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Abstract

We consider non-cooperative environments in which two players have the power to com-
mit but cannot sign binding agreements. We show that by committing to a set of actions
rather than to a single action, players can implement a wide range of action profiles. We
give a complete characterization of implementable profiles and provide a simple method to
find them. Profiles implementable by bilateral commitments are shown to be generically
inefficient. Surprisingly, allowing for gradualism (i.e., step by step commitment) does not

change the set of implementable profiles.
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1 Introduction

An essential insight of Schelling (1960) is that a player can strengthen his position by committing
to some actions. For example, a monopolist can deter entry by committing to fight any eventual
entry. However, suppose that the potential entrant can simultaneously commit to enter the
market, say by installing capacities. The monopolist commitment is then inconsistent with
the entrant commitment: the monopolist would rather accommodate the entry. What are the
consistent commitments in such a game? The main theme of this paper is precisely to study
situations, as the above example, in which all the players in a game can simultaneously and
perfectly commit to subsets of actions before playing a game. Before going further, we like to
stress that players are not assumed to commit to a particular action, but rather to rule out sets
of actions.! Classical examples of such commitments are firms choosing capacity constraints, an
army general burning a bridge behind his troops, a candidate promising not to raise taxes by
more than 5%, or a seller publicly announcing a menu of tariffs. In all these cases, reneging on
one’s commitment is either physically impossible or too costly to be considered.?

To model the possibility of commitment in games, we embed a strategic-form game G into
a two-stage game, in which players can restrict their action spaces in the first stage (the com-
mitment stage), and play the game induced by their commitments in the second stage. Payoffs
are determined as in the original game G. We call this two-stage game, a game of commitment,
and consider the subgame perfect equilibria of games of commitment. More precisely, we are
interested in the complete characterization of the action profiles of G that are implementable by
commitments, that is, the action profiles played in the second stage in any subgame perfect equi-
librium. Our main contribution is to provide a complete characterization of the implementable
profiles of actions for two-player games with closed real intervals as action spaces, strictly quasi-
concave payoff functions, and commitments to closed subintervals of the original action space.
These assumptions are met by many economic models, e.g., Cournot and differentiated Bertrand
duopoly games, games of tax competition, etc. In equilibrium, commitments are self-enforcing
in the sense that they are sustained by a simple sequential game structure, without assuming
any punishment scheme against deviating players.

The question whether an action profile is implementable by a commitment is a complex one.

To see this, note that any action profile belongs to an infinite set of restricted action spaces.

LOur approach to commitment is shared by Hart and Moore (2004), who study the case of two contracting
parties who can restrict the set of outcomes over which they will bargain. One of the main differences between
their work and ours is that they assume that some uncertainty is being resolved after players have committed to
a set of outcomes and before the parties bargain over the final outcome. Without such uncertainty, parties would

fully commit in the first period in the framework of Hart and Moore (2004).
2See Caruana and Einav (2005) for a model in which commitment arises endogenously.



Therefore, to find out whether a profile x is implementable by a commitment, we would have to
check whether it is implementable by any one of these infinitely many pairs of restricted action
spaces. The main result of this paper is that an action profile is implementable if and only if it
is implementable by what we call a “simple commitment.” In a simple commitment, one player
(he) commits to a single action, and the other player (she) truncates her action space at either
the top or the bottom. Moreover, the truncation is at her (original) best-reply to the single
action her opponent is committed to. It follows that for any action profile, there are only four
such simple commitments. This result drastically reduces the complexity of our problem.

To get more intuition on the profiles of actions that are implementable, note that all Nash
equilibria of the original game are implementable. The intuition for this result is simple. Suppose
that each player commits to his equilibrium action in the first stage of the game of commitment,
and plays a Nash equilibrium in any induced game. Given the commitment of a player, the other
player has obviously no incentive to deviate as he is already playing the best-reply to the single
action in the commitment set of his opponent. Similarly, all ‘lead-follow’ outcomes are imple-
mentable. A ‘lead-follow’ outcome is a subgame-perfect equilibrium outcome of the sequential
version of GG, in which one player is moving first and the other follows (Stackelberg outcomes in
duopoly games). To implement such outcomes it suffices that the ‘leader’ commits to a single
action (his action in the lead-follow profile) and the other player does not restrict his action
space at all. This is not accidental, we show that all action profiles that can be implemented by
a game of commitment can be described as the equilibrium outcome of a generalized sequential
version of the game under consideration. Important insights about following and leading in
sequential games apply to the game of strategic commitment. We use these insights to translate
our characterization results into a geometrical representation. We can show in particular that
with a further restriction to games with strategic complementarities the best reply curves alone
suffice to characterize all implementable profiles, in this case the set of implementable profiles
is bounded by the Nash- and follow-lead equilibrium outcomes.

We pursue our characterization by considering a variant of our commitment game, allowing
players to commit in several steps. In a recent paper, Lockwood and Thomas (2002) indeed show
that gradualism may enforce partial cooperation that is not attainable in one step commitment.
It turns out that this is not the case in our setup: a profile is implementable in T" rounds of
commitment if and only if it is implementable in one round.

Finally, an important question is whether bilateral commitment may help players to improve
over the status quo, i.e., the Nash equilibria of the original game. First, we show that the players

cannot, generically speaking, implement efficient outcomes using commitments.® Second, we

3This result parallels Dubey’s (1986) theorem that shows that Nash equilibria of smooth games are generically

inefficient.



show that when ‘lead-follow’ equilibria, which are always implementable by commitment, do
not give both players a higher payoff than the Nash equilibria, then no Pareto improvements are
implementable in the important class of games with strategic complementarities and constant
consonance, that is, when the payoff of a player is monotone in the action of his opponent.
Finally, we give an example of a game with a non-monotonic best reply curve in which parties
can Pareto improve upon a unique Nash equilibrium even though the ‘follow-lead’ equilibria
do not Pareto dominate the Nash equilibrium. Thus, we conclude on a positive note: bilateral

commitments might improve the welfare of each player.

The idea that the power to commit oneself can be beneficial has received a great deal of
attention in economics. A (very) partial list of contributions includes applications in indus-
trial organization (e.g., Dixit (1980) or Spulber (1981)), international trade (e.g., Brander and
Spencer (1985)), political economy (e.g., Yildirim (2005)), to name just a few.* Most of these
applications can be seen as special cases of our theory, in the sense that commitments made
in an initial stage restrict the set of actions available in a later stage. Closely related to our
work is the literature on endogenous timing in games e.g., Hamilton and Slustky (1990), Amir
and Grilo (1999), van Damme and Hurkens (1999), or Romano and Yildirim (2005). The aim
of this literature is to obtain Cournot-Nash and Stackelberg outcomes as equilibrium outcomes
of a two-player commitment game, hence endogenizing the order of moves. The present work
differs from this literature in two important aspects. First, in our model, commitments are
not restricted to commitments to single actions.® In other words, a commitment in our game
might leave something open to change. Second, our purpose is not to endogenize the timing of
moves in games, but to explore how the ability to commit affects the equilibrium payoffs, and
its welfare properties. Thus, our approach is conceptually different from the approach followed
in the endogenous timing literature. Our results, however, parallel the results in this literature
insofar as the additional flexibility in the choice of commitments we postulate yields a range
of implementable profiles that is — in a sense to be defined more precisely — bounded by
the Cournot-Nash and Stackelberg outcomes as extreme cases. Romano and Yildirim’s (2005)
paper is the closest to ours, though our work covers a much wider range of cases. First, our
commitment technology is more general in that players can restrict their action spaces from
the bottom and the top. Second, we do not assume differentiability of the payoff functions,
monotonic best replies, a unique interior Nash equilibrium of the original game; assumptions all

made by Romano and Yildirim. Third, like us, Romano and Yildirim extend their commitment

*Kreps and Scheinkman (1983) differs from our work in that capacity commitment in the first stage does not

affect the action set in the second stage, but the payoffs.
®See also Saloner (1987), Gale (2001) or Henkel (2002) among others.
A notable exception is Romano and Yildirim (2005), who consider commitments to lower or upper bounds,

but not both.



game by allowing players to commit in several steps. In this context, they also show that if a
profile is implementable in 7" rounds of commitment (7" > 2), then it is also implementable in
1 round of commitment, but admit that they are unable to prove the converse, which we do;
thereby improving upon their results. Lastly, we also improve upon their work by extensively
discussing the welfare implications of our model and providing a geometric characterization of
the implementable profiles. Thus, our contribution is both conceptual and technical. In some
sense, our paper answers the question: when can we assume without loss of generality that a
player commits to a single action and the other player truncates his action space only at the
top or bottom? We also note that in Cournot duopoly games, the set of implementable actions
in our commitment games is equivalent to the one in Romano and Yildirim, thus rationalizing
their assumption of commitment to lower bounds only. However, in other examples e.g., rent
seeking games, their assumption is not without loss of generality.

We should also mention Jackson and Wilkie (2005). They also allow players to modify the
game to be played in a pre-play stage. The main difference between their work and ours lies in
the set of permissible modifications. While Jackson and Wilkie (2005) allow players to commit
to utility transfers in the second period, we allow players to discard any subset of actions in the
pre-play stage. These different pre-play modifications yield different results. Nash equilibria can
always be implemented in our framework but need not be implementable in theirs. On the other
hand, they show, like us, that pre-play modifications do not necessarily make efficient outcomes
implementable. Finally, Renou (2006) provides a complete characterization of the equilibrium
payoffs in commitment games induced by n-player finite games.

This paper is organized as follows. In Section 2, we give a detailed description of the environ-
ment faced by the players, and define what we call the game of commitment. Section 3 presents
some preliminary results. In Section 4, we completely characterize the set of action profiles that
are implementable by self-enforcing bilateral commitment. Section 5 analyzes the welfare im-
plications of self-enforcing bilateral commitment. Section 6 discusses possible extensions. Most

proofs are relegated in the Appendix.

2 Games of commitment

2.1 Preliminaries

The initial situation we consider is a two-player strategic-form game G := (N, (Y;, u;)ien) with
N = {1,2} the set of players, Y; the set of actions available to player i, and u; : Y1 x Y5 — R
the payoff function of player i. Denote Y := Y] x Yo. We call the opponent of player i,
player j. We assume that for each player i € {1,2}, Y; is a non-empty, compact, convex
subset of the real line. Without loss of generality, we take Y; = [0,1], for i« € {1,2}. For



each player i, the payoff function wu; is assumed to be continuous in all its arguments and
strictly quasi-concave in y;, i.e., for all y; € [0,1], y; € [0,1], y; € [0,1], y; # ¥}, and o € (0, 1),
wi(ayi+(1—a)yl, y;) > min{u; (yi, y;), ui(yh, y;) .7 These assumptions are met by many economic
models.

We furthermore assume that players have the ability to unilaterally commit not to play some
actions, i.e., to restrict their action sets. Such commitments are assumed to be perfectly binding,
meaning that if player ¢ restricts his action set to X;, any action chosen later on must belong
to X;.

