 
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excluded variables of the K – 1 observable determinants. Equation (4) accounts for both the 

unknown functional form (since it is derived from equation (2)) and the full set of (time-varying) 

determinants of *

ty . It does not, however, account for measurement errors. In this connection, 

consider model (2) again. It is not in a form that can be estimated. Such a form is derived below.  

In terms of the observable variables, equation (2) can be written as  

          
1

0

1

K

t t jt jt

j

y x                                                                                                                (5)    

We call the 
*

gtx ‟s “excluded variables” because they are excluded from model (5). The 
jtx ‟s are 

the included explanatory variables. Model (5) coincides with model (2) if     

          0t  = 0t  + 
0

tL

gt gtg K
 + 0tv                                                                                           (6) 

          jt
 = ( )(1 )

tL jt

jt gt jgtg K
jt

v

x
  ( j = 1, …, K-1)                                                           (7) 

These equations are derived by establishing the correspondence between equations (4) and (5).
1
  

The terms on the right-hand side of equations (6) and (7) provide crucial information. 

Equation (4) shows that the 
0gt

‟s, in conjunction with the 
*

jtx ‟s, are at least sufficient to 

determine *

ty . This is the proof Pratt and Schlaifer (1988, pp. 34 and 50) offer to show that the 

second term on the right-hand side of equation (6) is a „sufficient set‟ of excluded variables; it 

should be noted that one of the conditions of this proof is that the functional form of model (1) is 

not misspecified. Pratt and Schlaifer (1988) also show that the condition,                                     

E( * *

0 1 1,| ,...,
tL

gt gt t K tg K
x x ) = 0 is meaningful, but the condition that the 

*

jtx ‟s be independent 

of the 
*

gtx ‟s themselves is meaningless. They warn against adding an arbitrary error term to a 

                                                      
1
 For the derivation, see Swamy and Tavlas (2007).  
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linear or nonlinear function of the 
*

jtx ‟s and assuming that the 
*

jtx ‟s are independent of the error 

term.  

The interpretation of the terms on the right-hand side of equation (7) and their 

implications are as follows:  

 The term 
jt

 is equal to 
* */t jty x   (if *

ty  is a continuous function of 
*

jtx ) and 

corresponds to the bias-free effect of 
*

jtx  on *

ty  , as can be seen from (2). The right sign 

of 
jt

  is provided by economic theories. The correlation between *

ty  and 
*

jtx  is spurious 

if 
jt

 = 0.  

 The term 
tL

gt jgtg K
 measures omitted-variables bias. Note that each term in this sum 

is the product of two coefficients - - the effect of the excluded variable 
*

gtx  on *

ty  (i.e., 

gt
) and the effect of the included variable 

*

jtx  on the excluded variable 
*

gtx  (i.e., 
jgt

). 

Omitted-variable biases can exist as long as the error terms are present in econometric 

models.  

 The term ( )( ( / ))
tL

jt gt jgt jt jtg K
v x  measures measurement-errors bias.

2
 These 

biases exist whenever estimates of some theoretical variables are used as explanatory 

variables.  

 The explanatory variables of model (5) are correlated with their own coefficients because 

the measurement-error bias component of 
jt

 is a function of 
jtx .  

                                                      
2
 The minus sign in the expression reflects the fact that the second parenthetical term on the right-hand side of (7) is 

one minus the ratio ( / )jt jtv x .   
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 Model (5) can be misspecified if the omitted-variable and measurement-error bias (or 

simply, the specification bias) components of its coefficients in (7) are ignored.  

Further discussion of the terms in (7) is given in Hondroyiannis, Swamy and Tavlas (2009). 

 

Having derived the model in (5), which explicitly includes all these forms of 

misspecification, it is now possible to show why valid instruments cannot be found for this 

model. Under IV or GMM, we are imposing constant parameters on (5). We can, therefore, re-

write (5) as; 

 

1

0 0 0

1

( )(1 )
t

t

L K
L jt

t t gt gt t jt gt jgt jtg K
g K j jt

y x
x

                                               (8) 

Now we can illustrate the problem with IV by considering 3 cases. 

Case I. (Linear models) By adding and subtracting a constant parameter model we get 

 

1 1

0 0 0 0 0

1 1

( ) (( )(1 ) )
t

t

LK K
L jt

t j jt t gt gt t jt gt jgt j jtg k
j g K j jt

y x x
x

 (9) 

Where the last two terms in (9) becomes the error term in the model. The problem with 

instrumental variables in this context now becomes apparent; we need to find a variable that is 

both correlated with xjt , but not correlated with the error term, which itself contains xjt. Such a 

variable cannot exist. We extend this proof to nonlinear models in Case III below.     

