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Abstract

In a major contribution, Loewenstein and Prelec (1992) (LP) set the founda-

tions for the behavioral approach to decision making over time. We show that the

LP theory is incompatible with two very useful classes of value functions: the HARA

class and the constant loss aversion class. Resultingly, the LP theory has been used

infrequently in applications, which have largely used the �; � form of hyperbolic pref-

erences. We propose a more general but equally tractable class of utility functions,

the simple increasing elasticity (SIE) class, which is compatible with constant loss

aversion in a reformulated version of LP. Allowing for reference dependence and dif-

ferent discount rates for gains and losses the SIE class is able to explain impatience,

gain-loss asymmetry, magnitude e¤ect, and the delay-speedup asymmetry even un-

der exponential discounting. If combined instead with the (reformulated) LP theory,

the SIE class in addition can also explain the common di¤erence e¤ect.
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1. Introduction

It is well known that the exponential discounted utility model of intertemporal choice
(henceforth, EDU) is contradicted by a relatively large body of empirical and experimental
evidence; see for instance Thaler (1981). Furthermore, it appears that these anomalies are
not simply mistakes; see for instance, Frederick, Loewenstein and O�Donoghue (2002).
If we wish to develop models that better explain economic behavior, then we have no
choice but to take account of these anomalies. Furthermore, certain types of behavior,
and several institutional features, can be explained by decision makers attempting to deal
with time-inconsistency problems that arise from non-exponential discounting1.
Loewenstein and Prelec (1992) (henceforth, LP) give a formal statement of the known

anomalies of the EDU model. Of the anomalies mentioned in LP, the subsequent litera-
ture has focussed largely on the evidence for and implications of declining discount rates
(the common di¤erence e¤ect); EDU in contrast, assumes constant discount rates. The
importance of LP�s contribution is that it remains, the leading contender in providing an
explanation of the other anomalies of the EDU model, in particular, gain-loss asymmetry,
the magnitude e¤ect and delay-speedup asymmetry (these are de�ned below).
A small, promising, set of recent models also attempt to explain all or a subset of the

anomalies, but for a variety of reasons they require further development. Manzini and
Mariotti (2006) can explain the magnitude e¤ect in their model of vague time preferences.
However, their model relies on a �vagueness function�as well as �secondary criteria�; both
impose a degree of arbitrariness. By using non-constant marginal utility, Noor (2007) is
also able to account for several anomalies of the EDU model. The empirical relevance
of Noor�s model is not yet clear, for the following reasons. First, in several experiments
that illustrate the anomalies of EDU, the time delay is short enough to justify a constant
marginal utility. Second, not all experimental results involve students (one motivation
used by Noor for his paper) whose marginal utility is most likely to change. Third, it
requires a fair degree of sophistication on the part of students (especially in light of bounded
rationality models such as the vague time preferences model just considered above) to make
precise calculations based on changes in marginal utility. Read and Scholten (2006) use an
attributes based model to explain the magnitude e¤ect and the gain-loss asymmetry. Such
a model focuses on a �trade-o¤�between the time dimension and the outcome dimension.
More empirical evidence is needed to narrow down the relevance of these disparate models
in explaining the anomalies of the EDU model.
An important contribution of LP is that they give the �rst statement and axiomatic

1Time inconsistency problems can lead individuals to make suboptimal decisions about, for instance,
savings, pensions, retirement etc. The existence of mandatory pension plans, retirement age, compulsory
insurance of several sorts etc. are possible institutional responses to these time inconsistency problems;
see, for instance, Frederick, Loewenstein and O�Donoghue (2002).
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derivation of the generalized hyperbolic discounting formula which remains the most general
formulation of the hyperbolic discounting function. However, the simpler quasi-hyperbolic
formulation, often referred to as the �; � form, due to Phelps and Pollack (1968), and later
popularized by Laibson (1997), is mainly used in applied theoretical work.
Why is the LP form used so rarely in applied work? Our �rst contribution is to