Definition 1 A (bilateral) commitment is a pair (X7, Xo) where for both i € {1,2}, X, is a

non-empty, compact and convex subset of [0, 1].

Thus, our definition of a commitment imposes on each player a restriction of his action
space.®

Henceforth, we write the restricted action space X; of player i as a closed real interval
[z;,%i] C [0,1], where z; (T;) refers to the minimum (maximum) of player i’s restricted action
space. Note that player ¢ can also commit to a singleton, in which case z; = 7;.

It is important to note that a commitment does not necessarily prescribe the choice of an
action. In the words of Hart and Moore (2004), “in a bilateral commitment, the players commit
not to consider actions not on the list (X7, Xs), i.e., these actions are ruled out. Ex-post, the
players are free to choose from the list of actions specified in the commitment i.e., actions are
not ruled in.”

We say that the bilateral commitment (X7, X3) induces the game G(X) = (N, (X;,uX)),
where X = X x Xo, and for i € {1,2}, u;*(z) = u;(z) for all z € X. Abusing notation, we will
drop the superscript X in the sequel. The induced game G(X) is thus obtained from the game G
by restricting the action sets of the players. We shall use the term ‘mother’ to make reference to
the original game G. For instance, we shall use the expressions mother game, mother best-reply,
mother action set, etc. Similarly, the term ‘induced’ will refer to the best reply, action sets etc.

in G(X). We denote by Y; the collection of all non-empty, compact, convex subsets of [0, 1], and

"In the words of Moulin (1984), G is a two-player ‘nice game.” It is worth noting that the mixed extensions
of any finite games do not satisfy our assumptions. First, payoff functions are not strictly quasi-concave in such
games. Second, unless the finite game has only two actions per player, mixed action spaces are not a subset of
the real line. Consequently, the theory developed in this paper cannot be applied to mixed extensions of finite

games.
8That restrictions are assumed to be convex subsets is not without loss of generality. In particular it ensures

that the game played once players have chosen their restrictions has a Nash equilibrium. Imposing some Lipschitz
conditions is sufficient, however, to deal with non-convex restrictions. We also note that imposing convex strategy

sets is a common assumption in the economic literature.



deﬁne y = Hi€{1,2} yz

2.2 Games of commitment

Given the strategic-form game G, the game of commitment I'(G) is a two-stage game with

almost perfect information, in which:
Stage 1. Both players simultaneously choose action sets X; € ).
Stage 2. Players play the induced strategic form game G(X).

A strategy for a player i in the game I'(G) (for short, I'), is a pair s; = (X;, 0;) where X; € ),
and o; is a mapping from Y to [0, 1] such that 0;(X) € X;, for all X € ). That is, a strategy for
a player prescribes a choice of a restriction X; (first-stage action) and, for each possible choice
of a restriction for both players in the first-stage, an action z; € X; (second-stage action). The
outcome of a strategy profile s = (s;);c(1 2y is the pair (X, z) where z; = 0;(X) for each player
i € {1,2}. The payoffs over outcomes (X, z) are assumed to only depend on the action profiles
chosen in the second stage of the game and are given by the payoffs of the induced game G(X).
That is, we assume that player i derives utility u;(x) from outcome (X, z). If (X,x) is the

outcome of strategy profile s we call x the result of s.

The central concept of this paper is the concept of implementation by commitment, which

we now define.

Definition 2 An action profile z is implementable by commitment X if the pair (X, z) is the

outcome of a subgame-perfect equilibrium of T'.

Hence, a profile x is implementable by commitment if it is a (stage 2) result of a subgame-

perfect equilibrium of I'. In this paper, we focus on subgame-perfect equilibria in pure strategies.

3 Games induced by commitments

We first derive some results concerning the proper subgames of I', namely the set of all induced
games G(X). The proofs of the results presented below, Lemmata 1 and 2 are in our companion
paper, Bade, Haeringer and Renou (2005).
Define BR; : [0,1] — [0,1], the (mother) best-reply of player i in the game G, with for
y; €[0,1],
BR;(y;) = {yi € [0,1] : wi(yi, y;) > u;(y;,y;) for all yi € [0,1]}.

When players commit to play in the set X, the best-reply map br;X : X; — X; of player i is

defined similarly, bearing in mind that now player ¢ cannot choose an action outside X;, that is,



for all z; € X,

bri¥ (x;) = {z; € X; : wiwi, ) > ui(a}, x;) for all 2} € X;}.

2

X

We will denote the best-reply map br; ix(0.1] by br;X . That is, br;X ¢ is the restricted best-reply

of player i when he is committed to X; and player j can choose any action in [0, 1]. Note that
best-reply maps are non-empty, single valued and continuous. Furthermore, the strict quasi-
concavity of payoff functions enables us to easily characterize the mapping briX as a function of
BR; and X.

Lemma 1 Player i’s best-reply function in G(X), bri* : X; — X, is

i if BRZ(xJ) <z,
bri¥(zj) = { BRi(x;) if z; < BRi(x;) <,
Z; if T; < BRZ(.%']) .

& .

In words, the best-reply map br;X of the restricted game G(X) agrees with the best-reply
map BR; of the mother game G on the set {z; € X; : BR;(x;) € X;}, and is either z; or T,
otherwise. Lemma 1 is illustrated in Figures (1a) and (1b). In the former it displays a mother

best-reply of player j and in the latter the restricted best-reply when he commits to [gj,fj].

(a) (b)
Figure 1: Mother and restricted best-replies

Denote N(G) and N(G(X)) the set of Nash equilibria of G and G(X), respectively. Observe

that the mother game G as well as any induced game G(X) has a Nash equilibrium in pure



actions. Our next lemma states that if a profile of actions z* is an equilibrium of G(X), but is

not an equilibrium of the mother game G, then z* € bdy (X), the relative boundary of X in Y.?

Lemma 2 If z* € N(G(X)) \ N(G), then z* € bdy (X).

Lemma 2 states that if a commitment X* implements a result * that is not an equilibrium of
G, then it must be the case that for at least one player, say 4, the action z is either the maximum
or the minimum of X. Lemma 2 thus provides a first intuition about the set of implementable
profiles. Namely, if the implemented profile is not a Nash equilibrium of the mother game G,

then the action of at least one player identifies with the boundary of his restricted action space.

4 Implementation by commitments

4.1 Existence

We start by observing that the existence of a subgame-perfect equilibrium of I' is not, a priori,
guaranteed, for the cardinality of each player’s strategy set in I' is uncountable. It turns out,

however, that the issue of equilibrium existence in our case is easily solved.'®

Proposition 1 The game of commitment has an equilibrium.

Proof. Since I'(G) is a finite horizon game, we can use the one-shot deviation property to
check that a profile is an equilibrium —see Osborne and Rubinstein (1994, p. 103). Choose
y* € N(G) and consider for each player i the strategy s; = ({y;},07), with (07(X))icq1,0} 2
Nash equilibrium of G(X) for any first-stage actions (commitment) X. By construction, no
player can profitably change his second-stage action. Observe that since for both i € {1,2} we
have yi = BR;(yj), neither player can obtain a strictly higher payoff than w;(y*). Therefore,
given the restriction of player ¢ to {y;}, player j cannot increase his utility by changing his

restriction on his action space. |

The key observation in the proof of Proposition 1 is that any Nash equilibrium of the mother

game G is implementable. So, commitments have the power to perpetuate an existing situa-

9Let (Y, d) be a metric space and X C Y. A point z is a boundary point of X in Y if each open neighborhood
U of z satisfies UNX # 0 and UN (Y \ X) # 0. The set of all boundary points of X in Y is bdy X. For instance,
if Y =[0,1], bdy [0,1/2] = {1/2} while bdy[1/3,2/3] = {1/3,2/3}.

10See, for instance, Harris et al. (1995) for results on the existence of subgame-perfect equilibria for continuous
games with almost perfect information. It is worth noting that Proposition 1 holds independently of the number

of players involved in the mother game G.



tion.!! Moreover, it should be noted that uniqueness is clearly not guaranteed. For instance, if G
has a multiplicity of equilibria, then we can already construct a multiplicity of subgame-perfect

equilibria of T'.

4.2 A complete characterization

We are now ready to characterize the set of all action profiles that can be implemented by a
commitment. The main result of this section is that if a profile of actions x is implementable,
then it is implementable by one of a very small number of bilateral commitments, those that we

call simple.

Definition 3 A bilateral commitment X is simple if it has the form ({z;},[0, BR;(z;)]) or

({zi}, [BRj(xi), 1])-

In a simple commitment, one player takes an extreme position, that of excluding all but
one action. The other player, player j, truncates his action space either from below or from
above, but not both. Moreover, the truncation is at his best-reply to the only action in player

i’s extreme commitment. We are now ready to formally state the main result of this section:

Theorem 1 An action profile x* is implementable by a bilateral commitment if and only if it

1s tmplementable by a simple bilateral commitment.

Before proving this characterization result, let us briefly comment on the implications of this
theorem (see Section 5.5. for more on this). If we want to check whether a particular profile
can be implemented by a commitment, we only need to check whether it can be implemented
by a simple commitment. This is a very manageable task, as for any action profile x*, there are

exactly 4 simple commitments that could implement it. These commitments are:

([0, BRi(x3)], {23}),  ([BRi(23),1],{x3}),
({1}, [0, BRy(27)]), ({21}, [BRa(27), 1))

It is not difficult to check whether an action profile can be implemented by one of these four
simple commitments. Indeed, to check whether z* is implementable by ({7}, [0, BRz(x})]), it
suffices to check whether player 1 has an incentive to change his restricted action space. Observe

that in the second stage, neither player has an incentive to deviate (player 2 will be playing the

"1n a related paper, Jackson and Wilkie (2005) propose a model in which players can commit to utility transfers
conditional on actions being played. They notably show that Nash equilibria of the game without transfer, the
mother game, might not be implementable, while they are in our paper. An essential difference between their
paper and our paper is that commitments can be undone in their paper by transferring back, while it is not

possible in our paper.

10



mother best-reply to player 1’s action, and player 1 does not have any choice). Furthermore,
given that player 1 commits to {z7}, player 2 does not have an incentive to alter his commitment,
the mother best-reply to x7 is already contained in [0, BR2(z7)]). Therefore, we only need to
check whether player 1 has an incentive to deviate in the first stage of the game. Notice that for
any restriction X7 player 1 may choose the profile played in the second stage must be a Nash
equilibrium of G(X; x XJ). So, if player 1 chooses the restriction {z;} for some z; € [0, 1],
the second stage result will be (21, bréO’BRQ(xm (z1)). Consequently, the action profile z* is an

equilibrium if 2] solves the following optimization program:

0,BRx(z%
0 BRE () (1)

max _ uj(x,bry
z1€[0,1]

In Section 5.5, we take this optimization program as a starting point for a geometric char-

acterization of implementable profiles.