Case II. (Linear errors-in-variables model without the error in equation)  If  

tandgjallforjgtgt ,00         (10) 

and 
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0,..., 1j jt for j K

         (11) 

equation (10) implies that there are no omitted variables and (11) implies that the true model has 

a linear functional form, Under (10) and (11), (9) reduces to an errors-in-variables model and the 

error term becomes just

 

1...0, Kjjt

 

.  For IV estimation of such a model, we need 

instruments that are relevant and uncorrelated with the errors (exogenous), see Greene (2008, pp. 

327-329). One of the problems here is that the relevancy condition can never be verified because 

the 
*

jtx ‟s

 

are rarely if ever observed and assumptions (10) and (11) are highly restrictive.   

CaseIII. (Nonlinear models) Note that Cases I and II do not cover nonlinear models. To 

complete our proof of the nonexistence of valid instruments in Cases I and II, we need to 

consider the realistic nonlinear case where model (5) with its coefficients satisfying equations (6) 

and (7) holds. A natural method of identifying the coefficients of model (5) without 

misspecifying its functional form is to decompose these coefficients into their respective 

components in (6) and (7). To perform this decomposition, we assume that  

          
1

0

1

p

jt j jh ht jt

h

z    (j = 0, 1, …, K-1)                                                                    (12) 

where the htz ‟s are observable, 
1 1,( | ,..., )jt t p tE z z  = 0, j = 0, 1, …, K – 1, all t, and the 

jt
‟s may 

be serially and contemporaneously correlated. It is assumed that in model (5), the 
jtx ‟s are 

conditionally independent of their own coefficients given the htz ‟s. Changes in policy variables, 

shift variables representing structural changes in the 
jt

 and lagged changes in the 
jtx ‟s can be 

used as the htz ‟s, as in Hall, Hondroyiannis, Swamy and Tavlas (2009) and Hondroyiannis, 

Swamy and Tavlas (2009).  
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We cannot be sure that the equation obtained by substituting equation (12) into equation 

(5) will have the correct functional form. The only way we can be so sure is by letting p tend to 

infinity so that 
jt

 converges in probability to zero. It is possible to push 
jt

 as low as desired 

with a high probability just by adding additional 
jtz ‟s on the right-hand side of equation (12); it 

does not matter if some of the 
jtz ‟s are redundant in the sense that their coefficients in (12) are 

zero. Equation (12) with infinitely large p and without 
jt

 can completely explain all the 

variation in 
jt

 in terms of observable variables. Substituting such an equation into (5) gives an 

equation with the correct functional form.    

Inserting equation (12) into equation (5) gives  

          
1 11 1

00 0 0 0

1 1 1 1

( )
p pK K

t h ht j jh ht jt t jt jt

h j h j

y z z x x                                              (13) 

This is an estimable form of model (5). The instrumental variables that are correlated with the 

jtx ‟s of model (5) but not with the error terms of model (13) do not exist because these error 

terms also involve the 
jtx ‟s. Therefore, IV estimation of model (13) is not possible. Sometimes it 

is claimed that in many time-series settings, lagged values of the variables in a model provide 

natural instrumental variables. The mere fact that the value of 
, 1j tx  was determined before the 

value of 
jt

  should not lead one to conclude that 
, 1j tx  is necessarily independent of 

jt
. The 

variable 
, 1j tx  may well have been influenced by a forecast of a variable represented in 

jt
or 

both 
, 1j tx  and 

jt
 may have been affected by some third variable, as shown by Pratt and 

Schlaifer (1988, p. 47). Of course even if  
, 1j tx  were independent of the error then this would 

imply that it was no longer relevant.

  

 

3. Conclusion 
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 The instrumental variables that are correlated with the 
jtx ‟s of model (5), but not with the 

error terms of model (13), do not in general exist because these error terms also involve the 
jtx ‟s. 

. These arguments make it clear why practical work with IV methods is plagued by several 

problems. We would argue that a much better way forward in terms of practical estimation rests 

on recognition of all the potential sources of misspecification which are present in (5) and  starts 

from a time-varying coefficient model as outlined in Swamy and Tavlas (2001). 
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