show that the LP formulation is incompatible with value functions from the hyperbolic
absolute risk aversion class (HARA) and also with the class of value functions that exhibit
constant loss aversion. So, for instance, the commonly used utility functions in applied
work, the CARA form, the CRRA form, the quadratic form and the logarithmic form are
all inconsistent with the LP formulation. Since both classes are tractable and popular in
applications, their incompatibility with LP (1992) is potentially a serious handicap. LP
themselves do not give a value function that satis�es all their restrictions.
Our second contribution is to restate the LP theory so that it admits discount functions

that are not necessarily the same for losses and gains. We show that this reformulation is
compatible with value functions that exhibit constant loss aversion.
Our third contribution is to provide a scheme for generating value functions that are

compatible with the (reformulated) LP theory. The simplest members of this class are just
as tractable as those of the HARA class. We call this class the simple increasing elasticity
(SIE) class; it is formed by a product of a HARA function and a constant relative risk
aversion function (CRRA).
Our fourth contribution is to show that allowing for di¤erent discount rates for gains

and losses and for reference dependence under exponential discounting, the SIE class is
able to explain several well known anomalies of the EDU model, such as impatience, gain-
loss asymmetry, magnitude e¤ect, and the delay-speedup asymmetry. Furthermore, if
combined instead with generalized hyperbolic discounting, the SIE class, in addition, can
also explain the common di¤erence e¤ect.
The scheme of the paper is as follows. In section 2, we discuss the main anomalies of

the EDU model. The LP theory and its restatement by al-Nowaihi and Dhami (2006) is
explained in section 3.2 In section 4, we show that the utility functions in the HARA class
(which includes as special cases, the CARA, CRRA, logarithmic, and quadratic utility
functions) as well as those exhibiting constant loss aversion are not compatible with the
LP formulation. In section 5, we derive a utility function that is compatible with the
reformulated LP theory and also constant loss aversion, as well as other results. All proofs
are contained in the appendix.

2al-Nowaihi and Dhami (2006) point out to three errors in LP. The most important error they point
out is that the generalized hyperbolic discount function does not follow from linear delay but rather that
it requires quadratic delay. These points are clari�ed in section 3.
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2. Four anomalies of the EDU model

Loewenstein and Prelec (1992) describe the following four anomalies:

1. Gain-loss asymmetry. Subjects in a study by Loewenstein (1988b) were, on av-
erage, indi¤erent between receiving $10 immediately and receiving $21 one year
later. They were also indi¤erent between loosing $10 immediately and losing $15
dollars one year later. Letting v be the value function (or felicity, or utility at
some instant in time) and �� be the discount function for gains/losses, we get:
v (10) = v (21)�+ (1) and v (�10) = v (�15)�� (1). Since v (�21) < v (�15), we
get: v (�10) > v (�21)�� (1).

2. Magnitude e¤ect. Thaler (1981) reported that subjects were on average indi¤erent
between receiving $15 immediately and $60 one year later. They were also indi¤erent
between receiving $3000 immediately and receiving $4000 one year later. We thus
have v (15) = v (60)�+ (1) and v (3000) = v (4000)�+ (1). Note that 3000 = 200�15
and that 200� 60 = 12000 > 4000. Hence v (200� 15) < v (200� 60)�+ (1).

3. Common di¤erence e¤ect. Thaler (1981): a person might prefer one apple today to
two apples tomorrow, but at the same time prefer two apples in 51 days to on apple
in 50 days. Thus we have v (1) > v (2)�+(1) but v (1)�+(50) < v (2)�+(1 + 50).