4.3 Proof of Theorem 1

In this section, we present the main steps leading to Theorem 1 and give intuitions for these
intermediate results. Detailed proofs can be found in the Appendix. We start by showing a key
result, namely if a result z* is implementable, then for at least one player i € {1,2}, =} is a

mother best-reply to x;‘

Proposition 2 Let x* be implementable by some bilateral commitment X*. Then x} = BRi(x}k-)

for at least one player i € {1,2}.

To see the intuition behind Proposition 2, suppose that a profile * is implementable by
the bilateral commitment X* such that neither player is using his mother best-reply. From
Lemma 2 this means that for both players the constraints imposed by the commitment bind.
The continuity of the best replies implies that for all of player 2’s actions in a sufficiently small
interval (z3 — e,2% + ¢) around z7, player 1’s restricted best reply remains zj. Let us now
consider a different restriction for player 2. Take a {z/,} such that z/, is 1) closer to player 2’s
mother best-reply to 3, BRy(z}), and 2) inside the interval (z3 — e,2% + ). (See Figure 2.)
The strict quasi-concavity of player 2’s payoff function implies that the result (z7,z}) is strictly
preferred to z*. This implies that player 2 has a profitable deviation, a contradiction with our

assumption that z* is implementable with the bilateral commitment X*.

Proposition 3 Let x* be implementable by some bilateral commitment X* with x7 = BR;(x7).
Then z* is also implementable by the bilateral commitment X', such that X] = {z}} and X} =

X7

11
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1
br&o’zl}
z* Ts brgv;’l}
‘BRy
1 1

Figure 2: Illustration of Proposition 2

There is a tight connection between Proposition 2 and Proposition 3. By Proposition 2,
we know that in any equilibrium outcome (X*,z*) of I', 27 = BRj(x]) for at least one player
J € {1,2}. Imagine now that player ¢ commits to the singleton {z}}. Since player j can still play
BRj(z}) in the second stage and there player i has no other choice but playing « in the second
stage, player 7 has no incentive to deviate. If player ¢ can profitably deviate when choosing the
restriction {z}}, he can also profitably deviate when choosing the restriction X. This, however,
cannot be true as we started out with the assumption the (X*,z*) is an equilibrium outcome of
the game.

The main insight of Proposition 3 is that if (z}, BR;(x})) is implementable by a bilateral

commitment X, then it is also implementable by the commitment
X' = ({«7} X7). (2)

To obtain Theorem 1, it suffices then to show that X7 can be reduced to be either [O,:c}*-] or

[z}, 1]. We establish precisely that in the following proposition.

Proposition 4 Let x* be implementable by some bilateral commitment ({z}}, X7) with z; =
BRj(xf). Then z* is also implementable by a commitment X' such that X = {z}} and either
X} = [BR;(z}),1] or X} = [0, BR;(z;)].

Now to prove Theorem 1, take any implementable action profiles * and let X™* be a bilateral
commitment that implements it. By Proposition 3, we know that the commitment ({z]}, X7)

for i € {1,2} does also implement z*. Finally, from Proposition 4, we know that an action

12



profile that can be implemented by such a commitment can also be implemented by a simple
commitment. In sum, these arguments imply that an action profile can be implemented by a
commitment only if it can be implemented by a simple commitment. Conversely, any action
profile that can be implemented by a simple commitment can be implemented by a commitment.

This completes the proof of Theorem 1.

4.4 Multi-period games of commitment

It is often conjectured that the lack of enforcement options may be overcome by considering
gradual commitments, thus allowing to implement outcomes that could not be attainable if
players can only commit once.'? The intuition that drives this conjecture is that in a dynamic
setting players may find it profitable to make ‘small’ commitment. Such small commitments
might incentive the opponent to also commit but have the merit to minimize the loss if the
opponent does not commit. Two central contributions on this issue are Admati and Perry (1991)
and Lockwood and Thomas (2002). Admati and Perry (1991) consider a model in which players
can make repeated voluntary contributions to finance a project. This latter is implemented
only if the sum of the contribution passes a threshold. The game stops as soon as the project
is implemented. Lockwood and Thomas (2002) consider a finitely repeated prisoners’ dilemma
with continuous action space in which at each stage players can only increase their level of
cooperation. Both models show that efficient, or nearly efficient outcomes can be obtained.!® In
this section, we follow this line of research by considering a multi-period game of commitment,
denoted I'T".

In the game I'T, players face T periods of commitment and one final stage in which they play
the game induced by their commitments. In each period ¢ = 1,...,T, players simultaneously
restrict their action spaces with the constraint that the restriction at stage ¢ has to be a non-
empty, compact, convex subset of the restricted action space at period ¢ — 1. That is, if X!
denotes the restriction of player ¢ at period ¢ then Xf“ C X!. Finally, in period T + 1, players
play the game induced by the commitment of period T, the game G(XT).

One may imagine that allowing for several stages of commitment may change the set of

28ee Schelling (1956) for an early account on this issue.
3The models of Admati and Perry (1991) and Lockwood and Thomas (2002) do not separate as clearly as we

do the commitment decision from the decision of choosing which action to play. Their models are simply repeated
games in which the assumption that at each stage players cannot use an action ‘lower’ than their action at the
previous stage. First, this implies that in their models players can only restrict their action sets by choosing
a lower bound (the contribution level in Admati and Perry (1991) or the cooperation level in Lockwood and
Thomas (2002)). Second, a key difference is that in their model, the payoff is dependent on the sequence of
commitments (lower bounds), while in our model we do assume that commitments do not enter directly the

payoff functions.

13



implementable profiles. In fact, it turns out that in our context this is not the case.

Theorem 2 For any T a profile of actions x* is implementable in the multi-period game of

commitment T'T(G) if and only if it is implementable in a game of commitment I'(G).

The proof of this theorem heavily rests on a result similar to that of Proposition 2, i.e., if z*
is implementable in T' rounds of commitment then at least one player is best-replying. A key
observation to prove Theorem 2 is that for any equilibrium s* of I'", we can always construct
a new equilibrium profile § in which players’ first stage restrictions are the same as their last
restrictions under s* (on the equilibrium path), and at all other subsequent stages players do
not further restrict their action spaces. Hence, from the perspective of characterizing the set of
implementable profiles repeating the number of stages at which players can restrict their action

spaces does not enrich our model.

4.5 The geometry of implementable profiles

As already pointed out, Theorem 1 has remarkable implications for the characterization of the
implementable action profiles of a game of commitment. To check whether a profile of actions

x is implementable, it suffices to follow a simple four-step procedure:

Step 1. Check whether z lies on the graph of the best-reply map of at least one player. If not,

then x is not implementable. If yes, go to step 2.

Step 2. Check whether x lies on the best-reply graphs of both players. If yes, then z is imple-

mentable since it is an equilibrium of the mother game G. If not, go to step 3.

Step 3. Without loss of generality, assume that z; = BR;(x;). Construct the simple commitments
({z:}, [0, BRj(x;)]) and ({x;}, [BR;j(x;),1]). Go to step 4.

Step 4. Check whether x} maximizes wu;(-, brj[»O’BRj(“)](-)) or u; (-, brgBRj(mi)’l](-)). If yes, then x is

implementable. If not, then x is not implementable.

Steps 1 and 2 are easily translated into geometric analysis. An action profile can be imple-
mented only if it lies on the best-reply curve of at least one player. If it lies on the best-reply
curves of both players, this action profile is an equilibrium of the mother game, and from Propo-
sition 1, it is implementable. Therefore, we are left with the question: which of the action
profiles that lie on only one best-reply curve can be implemented? Steps 3 and 4 give the an-
swer. However, these last two steps do not translate as easily into geometric analysis. In the
sequel, we show that simple geometric arguments can be used to show that certain portions of

the best-reply curves of the players cannot be implemented. Furthermore, we show that for a
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certain class of games, the set of implementable profiles can even be completely characterized

by a straightforward geometric procedure.

To get this result, we first show that any equilibrium outcome can be described as a two step

optimization program,

Proposition 5 An outcome (X*,z*) is an equilibrium outcome of I'(G) if and only if, for at
least one player i € {1,2}, j #i:

*

(1) x} mazimizes ui(xi,brj(j (7)), and
(ii) bry " (x7) = BR;(x5).

Figure 3 illustrates the logic of Proposition 5. The outcome (z*, X*) with X* = ({z}},[0,7;])
is an equilibrium outcome as the profile of actions z* is associated with player ¢’s highest indif-
ference curves I'C; on the section of player j restricted best-reply curve brj[-o’ij ! that corresponds
with his mother best-reply curve BR;. Observe that x* is also implementable by the simple

bilateral commitment ({z7},[0,27]), an illustration of Proposition 4.
Zj

1

Figure 3: The geometry of Proposition 5

Remark 1 From Proposition 5, we have that x* is implementable by the commitment X* if
x; maximizes the payoff of player ¢ being on the graph of the restricted best-reply of player j.
This result has thus the flavor of the outcome of a sequential game in which player 7 moves first.

Intuitively, this is not surprising since, as already pointed out by Schelling (1960), the power to
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commit oneself is equivalent to a first move.'* Hence, implementable profiles of actions have a

Stackelberg-type structure, one player ‘leads’ the commitment while the other ‘follows.’

We now provide a geometric condition that has to hold for a profile of actions to be im-
plementable. In other words, if this condition does not hold at a profile of actions z* with
z; = BR; (x}), then z* is not implementable; it does not solve the above maximization program.
For simplicity, assume that the (mother) best-reply maps and payoff functions are continuously
differentiable.!> The geometric condition relates the slope of the indifference curve of player i

at =* with the slope of the best-reply of player j at the same action profile x*.

Proposition 6 Let x* be an implementable profile of actions with x;‘ = BRj;(z}), and x* in-
terior. It cannot be true that the slope of player i’s indifference curve at x* is strictly negative

resp., positive) while the slope of player j’s (mother) best-reply at x* is positive (resp., negative).
it hile the sl l j ther) best-reply at x* i it ti

Proposition 6 thus provides a general geometric condition for implementability: the slope of
player i’s indifference curve and the slope of player j’s best-reply must have the same sign. For
instance, in Figure 4, 2* is not implementable since BR; is positively sloped at 2* while player
1’s indifference curve IC; is negatively sloped. Hence, to look for implementable action profiles,
we can restrict our attention to the profiles that are on the positively (resp., negatively) sloped
portions of the best-reply curve of player j in the positive (resp., negative) indifference curve
section of player ¢. This condition is not sufficient, however. In what follows, we give a necessary

and sufficient geometric condition for implementation in an important class of mother games.

Consider the class of games with strategic complementarities.'® Furthermore, we assume
that the function w;(-, BR;(+)) is strictly quasi-concave in x;, for all i € {1,2}.17 For simplicity,

we also assume that player ¢’s payoff is increasing in player j’s action x; for all i € {1,2}, that

"There is now an abundant literature on imperfect competition whose purpose is to obtain Cournot and
Stackelberg outcomes as equilibrium outcomes of the same model. Interestingly, several models use an approach
similar to ours: they give the possibility to the firms to commit to some actions —see for instance Hamilton
and Slutsky (1990) , van Damme and Hurkens (1999) or more recently Romano and Yildirim (2005), and the
references therein. More precisely, firms in most of these models are assumed to commit either to a single action
or to not commit at all. A notable exception is Romano and Yildirim (2005) who assume that firms can restrict
their action sets only from the bottom, i.e., firms can only accumulate. Hence these models can be seen as a
simplified version of our approach. Hamilton and Slutsky’s main result is that the only equilibrium result that
can be obtained are the Cournot and the Stackelberg outcomes, while our approach allows for a larger set of
equilibrium results.

15The assumption of differentiability is not crucial, but greatly simplifies the exposition.

8See Fudenberg and Tirole (1991, p. 490) for a definition. It is worth noting that a similar characterization
holds for games with strategic substitutabilities.

'"See Romano and Yildirim (2005) for similar assumptions.
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Figure 4: The profile * is not implementable.

is, the game has positive consonance.'® We show that for this class of games, the knowledge of
the Nash equilibria of G along with the knowledge of the ‘lead-follow’ profiles is necessary and

sufficient to completely characterize the set of implementable profiles of actions.

First, we need to order the set of Nash equilibria of G. Define z*(1) the Nash equilibrium
of G with the lowest coordinate for player ¢, that is, there does not exist another equilibrium =
of G such that z; < xf(1). Similarly, define 2*(2) the equilibrium of G with the second lowest
coordinate for player i, and so on recursively.'® Note that since best-reply maps are single-
valued, z*(k) is a singleton for any k& > 0. Moreover, the set of equilibria of G is generically
finite and odd (see Harsanyi (1973)), hence there generically exists a finite odd number K of
x*(k)’s. (See Figure 5.)

Second, define (I;, BR;(l;)) the profile of actions such that [; maximizes u;(-, BR;(-)), that is,
the profile of actions (I;, BR;(l;)) is the lead-follow profile with player i as the leader. It is worth
noting that since u;(-, BR;(+)) is strictly quasi-concave in x; and BR; single-valued, I; is unique.
Moreover, since BR; and u; are non-decreasing functions of x;, we have that [; > z}(K) for all

i € {1,2} (See Lemma A3 in the Appendix). Our next proposition states that the knowledge of

18This assumption is not crucial. A complete characterization without this assumption is available upon request.
YFormally, let 2*(0) = 0, and define for any k > 0,

2" (k) = {w € N(G) \ Uk {e" (K)} o < af, Vo' € N(G) \ Uy (K)}).
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l; and the x*(k)’s is necessary and sufficient to completely characterize the set of implementable

profiles of actions.

Before stating the proposition, let us introduce a last piece of notation. Define I; as a subset
of [0, 1] as follows:

Li = | (w7 (k), 2} (k + 1] U [} (K), Li]. (3)

k<K
k odd

Observe that the set I; is uniquely defined by the knowledge of I; and the z*(k)’s.

Proposition 7 Consider a game with strategic complementarities and positive consonance. The
set of implementable profiles of actions is T =TIy UZy with fori € {1,2}, j #i:

I, = {x 1T = BRj(xi), x; € Ii}-

The intuition behind Proposition 7 is rather simple. First, note that since G is a game with
strategic complementarities, the best-reply maps are increasing. Moreover, the best-reply map
of any player, BR;, separates the action space [0,1]? into two regions {z : z; < BR;(z;)}
where player i’s indifference curves are negatively sloped, and {z : x; > BR;(x;)} where
player 4’s indifference curves are positively sloped. Second, for any = with z; = BR;(x;) and
x; € (x7(k),x;(k+1)), k even, we have x; < BR;(x;), hence player i’s indifference curve is neg-
atively sloped at x. Since BR; is positively sloped, it follows from Proposition 6 that x is not
implementable. A similar argument holds for any « with z; = BR;(x;) and z; < z;(1). Finally,
any profile of actions x with x; = BRj(x;) and z; € (z}(k),z;(k + 1)), k odd, is implementable
by the simple bilateral commitment ({z;}, [0, BR;j(z;)]). To see this, it is enough to observe
EO’BR'j(mi)] (x}) is BRj(x;) for z, > x;, and BRj(x}), otherwise. The
strict quasi-concavity of u; and u;(-, BR;(-)) implies then that z; is solution of the optimization

that player j’s best-reply br

program described in Proposition 5. The other cases are similar. See Figure 5 for the set of

implementable actions.

For the class of games with monotonic best-reply maps and wu;(-, BR;(-)) strictly quasi-
concave in x;, the complete characterization of the set of implementable actions is therefore
purely geometric, and the only knowledge required is that of the Nash equilibria of G and the
lead-follow profiles.

5 The Social Value of Commitments

If we interpret our commitment game as a mechanism to implement a particular action profiles

we should ask: Why don’t players simply commit to efficient profile of actions? It turns out
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Figure 5: The set of implementable profiles (in bold)

that quite generally such commitments are not self-enforcing. More precisely, we show that if G
is a smooth game, then we have generic inefficiency.

Next, we address the question of whether commitments are at least useful to implement
action profiles that Pareto dominate the Nash equilibria of the mother game. We conclude, on a
more positive note: we show that commitments can very well serve to make both players better

off if certain conditions are met.

5.1 Efficiency

Let us first recall the definition of efficiency.

Definition 4 A profile of actions y is efficient if there does not exist another profile of actions

y' such that w;(y") > u;(y) for all i € {1,2}, and u;(y") > w;(y) for some i € {1,2}.

Definition 4 is the textbook definition of (Pareto) efficiency. It is worth noting that several
related papers e.g., Jackson and Wilkie (2005) or Gomez and Jehiel (2005), use a stronger
concept of efficiency: a profile of actions is efficient if it maximizes the sum of players’ payoffs.
However, since we do not necessarily assume transferable utilities, our concept of efficiency is

more appropriate. Let us now turn to the concept of smooth games.

Definition 5 The game G is a smooth game if for all i € N, u; is twice continuously differen-
tiable.
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Two remarks are in order. First, in virtually all economic models in which payoff func-
tions are assumed to be continuous, payoff functions are also assumed to be twice continuously
differentiable.?’ For instance, linear-quadratic Cournot games or models of Bertrand competi-
tion with differentiated goods are smooth games. Second, we actually need the assumption of

differentiability only around equilibrium results.

Theorem 3 For any smooth game G, interior equilibrium results of the commitment game I'(Q)

are generically inefficient.?!

This result is reminiscent of Theorem 1 of Dubey (1986), which states that Nash equilibria
of smooth games are generically inefficient. The main reason for hope that this result could be
overcome in the game of commitments is that the set of action profiles that can be implemented
is (in general a large) superset of the set of Nash equilibria of the mother game. So, there
is hope that this superset would also contain some efficient profiles. However, our Theorem 3
shows that this does not hold true, just like Nash equilibria of smooth games, the profiles that
are implementable by commitments are generically inefficient.

Not only is our Theorem 3 reminiscent of Dubey (1986), also the proof follows along similar
lines. The main difference (and difficulty) we face is that implementable profiles that are not
themselves Nash equilibria of the mother game lie on the boundary of the action space of the
subgame G(X) with X the commitment that is implementing the profile (Lemma 2). This
implies that differentiability of the restricted best response fails precisely where we need it: at
the action profile under investigation.

Some additional remarks are in order. First, allowing for commitment to transfer utilities
conditional on actions being played, Jackson and Wilkie (2005) also show that efficiency might
not hold for two-player games. Whether efficiency holds if we allow for commitments to transfer
functions and actions is an open question. Second, Theorem 3 continues to hold if G is a game
with strategic complementarities, but not necessarily smooth. (See Appendix.) Third, efficient
profiles on the boundary can in some games be implemented by commitments. This holds in

particular if a game has an efficient Nash equilibrium on the boundary.

5.2 Pareto Improvements

While efficient results are generically not implementable, a self-enforcing commitment might

nonetheless implement an improvement upon the status quo. In other words, the next question

29Moreover, any continuous function can be arbitrarily approximated by continuously differentiable functions

by Weierstrass Approximation Theorem —See Zeidler (1986, p. 770).
2'TLet T be a set of parameters indexing the payoff functions i.e., for each player i € {1,2}, u; : X x T — R. By

genericity, we mean that there exists an open, dense subset of T" for which any equilibrium result is inefficient.
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we address is whether a commitment can implement a profile that makes both players better off

compared to any equilibrium of the mother game G.

Definition 6 A result z* is an improvement upon the status quo if w;(z*) > w;(y*) for all
i € {1,2}, and u;(z*) > u;(y*) for at least one player, where y* is an action profile that is

efficient in the set of mother Nash equilibria.??

It is not hard to find games in which improvements upon the status quo can be implemented.
Just take any game with a unique Nash equilibrium y* and a lead-follow equilibrium that dom-
inates y*.23 The lead-follow equilibrium can be implemented by the commitment in which the
leader restricts his action space to a singleton while the follower does not restrict his action space
at all. So the more interesting question is: can commitments be used to implement improve-
ments upon the status quo if none of the lead-follow equilibria represents such an improvement?
In our next result we show that this cannot happen if the players’ best responses are monotone
and if the players’ utilities are monotone in the actions of the opponent. We say that a game

satisfies constant consonance if any players payoff is monotone in the action of the other player.

Theorem 4 Let G be a game with constant consonance such that the lead-follow equilibria do
not improve on the status quo. Then there exists an equilibrium improvement x* only if at least

one best-reply map is non-monotonic.

An important implication of Theorem 4 is that if (G, in addition to be a game with constant
consonance is also a game with strategic complementarities or strategic substitutabilities, then
commitments do only serve to improve upon the status quo if the lead-follow equilibrium is
already itself such an improvement. This result sharply contrasts with Proposition 2 of Bernheim
and Whinston (1989), and illustrates how seemingly innocuous restrictions on the set of feasible
commitments can be critical. Bernheim and Whinston’s model and our model, albeit similar in
spirit, differ in two important dimensions. First, in their model only one player (the principal)
has the opportunity to commit. Second, and more importantly, the principal does not only have
the power to commit himself (to take a single action) but he can also restrict the action set of
the other player, the agent. This contrasts with our model in which both players have the power

to commit and a player can only restrict his own action set.

Theorems 3 and 4 are rather negative results in that the power of commitment does not seem

to be of much social value. The following example shows that equilibrium improvements do exist

22Note that the set of equilibria N(G) is a compact set, hence efficiency is well defined.
23This is the case for instance of any game with a strict second-mover advantage (e.g., differentiated Bertrand

duopoly). Since the payoff of the first mover in a lead-follow profile is necessarily weakly higher than the highest

Nash equilibrium, the former Pareto dominates the latter.
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even in the case that neither of the lead-follow equilibria represents such an improvement.
Example 1 Take the mother game G with strategy spaces Y1 = Y5 = [0, 2] and payoff functions:

Y1
u(y1,92) = 57— — 1,

Z+y2

9\ 2
uz(y1,y2) = — (y2 + % - §> — 20y1.