4. Delay-speedup asymmetry. Loewenstein (1988a) reported that, in general, the amount
required to compensate for delaying receiving a real reward by a given interval, from
s to s + t, was two to four times greater than the amount subjects were willing
to sacri�ce to speed consumption from s + t to s. Consider the two consumption
streams: ((0; 0) ; (c; s) ; (0; s+ t)) and ((0; 0) ; (0; s) ; (c; s+ t)), where c > 0. If the
consumer expects the �rst stream but gets the second, he will code that as a loss of
�c in the second period but a gain of c in the third period. Let the resulting value be
V ((0; 0) ; (�c; s) ; (c; s+ t)).3 On the other hand, if the consumer expects the second
stream but gets the �rst, he will code that as a gain of c in the second period but a
loss of c in the third period. Let the resulting value be V ((0; 0) ; (c; s) ; (�c; s+ t)).
Classically, of course, V ((0; 0) ; (c; s) ; (�c; s+ t)) = �V ((0; 0) ; (�c; s) ; (c; s+ t))
but what is observed is V ((0; 0) ; (c; s) ; (�c; s+ t)) < �V ((0; 0) ; (�c; s) ; (c; s+ t)).

3We will use capital V to denote the intertemporal utility from a consumption pro�le (lowercase v is
used for the felicity, or utility and is sometimes called a value function). Hence, V ((0; 0) ; (�c; s) ; (c; s+ t))
means the intertemporal utility from receiving $0 today, �$c, s periods from now and $c; s + t periods
from now.
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3. The Loewenstein-Prelec theory of intertemporal choice

Consider a decision maker who, at time t0, formulates a plan to choose ci at time ti,
i = 1; 2; :::; n, where t0 < t1 < ::: < tn. LP assume that the intertemporal utility to the
decision maker, at time t0, is given by:

V ((c1; t1) ; (c2; t2) ; :::; (cn; tn)) = �ni=1v (xi)'� (ti) ,

xi = ci � cri , (3.1)

were cri is the reference point in period i.
4 If xi � 0, then '� (ti) = '+ (ti). If xi < 0, then

'� (ti) = '� (ti). LP assume from the outset that '� (ti) = '+ (ti). By contrast, in our
reformulation of LP, we allow the discount function for gains, '+ (ti), to be di¤erent from
the discount function for losses, '� (ti).
We get the standard EDUmodel for the special case cri = 0 and exponential discounting:

' (ti) = e
��ti, � > 0. (3.2)

Aside from its tractability, the main attraction of EDU is that it leads to time-consistent
choices (at least, in non-game-theoretic situations). If the plan (c1; t1) ; (c2; t2) ; :::; (cn; tn)
is optimal at time t0, then at time tk the plan (ck+1; tk+1) ; (ck+2; tk+2) ; :::; (cn; tn) is also
optimal. But this may no longer be true for more general speci�cations of the discount
function '.
LP adopt the utility function (3.1) taking v to be the value function introduced by

Kahneman and Tversky (1979). Thus v satis�es:

v : (�1;1)! (�1;1) is continuous, strictly increasing,
v (0) = 0 and is twice di¤erentiable except at 0 (3.3)

They de�ne the elasticity of v (LP�s second equation number 15, p583) by:

�v (x) =
x

v

dv

dx
, x 6= 0. (3.4)

LP introduce �ve assumptions, all with good experimental bases (LP, II pp574-578).
The �rst assumption, A0 below, is only implicit in LP and is, of course also satis�ed in
the EDU model. However, it is essential.

A0 Impatience. '+ : [0;1)
onto! (0; 1] and '� : [0;1)

onto! (0; 1] are strictly decreasing.
If 0 < x < y, then v (x) = v (y)'+ (t) for some t 2 [0;1). If y < x < 0, then
v (x) = v (y)'� (t) for some t 2 [0;1).5

4Our formulation (3.1) di¤ers from LP (LP (9), p579) only in that LP�s formulation is in terms of
xi = ci � cri , from the outset.

5It is su¢ cient that '+ be strictly decreasing in some interval: (a; a+ �), a � 0; � > 0 and, similarly,
for ��.
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The next four assumptions (A1 to A4, below) correspond to anomalies 1 to 4, above.
Thus, what is regarded as anomalous behavior from the point of view of EDU, is at the
core of the LP theory.6

A1 Gain-loss asymmetry. If 0 < x < y and v (x) = v (y)'+ (t), then v (�x) >
v (�y)'� (t).