The best-reply map of the players are

BRy(y2) =
0 otherwise,
and
1 i 2 . £ s < 4
T3 Uy > g,
BRy(y1) = 2 3 3
0 otherwise.

The mother game has a unique equilibrium, y§ = 4/3(v/3—1) , 5 = 2/3(2—+/3), with equilibrium
payoffs of w;(y*) = 4/3, u;(y*) = 80/3(1 — /3) ~ —19.52. Moreover, the lead-follow profile
(BRy(l2),l2) = (1,0) is associated to payoffs of ui((BRi(l2),l2))) = 0,u2((BRi(l2),l2)) =
~1/9 ~ —0.11.

We now show that there exists a self-enforcing commitment which implements the action
profile g = (8/9,1/9) with associated payoffs of u;(y) = 16/9 and ua(y) = —1441/81 ~ —17.79,
respectively. Clearly, both players’ payoffs improve upon the Nash equilibrium. According to
Proposition 2, at least one player’s action must be a best-reply against the action of the other
player. In the profile g, we have 8/9 = BRy(1/9).

Following Proposition 4, we can focus, without loss of generality, on only two candidates for
the restriction of player 1, [0,8/9] or [8/9,1]. We claim that player 1’s restriction cannot be
[0,8/9]. To see this, observe that if 1 commits to [0,8/9], then player 2 can commit to {1} and
gets a payoff of —1/9 (since brEO’S/ 9}(1) = 0), which is higher than uy(g). Therefore, the unique

candidate for 1’s restriction is [8/9,1]. In this case, player 1’s restricted best-reply is

bri(yz) = max {—4yz + 4y/y2,8/9} . (4)

Observe that for all ys € [1/9,4/9], we have —4ys +4,/y2 > 8/9. It follows that 2’s payoff when
yo & [1/9,4/9] is —(y2 — 2/9)% — 160/9, which is maximized when yo = 1/9. If yo € [1/9,4/9],
then player 2 maximizes ug(y) = —4y2 + 4,/y2. That the maximum is obtained when y; = 8/9

is a simple matter of computation (albeit tedious) and is left to the reader.
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6 Discussion

In this paper, we completely characterize the action profiles of strategic-form games, which are
implementable by unilateral commitments. We show that an action profile is implementable if
and only if it is implementable by simple commitments, i.e., commitments in which a player
commits to a single action while the other player commits to a subset of actions that include his
mother best-reply to the commitment of his opponent. In turn, this result enables us to easily
characterize the implementable profiles of actions as solutions of simple optimization programs
under constraints (lead-follow profiles). The complete characterization of implementable actions
is our first important result. Our second important result is that the set of implementable
profiles does not change if we allow the players to commit gradually. We also show that the
efficient actions profiles are generically not implementable. This result sharply contrasts with
the situation in which players can sign binding agreements. However, bilateral commitments
can be Pareto-improving in that profiles of actions, which give a payoff higher than the best
payoff in any Nash equilibrium of the mother game to each player, can be implemented. Let
us now discuss some of the restrictions on the commitment technology we have considered, and

how our results are likely to change with altered assumptions.?*

6.1 Non-convex restrictions

Relaxing the assumption of convex commitments leads us to consider general commitment
games.?> To circumvent the problem of the existence of a pure Nash equilibrium in each sub-
game we assume that the (mother) game G is a game with strategic complementarities.?® In
this case, the set of implementable outcomes in commitment games is a subset of the set of
implementable outcomes in general commitment games.?”

Proposition 8 Let G be a game with strategic complementarities. If x* is implementable in a

commitment game, then x* is implementable in a general commitment game.

We give the intuition for this result for two periods, using the case of an implementable action
profile z* with BR;(x%) = 7. More flexibility in player 1’s commitment technology does not

help him: he already obtains the highest possible payoff given the commitment of player 2. As

24Proofs of claims made in this section are available upon request.
25The compactness assumption has to be retained, however. For otherwise, an equilibrium does not exist.
*The game G has strategic complementarities (see e.g.,Topkis (1998)) if for y; > yj and y; > y} we have

wi(yi, y5) — wi(yi, y5) > wilyi,yj) — ui(yi,y;). Cournot duopoly, differentiated Bertrand as well as all games

considered by Romano and Yildirim (2005) belong to this class of games.
2"We say that an action profile * is implementable in a general commitment game if there exists a subgame-

perfect equilibrium of the general commitment game with z* being played in the last period (see Definition 2).
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for player 2, the additional flexibility in his commitment technology indeed implies that he can
induce a larger set of proper subgames. However, any pure Nash equilibrium of these subgames
can also be obtained as an equilibrium of a game in which player 2 commits to a singleton
(a convex restriction). We next identify a class of games for which allowing for non-convex
commitment does not affect the set of implementable outcomes. This suggests that assuming
convexity is without loss of generality in several important economic applications (including all

applications considered in Romano and Yildirim).

Proposition 9 Assume that the game G features constant externalities, the map u;(-, BR;(-))
is strictly quasi-concave and T = 2. If x* is implementable by the general commitment X, then

it 1is implementable by a simple commitment.

6.2 Multi-dimensional action spaces

Another natural extension is to consider multi-dimensional action spaces e.g., compact-convex
subsets of a n-dimensional Euclidean space. Unfortunately, we are not able to offer a definitive
answer at this stage. For instance, it is not entirely clear how to translate our result about the
truncation at the top or bottom to the multi-dimensional realm. What does it mean to truncate
a sphere at the top? We can nonetheless offer some preliminary remarks. For example, if we
assume that action spaces are Cartesian products and payoff functions strictly quasi-concave
in each component of the multi-dimensional action of a player, all our results remain valid. In
general, we need to impose stronger conditions for (most of) our characterization to hold, more
particularly for Proposition 2 to remain valid. Indeed, the new complication is that a small
variation in one player action, from a profile in which none of the players (mother) best reply,
might now change the restricted best-reply of the other player (by moving on the boundary of
its restricted action set). Additional conditions assures that this possible change does not affect

too much the payoff of the deviating player.

6.3 More than two players

While a full-fledged analysis awaits future research, we can offer a preliminary observation.
In the paper, we have seen that lead-follow profiles are always implementable in commitment
games based on two-player nice games. We might conjecture that this result also holds for three
players or more. The short answer is no. To see this, consider a Cournot triopoly game with
payoff (1 — x; — x; — xp)x; for firm 4. If firm 1 moves first, firm 2 second and firm 3 last, the
equilibrium is (1/2,1/4,1/8). We claim that the commitment game induced by this Cournot
triopoly does not have an equilibrium with outcome (1/2,1/4,1/8). By contradiction, suppose
that the triple of commitment (X7, X, X3) implements the profile (1/2,1/4,1/8). Since the
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(mother) best-reply of firm 2 to (1/2,1/8) is 3/16, we should have that the lower bound of X»
is 1/4 by Lemma 1. Similarly, 1/2 has to be the lower bound of X;. We now show that firm 1
has an incentive to deviate from X;. If X3 is bounded from above by 1/6, consider a deviation
by firm 1 to the commitment {1/2 — e}. The induced game has a unique Nash equilibrium
(1/2 —¢,1/4,1/8) with a payoff to firm 1 of (1/8 + ¢)(1/2 — ¢), a profitable deviation for e
small enough. Similarly, if X3 is bounded from below by a < 1/8, a deviation by firm 1 to the
commitment {1/2 + ¢} is profitable for sufficiently small . Therefore, lead-follow profiles of
games with three players or more are not necessarily implementable, which suggests that the
characterization of implementable profiles for such games is of a very different nature that the

one we propose.

6.4 Transfers

To conclude, we mention an analogy with the literature on delegation games (see e.g., Fershtman
and Judd (1987) or Kockesen and Ok (2004)). Suppose that utilities are transferable. We can
then reinterpret the commitment to a set of actions as the commitment to transfer functions such
that actions that a player commits not to play are strictly dominated by all actions that a player
commits to play. Such transfers are equivalent to the action-forcing contracts in Fershtman and
Judd (1987). Whether the assumption of transferable utilities is appropriate or not depends on
the application one has in mind. A further exploration of all these themes are left for future

research.

Appendix
A Characterization results

Proof of Proposition 2.  The proof proceeds by contradiction. Let s* = (X7, Jj)ie{m} be
an equilibrium of I', and suppose that (X*,z*) the outcome of s* is such that z} # BR;(z})
for all i € {1,2}, @ # j. To reach a contradiction, we first identify an action, 2 such that
up (2, 25) > wui(z},23) and bry (z}]) = x5. Second, we show that there exists a strategy for
player 1, s/, such that the outcome of (s, s3) is (X*, (2, 23)), hence a contradiction with s*
being an equilibrium.

Step 1. Since z* is a Nash equilibrium of the game G(X*), we have z} = brX (x;‘) for all
i € {1,2}, i # j. Suppose that brix*(x;f) # BR;(z}) for all @ € {1,2}, ¢ # j. By continuity
of BRy and brg( : (remember that bry’ is the restriction of brf 2 to X7), there exists an open

interval (] —e, 2] +¢) with € > 0 sufficiently small such that for all z; € (] —e, 27 +¢) we have
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that br;(; (x1) = 5. Next pick a € [0,1) large enough such that 2} = ax} + (1 — «)BRy(23) €
(x7 — e,27 + €). By construction of (z] — €,27 + ¢), we have that ber (x}) = x5. Moreover,

uy (2, x3) > uy (a7, 25) since player 1’s payoff function is strictly quasi-concave in z;.

Step 2. We claim that the strategy s} = ({2} }, 07) is a profitable deviation for player 1. The
outcome of (s7,s3) is (({«}}, X3), (2], 2%)), which, by construction, gives a strictly higher payoff

to player 1. [ |

Proof of Proposition 3. Let s* = ((X7,07),(X5,03)) be an equilibrium of I' with outcome
(X*,z*). By Proposition 2, for at least one player, say player 1, we have =7 = BR;(x3). We
claim that the strategy profile s’ := (s, s}), with s = ({25}, 0%), is also an equilibrium of T,
with outcome ((X7,{z5}),x").

First, observe that player 1 does not have an incentive to deviate from s} given player 2’s
strategy sh. Indeed, since player 2’s restriction is the singleton {3}, player 1 cannot obtain a
payoff higher than ui(BRi(x}), %), which is the payoff he obtains under s’. Second, to show
that player 2 has no profitable deviation, we use the one shot deviation property. Since s’ agrees
with s* in all proper subgames of I'; and s* is an equilibrium of I', player 2 has no profitable
deviations in any of the proper subgames of I'.

Suppose now that s§ = (XJ,03) was a profitable deviation for player 2 given player 1’
strategy s;. Since player 2 is indifferent between (s},s)) and s*, it follows that s5 is also a

profitable deviation from s3, a contradiction with our assumption that s* is an equilibrium.

Proof of Proposition 4. Let s* = (({z}},0]), (X}, 07)) be an equilibrium of I with result
x*, X7 = [z;,7;], and 2} = BR;(x]). Define s’ = ([z},1],07) and s} = ([0, 2]],07). We claim
that either (sf,s’) or (sf,s”) is an equilibrium of T' with result z*. First, observe that both

i i
strategy profiles fmder consijderation have x* as their result. To see this, note that player ¢ has
only one action z, and player j’s mother best response to z}, BR;(x}), is contained in his
restricted action space in either case. Second, note that player j does not have an incentive to
change his restricted action space given player i’s commitment to {z}} as his restricted action
space contains his mother best-reply BR;(z;) to the single action in player 1’s restricted action
space .

It remains to show that player ¢ has no profitable deviation from his commitment to {z}}
given the commitment of player j to either [z}, 1] or [0, 27]. Since s* is an equilibrium of T', the set
of action profiles that give player i a payoff strictly higher than u;(z*), {z : u;(z) > w;(z*)}, does
not intersect the graph of the restricted best-reply brj[-zj il of player j. For otherwise, player %
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would have a strictly profitable deviation from sj. It follows that for all 2’ € {x : u;(x) > u;(z*)},
we have either
br; 7 (x7) — 2 > 0, (A1)

or

b P @l — 2 < 0. (A2)
We can also observe that for all x; € [0, 1],

1]

b= (@) < ot @y < orl Y (@),

[z, 023,
; (zi) = br; 7 ().

brj[-zj 73] (x;) > br

Suppose that (A1) holds. It follows from the above observation that for all 2’ € {z : u;(z) >

ui(z)},
[3.1]

br; (i) — 2 > 0.

This implies that given the commitment of player j to [x;‘, 1], player i cannot obtain a payoff
strictly higher than u(z*). Therefore, player 7 has no profitable deviation from s} given 5;, hence
(sf,s}) is an equilibrium of I'. If (A1) does not hold, then (A2) must hold. If (A2) holds, we
can use the same arguments to show that z* is implementable by ({;}, [0, z}]). [ |

Proof of Proposition 5. Observe that we can rewrite conditions (i) and (i) as follows. A
profile * is implementable by a bilateral commitment if and only if there exists a restriction

X7 such that z7 is a solution of the following program,

max,, (o, 1] wi(xg, ;)
(P) X
sty =br; 7 (z;) (P*)
such that brj.(; (xf) = BRj(z}),
Note that (P*) is a two-step optimization program. First, we optimize ui(xi,brj.(; (x;)) with
respect to x;. This is the program (P). Second, we check whether the solution obtained lies on
the graph of j’s best-reply BR;.

(=) Let s* = (Xi,07)ieq1,2y be an equilibrium of T, where X7 = {27}. (The case when
X3 = {z%} is symmetric). Note that we make use of Proposition 3. For all X € Y, the
mappings o} and o} are such that (o] (X),05(X)) is a Nash equilibrium of G(X). In particular,
if X1 = {x1} for some z; € Y3, we have o(X) = bry>(x1). Thus, for all deviations by player 1

to a strategy s; = ({1}, 07) for some 1 € Y7, we have uy(s1, s3) = uy(z1, brg(g (x1)). Moreover,
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any deviation by player 1 to a strategy s} = (X1, 07) for some X; € ) with result z is result-
equivalent to a deviation of the type s1 = ({z1},07) since zo = br§(2 (1) for both profiles of

strategies. Since s* is an equilibrium, such deviations are not profitable, i.e.,
N T X3
wy (27, bry 2 (27)) > wi (a1, bry % (21)), Vo € Y7

That is, 27 must be a solution of (P). By Proposition 2, we have z; = BR;(z}) for at least
one player ¢ € {1,2}. Suppose that x5 # BRa(x7). Then, given ({7}, 07), player 2 is better-off
deviating to ({ BRa(x7)},03), a contradiction with s* being an equilibrium. Hence, we have
x5 = BRy(x7), and therefore, x7 is solution of (P*).

(<) Suppose that z7 is solution of (P*). Consider the following strategy profile: sj =
({x7},07), and s5 = (X;,03), where the mappings o] and o} are such that (o] (X),05(X))
is a Nash equilibrium of G(X), for all X € Y. Clearly, the outcome of s* is (z7,z3), and by
construction it is a Nash equilibrium of G({z}} x X3).?® By construction, for all subgames G(X),
the actions (07 (X), 05(X)) constitute a Nash equilibrium of G(X). Hence, according to the one-
shot deviation property, it suffices to check that there is no first-stage deviation to obtain that
s* is indeed an equilibrium of I'. Since 25 = BRy(x}) and X} = {z}}, player 2 cannot obtain a
better payoff than uy(z*), and thus has no profitable deviation. As for player 1, suppose that
there exists X; € ) such that for s; = (X1,07), ui(s1,s5) > ui(s}, s3). Let & be the outcome
of the profile (s1,s3). Since s; is a profitable deviation, we then have ui(Z) > uy(z*). By
construction of the mapping o9, we have Iy = brf 2 (1), a contradiction with the fact that =7 is
a solution of (P). ]

B Proofs related to the multi-period game of commitments, I'"

Lemma A1 Let v* € N(G). The profile z* is implementable in TT(G).

Proof.  The proof is similar to that of Proposition 1, and left to the reader. [ |

Lemma A2 Let z* be implementable in TT(G). We have x} = BR;(z}) for at least one player
ie{l,2}.

Proof.  The proof proceeds by contradiction. Suppose that #* is implementable in I'7(G) by
the strategy profile s*, but a7 # BR;(z}) for all players i € {1,2}. Assume that 2] > BR;(z}) for
both players. (The other cases are treated similarly.) Let s¥(h') = [z}, Z!] where h is the history

#8Since 7 is solution of (P*), br;(; (z7) = BRz(x7) € X35. Moreover, single-valuedness of BRy implies that z*
is the unique Nash equilibrium of G({z7} X X3), where x5 = BRa(z7).
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at period ¢ on the equilibrium path. From Lemma 1 in the main text, we have that ] = QZT for
both players. Let h'" be the last history on the equilibrium path of s* such that g? #+ QZT for
at least one player ¢ € {1,2}. Such an history exists as the empty history (i.e., the beginning of
the game) satisfies this inequality. Without loss of generality, assume ff # x1. Moreover, as
XtC Xforanyt € {1,...,T}, we have 2T > 2!, 2T = 2 and 2 = 2 for any ¢t > t*+1. We
now show that player 1 has a profitable deviation at history h* . As in the Eroof of Proposition 2,
choose | € (BRy(x3),27)N XY # () sufficiently close to o7 such that br?é +1(m’1) = 25 ™ where
Xg“ is the restriction played by player 2 at history h!" under s5. By construction of nt,
remember that 25“ = 2I'. Construct the following strategy for player 1: s/ ) = {2/} and

s)(h) = s%(h) for any other history h. Following the history (h!", ({z}} x XL *1)), the unique

*

+
equilibrium result for this subgame is (2, brg( 2 (2))) = (2}, x3%). Strict quasi-concavity of uq

thus implies that s} is a profitable deviation for player 1, a contradiction. |

Proof of Theorem 2. (<«<). The proof is trivial if 7" = 1. Suppose that " > 2. Let z*
be an action profile implementable in I'(G) by the simple bilateral commitment X*. W.l.o.g.
suppose that X; = {27}, and 25 = BRa(z]). We now show that we can implement z* in
I'T(@). To this end, consider the strategies in I'7(G) such that player 1 chooses the restriction
{z7} in the first stage (and, hence in all subsequent stages) and player 2 restricts to X at the
initial history and at all subsequent histories h! of length ¢ < 7. Formally, we consider any
profile of strategies s* with s%(h") = {27} and s3(h°) = X3 at the initial history k", and for
any history h! = (h°, ({x}} x X3)!) with t < T, sj(h!) = {z}} and s3(h!) = X;. Clearly, any
profile satisfying this requirement yields the result z*. Since 25 = BRa(z}), and given that
player 1 restricts to the singleton {zj}, player 2 has no incentive to deviate. As for player 1,
observe that he can only deviate at the first stage. Consider a first-stage deviation by player 1 to
X1. The induced game is T7~1(G(X; x X3)), and let 2’ be a Nash equilibrium of G(X; x X3).
By Lemma Al, there exists a profile of strategies s*|x,x x; such that z’ is implementable in
IT=HG(Xy x X3)), with s*|x, xx; a profile of strategies following the history (h, (X1 x X3)).
(More precisely, let s be any profile of strategies of I'", s|;, is the profile of strategies induced by
s after history h i.e., s;|}, = si(h, h') for any A’ in the set of histories following history h.) Note
that since z’ is the Nash equilibrium of G(X; x XJ), we have zf, = brf 2 («}), and, moreover,
since o7 € argmaxy, ey, u1 (1, brﬁq (x1)), we have uq(z*) > uq(2’). It follows that the strategies
in which player 1 commits to {«}} in the first stage, player 2 commits to X at the initial history
and at all subsequent histories k' of length ¢ < T, players play s*|x, « x; following any first-stage
deviation of player 1 implements z*. (To be complete, assume that the strategies prescribe the

play of an equilibrium after any other type of histories.)
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(=). Let s* be a subgame perfect equilibrium of I'" (@) that implements the profile z*, and
denote (X1, X3) the restriction played in the first stage of IT'7(G). From Lemma A2, it follows
that z; = BR;(xz}) for at least one player ¢ € {1,2}. W.lLo.g., suppose that 25 = BRy(z}).
We claim that the commitment ({z}}, X4) implements z* in I'(G). Player 2 has clearly no
incentive to deviate given the commitment of player 1 to {z]}. Consider now player 1, and
suppose that player 1 has a profitable deviation X from his commitment {z}}. Following
player 1’s deviation, the induced game is G(X| x X3), and let 2’ be a Nash equilibrium of
G(X{ x X3) with uy(2") > ui(z*). (Note that we implicitly consider the profile of strategies
(X1,01)(X3,09)) with (01(X),02(X)) a Nash equilibrium of G(X) for any X € Y.) Notice
that zf, = brg( 2 (z) since 2’ is a Nash equilibrium of G(X] x X4). This implies that {z}} is
also a profitable deviation for player 1 in I'(G). We now show that the existence of such a
deviation in I'(G) contradicts the fact that s* is a subgame perfect equilibrium of T'7(G). To
see this, consider the strategy s} in which player 1 plays {z}} in the first period of I'7(G) and
play according to s] at any other history. Consider the subgame starting after this deviation by
player 1. We then have the game I'" ~1(G ({2} x X3)). Clearly, in any result of this subgame
player 1, plays 2. Therefore, the best result that player 2 can induce is br;( 2 (2}); hence, the
profile of strategies (s}, s5) leads to a unique equilibrium result, (27, brg( 2 (x})). It follows that
s} is a profitable deviation for player 1 given the strategy s3 of player 2, which implies that
(s%,s3) cannot be an equilibrium of T'T(G), a contradiction. We conclude that #* must also be
implementable in I'(G). |

C Proofs related to the geometry

Proof of Proposition 6. Let 2* be an implementable profile of actions with 27 = BR;(z]),
and z* interior. By contradiction, suppose that the slope of indifference curve of player ¢ at x*

is negative while the slope of BR; at z* is positive.