A2 Magnitude e¤ect. If 0 < x < y, v (x) = v (y)'+ (t) and a > 1, then v (ax) <
v (ay)'+ (t). If y < x < 0, v (x) = v (y)'� (t) and a > 1, then v (ax) > v (ay)'� (t).

A3 Common di¤erence e¤ect. If 0 < x < y, v (x) = v (y)'+ (t) and s > 0, then
v (x)'+ (s) < v (y)'+ (s+ t). If y < x < 0, v (x) = v (y)'� (t) and s > 0, then
v (x)'� (s) > v (y)'� (s+ t).

To derive the LP formula for generalized hyperbolic discounting (LP (15), p580), a
stronger form of A3 is needed. We adopt:

A3a Common di¤erence e¤ect with quadratic delay. If 0 < x < y, v (x) = v (y)'+ (t)

and s > 0, then v (x)'+ (s) = v (y)'+ (s+ t+ �+st), �+ > 0. If y < x < 0,
v (x) = v (y)'� (t) and s > 0, then v (x)'� (s) = v (y)'� (s+ t+ ��st), �� > 0.

A4 Delay-speedup asymmetry. For c > 0, s > 0 and t > 0, V ((0; 0) ; (c; s) ; (�c; s+ t)) <
�V ((0; 0) ; (�c; s) ; (c; s+ t)).

Note that A3a ) A3 and that �+ ! 0 and �� ! 0 gives exponential discounting. As
mentioned above, LP assume that '+ = '�. While this is consistent with their theory,
it does not follow from it. Also, LP state the assumptions explicitly only for the case
0 < x < y. Three theorems follow:

Proposition 1 : Suppose '� = '+. Then A0 and A1 imply that losses are discounted
less heavily than gains in the following sense: 0 < x < y ) v(x)

v(y)
> v(�x)

v(�y) . If '� = '+,
then A0 and A1 also imply that the value function is more elastic for losses than for gains:
x > 0) �v (�x) > �v (x).

Proposition 2 : A0 and A2 imply that the value function is subproportional: (0 < x < y
or y < x < 0)) v(x)

v(y)
> v(ax)

v(ay)
, for a > 1, and is more elastic for outcomes of larger absolute

magnitude: (0 < x < y or y < x < 0)) �v (x) < �v (y).7

6More recent work attempts to derive the LP assumptions from more basic psychological principles.
See, for example, Dasgupta and Maskin (2002, 2005) and Fudenberg and Levine (2006).

7This proposition is stated incorrectly in al-Nowaihi and Dhami (2006).
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Proposition 3 : A0 and A3a imply that the discount function is a generalized hyperbola:

'+ (t) = (1 + �+t)
� �+
�+ , '� (t) = (1 + ��t)

� ��
�� , �+ > 0, �� > 0, t � 0 (�+ and �� are as

in A3a).

Corollary 1 : A0 and A3a imply that �
�
'+
'+

=
�+

1+�+t
and �

�
'�
'�

=
��

1+��t
. Hence, the

discount rate is positive and declining.

We now add two standard assumption from prospect theory. The �rst is that the value
function is strictly concave for gains and strictly convex for losses (Kahneman and Tversky,
1979):

A5 Declining sensitivity. For x > 0, v00 (x) < 0 (strict concavity for gains). For x < 0,
v00 (x) > 0 (strict convexity for losses).

Combining A5 with Proposition 2 we get:

Corollary 2 : 0 < �v < 1.

The second assumption that we add from prospect theory is constant loss aversion.
While this is not core to prospect theory, it is very useful and has good empirical support
(Tversky and Kahneman, 1992):

A6 Constant loss aversion. v (�x) = ��v (x), � > 1, for x > 0,

With the aid of these two extra assumptions, we get the following two theorems:

Proposition 4 : t > 0 ) '+ (t) < '� (t), 0 < x < y ) v(x)
v(y)

= v(�x)
v(�y) and x > 0 )

�v (�x) = �v (x).