Define QT :={y € [0,1]> : y > 2*} and Q_ = {y € [0,1]* : y < 2*}.?° Since the indifference
curve of player i at z* is negatively sloped, there exists an € > 0 such that either u;(y) > wu;(z*)
for all y € B-(2*) N (QT \ {z*}) or such that w;(y) > u;(z*) for all y € B.(z*) N (Q~ \ {z*}),

where B.(z*) is an open ball of radius € around z*.

Let f: X — Y be a function. We denote Gr f the graph of f. Since the slope of BR; at x*

Let 2 and y two vectors in R™. We write x > y if 2; > y; for all4 € {1,...,n}
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is positive, we have that

Gr b7“j N (Be(zt) N QF \ {z),
Gr bT][p’BRj(mZ L N(B:(z") NQ-\ {z"}),
Grbr "M 0 (B (%) 0 QT {2},
Gr ol 0 (B N Qo (a7,

are non-empty sets, hence the graph of player j’s restricted best-reply intersects player ’s strict

upper contour set at x*.

Finally, from Theorem 1, the two simple commitments that could possibly implement the
profile z* are ({z}},[0, BR;(x})]) and ({«}}, [BR;(x}),1]). It follows from the above arguments
that z* cannot be a solution of the optimization program described in Proposition 5 (since the
graph of player j’s restricted best-reply intersects player i’s strict upper contour set at z*), hence
a contradiction with £* being implementable. The same argument follows mutatis mutandum

for the other cases. |

Lemma A3 Let G be a game with strategic complementarities and positive consonance i.e., u;

is non-decreasing in x;, j # i, for all i € N. We have l; > x}(K).

Proof. Suppose that x7(k 4+ 1) > [; > x7(k). Since, BR; is non-decreasing, we have
BR;(a:(k+1)) > BR; () > BR;(x}(k)), hence

wils, BR; (2} (k + 1)) > w;(li, BR; (I;)) (A3)

since u; has positive consonance. Moreover, since z7(k+1) is the unique best-reply to 2} (k+1) =
BRj(z;(k +1)) («*(k + 1) is a Nash equilibrium), we have

wi(w; (k+ 1), 25 (k + 1)) > u;(l;, BRj(w; (k + 1))

(Ad)
> ui(li, BRj(l;)) > ui(w; (k + 1), 25 (k + 1)),

a contradiction. A similar argument shows that [; could not be smaller than z}(1). n

Proof of Proposition 7. We first start with a preliminary observation. The best-reply
of player i separates the action space [0,1]? into two regions: one region in which player i’s
indifference curves are negatively sloped, one region in which player ’s indifference curves are
positively sloped. To prove this result, fix an action x;‘ of player j, and consider the best-reply
z} = BR;(x}) of player i to 2. Define IC := {z € [0, 112 : ui(z) = wi(x*)}. For any z; # x}, we

have u;(x;,27) < u;(x*) since x7 is the unique best-reply to x}. Next, if z; < 27, it follows from
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u; increasing in x; that u;(z;, zj) < ui(z;, 75) < ui(z*), hence (z;,z;) ¢ IC. Therefore, for any
x;, we need x; > x;‘ for (x;,z;) to belong to IC. Hence, we have that for any z; < z}, IC is

negatively sloped and for any x; > ], IC is positively sloped.

As a second observation, note that for any x; € [z}(k),z}(k + 1)], BRi(BR;(x;)) — z; is
either positive or negative, but does not alternate in signs. For otherwise, there exists another
equilibrium in (z}(k),z}(k+1)), a contradiction with the definition of the x*(k)’s. Moreover, we
have that BR;(BRj(x;))—x; < 0 for any x; € (x](k),x}(k+1)) if k is odd, BR;(BR;(x;)) —x; >
0, if k£ is even. In words, the graph of player i’s best-reply is to the ‘left’ of the graph of
player j’s best-reply if k is odd, and to the ‘right’ if k is even. (See Figure 5.) Furthermore,
BR;(BRj(x;)) — z; > 0 for any z; < 2}(1) and BR;(BRj(z;)) — x; < 0 for any x; > z}(K).3

*

Fix a profile of actions x with x; = BRj(z;) and x; € (z}(k),z}(k + 1)) for some k even.
We want to show that this profile is not implementable. From the previous observation, we
have that BR;(xzj) = BR;(BR;(x;)) > x;. From the first observation, it then follows that
the indifference curve of player ¢ at x is negatively sloped. Since BR; is positively sloped, it
follows from Proposition 6 that z is not implementable. A similar argument holds for any z
with x; = BR;j(z;) and x; < z(1).

Let us now consider any profile of actions z* with 27 = BR;(z]) and =} € (2] (k), z] (k + 1))
for some k odd. We want to show that any such a profile is implementable by the simple bilateral
commitment ({z}}, [0, BR;(x})]). The key observation is that the best-reply of player i is now
to the ‘left’ of the best-reply of player j i.e., BR;(BR;(x})) < z;. (See Figure 5.) Hence,
for any xz; > zj, brj(; (x;) = BRj(x}), that is, player j’s restricted best-reply is BR;(z]), and
wi(zi, br])-(; (1)) < wi(z], br])-(; (xF)) by strict quasi-concavity of u;. Finally, note that brj.(; (x;) =
BRj(z;) for any x; < x, henceforth the maximum of w;(-, br])-(; (+)) is achieved in x} by strict

quasi-concavity of u;(-, BR;(-)). It follows that x* is implementable (step 4).

Similar arguments applies to show that any point 2* with 2 = BR;(z]) and z} € (z7(K), ;]

is implementable by the simple bilateral commitment ({z}}, [0, BR;(x])]). [ |

D Proofs related to the welfare

Proof of Theorem 3. Let (X*,z*) be any equilibrium outcome of I'(G) such that X* is
simple, and x* is interior. Let T" be a set of parameters and define the family of payoff functions
sy X xT — R, for all i € {1,2}. We want to show that for a dense open subset T™* of T,

30By contradiction, suppose that BR;(BR;(x;)) — x; < 0 for any x; < x;(1). In particular, for z; = 0, i.e., for
the lower bound of Y;, we have 0 < BR;(BR;(0)) — 0 < 0, a contradiction.
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x* is inefficient. If x* is an equilibrium of the mother game G, the result follows from Theorem

1 of Dubey (1986). If z* is not an equilibrium of the mother game G, the proof is similar to
the proof of Theorem 1 of Dubey. The proof is as follows. Define the directional mapping
D:TxX —R%,

Bul(-,t) (x/) 8u1(~,t) (x/)

D(t,a’) = | ,.2% a0 : (A5)
fta) 2t

and let Dy(-) be the restriction of D to t. Thus, Di(z*) is the Jacobian matrix evaluated at z*.
A key step in Dubey’s proof is to observe that at any interior equilibrium z* of GG, the diagonal
elements of the Jacobian matrix are zero, and that the set of 2 x 2 matrices with zeros on the
diagonal is a sub-manifold of R* of co-dimension 2. If z* is not an equilibrium of G, we have a
similar result, that is, we can show that if z* is an equilibrium result of T', then Dy(2*) € AN B,
with AN B a sub-manifold of R* of co-dimension 2. This step is the only step that differs with
Dubey’s proof.

First, from Lemma 2, for at least one player, we have zf = BR;(x;). Without loss of
generality, suppose that x5 = BRy(x}). Since z* is interior, we then have that g—:g(x*) = 0.

This equality is our first constraint on the Jacobian matrix. Formally, define the set
A={M cR': My =0}, (A6)

i.e., the set of 2 x 2 matrices with a zero on the diagonal. Observe that if x* is an equilibrium

result, then Dy(2*) € A, or z* € D;'(A). The set A is a sub-manifold of R* of co-dimension 1.
Second, since (X*, z*) is an equilibrium outcome, it follows from Theorem 1 that u; (z7, brg( 2 (x7)) >

up(z1, brf 2 (1)) for all z; € Y;. We show that these inequalities impose a relationship between

the first-order derivatives of u; with respect to x; and xo, respectively. If br;( i is differentiable

at x*, then the relationship is trivial. However, whenever X* is a simple commitment, brg( 2 i

not differentiable in z7. We use the concepts of subgradient and subdifferential to circumvent

this problem.3!

For any function f : Z — R, denote 0f(z) the subdifferential of f at z. We refer the
reader to Clarke (1989, Chapter 1) or Rockafellar (1981, Chapter 3) for rigorous definitions of
subdifferentials. As an example, if f(z) = |z|, then 0f(0) = [—1, 1].

Since uso is twice continuously differentiable, B Ry is continuously differentiable, hence Lips-

chitz continuous. From Lemma 1, it then follows that brf 2 s Lipschitz continuous. Note that

Rademacher Theorem implies that brg( 2 is differentiable almost everywhere. Let us consider the

31We refer the reader to Rockafellar (1981) for a good source on the theory of subgradients and non-smooth

optimization.
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subdiffential of vy (+) := —uq (-, brg( 2 (1)) at x3. Since u; is continuously differentiable and br;( 2 i
Lipschitz continuous, Theorem 5P of Rockafellar (1981, p. 74) implies that

_Ou ey n

* X* *
8—901(96 P (z7)0bry * (7). (A7)

ovy(z7) =
Since x] minimizes vy, 0 € Ovy(z7) (Clarke, 1989, p. 9)), hence there exists a £ € ﬁbrgq (x7)
such that

8u1 8u1
= L")+ (2" A
0= 5, @) + 528 (A8)

the required relationship. (Note that if br;( 2 is differentiable at x7], then £ is the derivative of

brf 2 evaluated at z7. )

For any scalar a, define the set
B = {M e R*: My + aMqs = 0}, (Ag)

i.e., the set of 2 x 2 matrices with a linear relationship between the two first entries. It follows
that if 2* is an equilibrium result, then Dy(z*) € B, or z* € D; (B) (take a = £). The set B
is a submanifold of R* of co-dimension 1. It then follows that AN B is a submanifold of R* of
co-dimension 2, as required.