Proposition 5 : Assumption A4 follows from the other assumptions.

As mentioned above, LP assume that '+ = '�. While this is consistent with their
theory, it does not follow from it. Assuming that '+ = '� is obviously attractive. However,
it implies (Proposition 1) that gain-loss asymmetry (A1) can only be satis�ed if �v (�x) >
�v (x), for x > 0. In the light of Proposition 4, this would exclude value functions exhibiting
constant loss aversion. While constant loss aversion is not core to prospect theory, this
auxiliary assumption considerably simpli�es application of the theory and is consistent
with the evidence (Tversky and Kahneman, 1992).
The generalized hyperbola given in Proposition 3 does not follow from the assumptions

made in LP.8 Our A3a is a corrected version of the one that appears in LP (LP (11), p579)
and enables us to derive the required generalized hyperbola. As far as we know, Corollary
2 and Proposition 4 are new results.

8See al-Nowaihi and Dhami (2006).
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4. Incompatibility of HARA value functions
with the Loewenstein-Prelec theory

A popular family of utility functions is the family of hyperbolic absolute risk aversion func-
tions (HARA). Proposition 6, below, shows that each member of this family exhibits con-
stant or declining elasticity, contradicting Loewenstein and Prelec�s Proposition 2. Hence,
none of this family is compatible with the Loewenstein-Prelec theory. First, we give the
de�nitions and main properties of this family of functions, followed by the main result of
this section: Proposition 6.

Notation: We use the notation, �A and �R respectively, for the coe¢ cients of absolute
risk aversion and relative risk aversion. So for a utility function v (x) ; �A = �

v00(x)
v0(x)

and �R = �
xv00(x)
v0(x) :

4.1. Constant relative risk aversion functions (CRRA)

v (x) =
x1�


1� 
 , 0 < 
 < 1,

v0 (x) = x�
 > 0; v00 (x) = �
x�
�1 < 0,

�R = �xv
00 (x)

v0 (x)
= 
,

�v (x) =
xv0 (x)

v (x)
= 1� 
. (4.1)

The general restriction is that 
 6= 1. However, we need the stronger restriction, 0 < 
 < 1,
in order to satisfy Corollary 2. It is clear, from the last line of (4.1), that members of the
CRRA class of functions violate Proposition 2 and, hence, are not compatible with the
Loewenstein-Prelec theory.

4.2. Hyperbolic absolute risk aversion functions (HARA)

v (x) =



1� 


"�
�+

�x




�1�

� �1�


#
, � > 0, � > 0, 0 < 
 < 1, x � 0,

v0 (x) = �

�
�+

�x




��

> 0; v00 (x) = ��2

�
�+

�x




��
�1
< 0,

�v (x) =
xv0 (x)

v (x)
=
(1� 
) �x




�
�+ �x




��

�
�+ �x




�1�

� �1�


,

�A = �v
00 (x)

v0 (x)
=


�


�+ �x
. (4.2)
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The general restrictions are � > 0,
�
�+ �x




�1�

> 0, 
 6= 1. Since we allow x 2 [0;1),

the restriction
�
�+ �x




�1�

> 0 implies that � > 0 and 
 > 0. We then also need 
 < 1

in order to satisfy Corollary 2.

Remark 1 : Note that, traditionally, the HARA class is de�ned by v (x) = 

1�


�
�+ �x




�1�

,

and that �v (x) = (1� 
)
�
1 + 
�

�x

��1
, which is increasing in x, as required by Proposition

2. While an additive constant, of course, makes no di¤erence in expected utility theory;
its absence here would violate the assumption v (0) = 0. However, including the constant
� 

1�
�

1�
, to make v (0) = 0, results in �v (x) decreasing with x, as shown by Proposition
6, and, hence, violating Proposition 2.

The following three classes of functions are also regarded members of the HARA family.