Finally, define the set
C = {M € R*: the rows of M are linearly dependent}. (A10)

It is easy to see that if z* is efficient, then Dy(z*) € C, or 2* € D;*(C). For otherwise, there
exists a neighborhood O of z* and a 2’ € O such that u;(2’) = u;(x*) + &;, €; > 0, for all player
i € N i.e., there exists dry and dzs such that

Ouz(t) | v Ouz(ot) | = : (A11)
7o (") = (%) | \dz2 )

0z

Hence, if a profile z* is an equilibrium result and efficient, then D;(z*) € AN BN C or
z* € D;'(AnNBNC).

The next step is to show that for a dense open set T* C T', D, YANBNCQ) is empty. To
do so, we shall show that the co-dimension of D; *(AN B NC) is 2, that is the dimension of Y,
hence is empty. This step is found in Dubey’s proof. [ |

Inefficiency and a non-smooth game
Assume that the game G is a game with strategic complementarities and negative consonance
ie., xj — u;(x;, x;) is decreasing in x; for each player i € N, i # j. Note that G is not assumed

to be smooth.
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The first observation is that BR;(BRy (7)) < x3. Since BRy is monotone increasing in x,
we have brgo’BRQ(mT)} (x1) = BRay(x2) for all z9 € [0, 27], and brgo’BRQ(ﬁ)] (x1) = BRy(x7), other-
wise. Henceforth, if BRi(BRa(z})) > x7, we have that player 2’s best-reply to BRi(BRa(z}))
is BRo(z}), hence a contradiction with z} maximizing player 1’s payoff on the constrained
best-reply of player 2.

Second, since us is decreasing in x1, we obviously have
uz(wy, BR1(BRy(21))) = uz(w3, x7),

hence (BRi(BRs(x7)),x5) improves upon 2’s payoff.

Finally, since at an equilibrium z* of I', 23 = BRy(x7), it follows that
uy(BR1(23), 73) > ua(z"),

with a strict inequality if * is not a Nash equilibrium of G.
It follows that (BRi(x3),x%) Pareto-improves upon z*, hence z* is not efficient. Finally,
observe that the result also holds if we assume strategic substitutes and payoff increasing in the

action of the opponent.

Proof of Theorem 4 Let (X* 2*) be an equilibrium outcome of I' and assume that z* is
an improvement upon the status quo. Let 2V be a Nash equilibrium, which is efficient in the
set of Nash equilibria, for which we have u;(x*) > u;(z) for i € {1,2} with at least one strict
inequality. Using Proposition 2, we can assume that x5 = BRy(z]). By our assumption that

neither of the lead-follow equilibria is an improvement upon the status quo, we have that

’U,Q(.%'*) > uQ(xN) > ’U,Q(ll,BRQ(ll)).

Observe that in all the three profiles, player 2 is best replying to player 1’s action. Fur-
thermore, as player 2’s payoff function is monotonic in his opponent’s action, we have that
ud(x1) := ua(x1, BRa(21)) is a monotonic function of z1, hence x} and [; must lie on two differ-
ent sides of ¥’ i.e., we must have either Iy > 2 > 2% or I; < x¥ < z}. Since best-reply maps

are single valued, we also have that I; # ¥ # 7.

Moreover, since zV and (I1, BRa(l1)) both lie on the graph of player 2’s mother best-reply

and wu; is continuous, we have

ul(ll, BRQ(ll)) > ul(x*) > ul(xN) .

Assume that player 2’s best-reply function is monotonic. We will show that /; and z7] cannot lie

on two different sides of 2}, and give to player 1 a payoff higher than his Nash payoff whenever
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player 1’s payoff function is monotonic in his opponent’s action and best-reply functions are

monotonic.

We first start with the case in which the best-reply function B Ry is non-decreasing and the
player 1’s payoff function has positive consonance i.e., zo — ui(x1,22) is non-decreasing. From
Lemma A3, we have l; > x¥', therefore I; > 2 > 27 since [; and 2% must lie on two different
sides of 2. Moreover, BRy(z)) > BRy(x%). Tt thus follows that

u (z), BRy(2))) > ui (2}, BRa (7)) > ui (2}, BRy(})),

where the first strict inequality follows by strict quasi-concavity and the second by positive

consonance, a contradiction.

Second, consider the case in which the best-reply function BRs is non-decreasing and the
player 1’s payoff function has negative consonance i.e., x9 — uj(z1,22) is non-increasing. An
immediate modification of Lemma A3 implies that [; < 2V, and therefore l; < z¥ < x}. It
follows that BRy(x)) < BRy(z}), and

w (2}, BRy(27')) > wi (], BRa(2))) > uy (2}, BRo(a})),

where the first strict inequality follows by strict quasi-concavity and the second by negative

consonance, a contradiction.

The other cases are similar and left to the reader. [ |

E Proofs related to general (non-convex) commitments

Proof of Proposition 8. Let T'= 2. Assume that the profile * is implementable by X*. Since
z* is implementable, it follows from Theorem 1 that x* is implementable by the commitment
({z}}, X7) with 27 = BRj(z]). Let us show that 2" is also implementable in a general commit-
ment game. First, since player j’s payoff is the highest payoff player j can obtain when player ¢ is
committed to x}, player j has no profitable deviation. Second, if player ¢ deviates to any general

commitment X; (non-necessarily convex), the induced game is G(X; x X7). Since this game is a
X
game with strategic complementarities, it has a pure Nash equilibrium Z := (Z;, br;’ (Z;)) with
a payoff to player ¢ of
. L X X3 x
ui(%) = ui(Zi, br; 7 (2:)) < max (g, br;? (z;)) = ui(z”),
2?1'6[0,1]
hence the deviation is not profitable.

Let T > 2. To implement z* in the general commitment game, consider the following

strategies. Player ¢ commits to {z}} and player j to X;-‘ in the first period. In period t > 1,
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player j continue to play X; if he has always played X j* in the previous ¢ — 1 periods. Player
i has no choice but to play {z}}. Following a deviation to X;f by player j at period ¢, player j
plays {Z;} where (z},Z;) is a pure Nash equilibrium of G({z}} x X}). If either player deviates
in the first period, the strategies require them to commit to a pure Nash equilibrium of the
game induced by their deviation in the next period. In the last period, the strategies prescribe
the play of a pure Nash equilibrium. It follows from the proof of Proposition 1 and the above

arguments that z* is implementable. [ |

Proof of Proposition 9. Assume that the game features positive externalities (the arguments
are similar if we assume negative externalities). Let x* be implementable by the general com-
mitment (X, X7) and assume that 7 < BRj(z]). Let X7* := [min X7, 27|, it is convex. We
first show that z* is implementable by the commitment (X, X ]**) By strict quasi-concavity,
we have that * is a Nash equilibrium of G(X] x X;*) (See Lemma 1). Moreover, since x* is
implementable by X, player j has no incentive to deviate from X7*. To see this, suppose that
player j has a profitable deviation i.e., there exists a commitment X; such that all equilibria of
G(X] x Xj) gives player j a payoff strictly higher than u;(z*). Then, we have a contradiction
with x* being implementable by X* since subgame perfection requires to play a Nash equilib-
rium of G(X x Xj;). All these equlhbrla would give to player j a payoff strictly higher than

uj(x*). Similarly, the graph of br " is included in the lower contour set LC;(z*) of player i at

ok

X
x* with LC;(z*) := {x € [0,1]? : u;(7) < w;(x*)}. It remains to show that the graph of br;? s
also included in LC;(z*). Loosely speaking, we want to show that player i cannot “move” along
the graph of player j’s restricted best-reply and find a profile that strictly improves his payoff

over u;(z*). For otherwise, he would have a proﬁtable deviation

X ** *k

First, for all x; € [0, 1] such that br () = br (:cl) we clearly have (mz,brX (x;)) €

XOR*

LC;(x*). Second, for all x; € [0, 1] such that br (x;) < br ( i), we have that

wias, bry 0 (20)) < wilas, by (2:) < wala”),

where the first mequahty comes from positive externalities and the second from the fact that
the graph of br; % isin LC;(x*). Third, consider all z; € [0,1] such that br ( i) > br ( i)
We have that

X* xx
wi(ws, br; 7 (@) < wilzi, bry 7 (25)) < wi(wi, x7),

X
where the last equality comes from x} > br;” (z;) for all z; € [0,1]. Suppose that there exists

X%‘* X*
a @; with br; 7 (Z;) > br; 7 (2;) such that u;(Z;,27) > u;(z},27). Since BR; is increasing and
r; < BRj(z}), there elther exists a &; < x} such that BR;(%;) = z; or BRj(z;) > ; for all

X
€ [0,1]. Consider the former case. We have that ; < Z;. To see this, note that br? (x;) = 3
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for all z; > &; since best-replies are increasing. Moreover, assume that there exists a &; > &; such
X5 X3 X*

that br;? (Z;) > br;’ (Z;). This implies that BR;(Z;) > BR;(#;) = x} > br;’, a contradiction

with the strict-quasi concavity of the payoff function and 2z € X7. Consequently, the strict

quasi-concavity of u; implies that uz(xl,x}k) > w;(z*) for all x; € [ﬁci,x;f], a contradiction since

these points belong to the graph of br’Xi . Consider now the latter case ie., BRj(x;) > z for all

*k

X Xx
z; € [0,1]. In this case, we show that br;’ (x;) < br;” (z;) for all ; € [0,1]. To see this, suppose

X X
there exists a @; such that br;’ (2;) > br;”’ (2;). However, strict quasi-concavity implies that

sk * *

X X* X
br;? (z;) = xj for all x;, henceforth BR;(#;) > br;’ (&) = a} > br;’(&;), a contradiction

since zj € X7 and wu; is strictly quasi-concave in z;. Henceforth, 2 is implementable by the
commitment (X[, X7*).

*

If 27 > BR;(z}), apply the same arguments as above with X7 := [z}, max X}].

If 27 = BRj(z}), strict quasi-concavity of the map x; — u;(x;, BR;j(x;)) implies that z* is
implementable by either ({z}}, [0, BR;(x})]) or ({z}},[BR;(z}),1]), two simple commitments.
For instance, suppose that the lead-follow profile (I;, BR;(l;)) is higher than (z}, BR;(x})), then

*

x* is implementable by the simple commitment ({z}, [0, BR;(z})]). To see this, observe that
[0,BR; (z})] [0,BR;(«7)] (

br; (zi) = BRj(«;) for any x; < z7 and br,

is increasing. Clearly, strict quasi-concavity of the map x; — u;(x;, BR;(x;)) implies that player

_— * . * ] .
x;) = z for any x; > x] since BR;

i has no profitable deviation to ; < . Suppose he has a profitable deviation to z; > x]. First,

*

<%

>~

if (iz,x;‘) belongs to the graph of br; 7 we have a contradiction. Second, if (@,x}k) does not
X Xz
belong to the graph of brj 7 then brj (&) > x}k It follows from positive externalities that
ui(ii,brj J (i‘z)) > ul(iz,x;k) > ul(x*),
again a contradiction with the implementation of * by the general commitment X*. To complete
the proof, repeat the same arguments as above but starting with «* being implementable by the

commitment (X[, X7*). [ |
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