4.3. Constant absolute risk aversion functions (CARA)

v (x) = 1� e��x, � > 0, x � 0,
v0 (x) = �e��x > 0; v00 (x) = ��2e��x < 0,

�A = �v
00 (x)

v0 (x)
= �,

�v (x) =
xv0 (x)

v (x)
=

�x

e�x � 1 =
1

�1n=1
(�x)n�1

n!

. (4.3)

From the last line of (4.3), we see that �v (x) is decreasing with x. Hence, the CARA class
is not compatible with the Loewenstein-Prelec theory.

4.4. Logarithmic functions

v (x) = ln (1 + �x) , � > 0, x � 0,
v0 (x) = � (1 + �x)�1 > 0; v00 (x) = ��2 (1 + �x)�2 < 0,

�v (x) =
xv0 (x)

v (x)
=

�x

(1 + �x) ln (1 + �x)
. (4.4)

Proposition 6 establishes that �v (x) is decreasing with x. Hence this class is not compatible
with the Loewenstein-Prelec theory.

4.5. Quadratic functions

v (x) =
1

2
�2 � 1

2
(�� �x)2 , � > 0, 0 � x < �

�
,

v0 (x) = � (�� �x)2 > 0; v00 (x) = �2�2 (�� �x) < 0,

�v (x) =
xv0 (x)

v (x)
=
2�x (�� �x)2

�2 � (�� �x)2
. (4.5)

8



Proposition 6 establishes that �v (x) is decreasing with x. Hence this class is also not
compatible with the Loewenstein-Prelec theory.

Proposition 6 : For members of the CRRA class of value functions (4.1), �v (x) is con-
stant. For members of the HARA (4.2), CARA (4.3), logarithmic (4.4) and quadratic (4.5)
classes of functions, �v (x) is declining. Hence none of the general family of hyperbolic ab-
solute risk aversion functions is compatible with the Loewenstein-Prelec theory.

5. A value function compatible with the Loewenstein-Prelec the-
ory

The following method can be used to generate candidates for value functions compatible
with the Loewenstein-Prelec theory. Choose a function, f (x), satisfying:

0 < f (x) < 1, f 0 (x) > 0, (5.1)

then solve the following di¤erential equation for v (x):

x

v

dv

dx
= f (x) . (5.2)

This method only yields candidate value functions, which then have to be veri�ed. For
example, choose

f (x) =
ax

b+ x
+ c, x � 0,

a > 0, b > 0, c > 0, a+ c � 1. (5.3)

Substituting from (5.3) into (5.2), separating variables, then integrating, gives:

x

v

dv

dx
=

ax

b+ x
+ c,Z

dv

v
= a

Z
dx

b+ x
+ c

Z
dx

x
,

ln v = a ln (b+ x) + c lnx+ lnK,

v (x) = K (b+ x)a xc. (5.4)

Choosing a = 1� 
, b = 
�
�
, c = � and K = 


1�


�
�



�1�

produces a value function:

v (x) =

x�

1� 


�
�+

�



x

�1�

, x � 0, (5.5)
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The restrictions a > 0, b > 0, c > 0, a + c � 1 give: 0 < � � 
 < 1 and �=� > 0. To
ensure that v0 > 0, take � > 0. Hence � > 0. For x < 0, de�ne v (x) by v (x) = ��v (�x),
where � > 1. Putting all these together gives the candidate value function

v (x) =

x�

1� 


�
�+

�



x

�1�

, x � 0,

v (x) = ��v (�x)

= ��
 (�x)
�

1� 


�
�� �



x

�1�

, x < 0,

� > 0, � > 0, � > 1, 0 < � � 
 < 1, (5.6)

where � is the (constant) coe¢ cient of loss aversion.9

Proposition 7 : From (5.6) it follows that:
(a) v : (�1;1)! (�1;1), v (0) = 0, v is continuous, v is C1 except at x = 0.

(b) v0 (x) = �
x��1

1�


�
�+ �



x
�1�


+ �x�
�
�+ �



x
��


> 0, x > 0,

(c) v00 (x) =
�
�+ �



x
��
�1 �

�x��2
h
��+ (� � 
) �x




i2
� x��2�(
��)

1�


�
�+ �



x
�2�

< 0, x >

0,
(d) v0 (x) = �v0 (�x) > 0, x < 0,
(e) v00 (x) = ��v00 (�x) > 0, x < 0,
(f) �v (x) = x

v
dv
dx
= � + 1�


1+ 
�
�x
> 0, �0v (x) > 0, x > 0,

(g) �v (x) = x
v
dv
dx
= � + 1�


1� 
�
�x
> 0, �0v (x) < 0, x < 0,

(h) �A = �
v
00
(x)

v0 (x)
=

(1�
)[��+(��
) �x
 ]
2
+�(
��)(�+ �



x)

2

�
x(�+ �


x)

2
+�(1�
)x2(�+ �



x)

> 0, x > 0,

(i) �R = �
xv

00
(x)

v0 (x)
=

(1�
)[��+(��
) �x
 ]
2
+�(
��)(�+ �



x)

2

�
(�+ �


x)

2
+�(1�
)x(�+ �



x)

> 0, x > 0,

(j) �A = �
v
00
(x)

v0 (x)
= v00(�x)

v0(�x) < 0, x < 0,

(k) �R = �
xv

00
(x)

v
0
(x)

= (�x)v00(�x)
v0(�x) < 0, x < 0,

Corollary 3 : From (f) and (g) of Proposition 6, we get that �v (x) ! � as x # 0 and
as x " 0. Hence, �v (x) is de�ned for all x 2 (�1;1), �v (x) = � + 1�


1+ 
�
�jxj

> 0, �v (x) is

increasing in jxj and �v (x)! � + 1� 
 � 1, as jxj ! 1.

Remark 2 : In the light of Corollary 3, we may call the value function (5.6) a simple
increasing elasticity (SIE) value function.

9It may be interesting to note that (5.6) is a product of a CRRA function, x�; and a HARA function,

v (x) = 
x�

1�


�
�+ �


x
�1�


.
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As our discount function, we adopt one of the following:

�+ (t) = e��+t, �� (t) = e
���t, 0 < �� < �+, or (5.7)

�+ (t) = (1 + �+t)
� �+
�+ , �� (t) = (1 + ��t)

� ��
�� , where, (5.8)

0 < �� � �+, 0 <
��
��

� �+
�+

and, at least, one of the inequalities,

�� � �+,
��
��

� �+
�+
, is strict.

Corollary 4 It follows from (5.7) and (5.8) that 0 < �+ (t) < �� (t) for t > 0.

Proposition 8 : (a) Under exponential discounting (5.7) (but with di¤erent discount
rates for gains and losses), the SIE value function (5.6) satis�es assumptions A0, A1, A2,
A4, A5 and A6, i.e., all the assumptions except A3, the Common di¤erence e¤ect.
(b) Under hyperbolic discounting (5.8), the SIE value function (5.6) satis�es assumptions
A0 to A6, i.e., all the assumptions.

6. Conclusions

In a seminal contribution, Lowenstein and Prelec (1992) (LP) provide the foundations
for the study of choice of over time, taking into account the observed stylized facts on
anomalies of the EDU model. A small literature, using promising alternative frameworks,
has also attempted to explain the observed anomalies. But further work is needed to
develop these alternative frameworks. For the moment, though, LP remains the most
accepted framework to resolve the EDU anomalies. Furthermore, it provides an axiomatic
derivation of the generalized hyperbolic discounting formula that forms the basis of much
recent research in temporal choice.
We show that LP (1992) is incompatible with value functions from the hyperbolic

absolute risk aversion class (HARA) and also with the class of value functions that exhibit
constant loss aversion. Since both classes are tractable and popular in applications, their
incompatibility with LP (1992) is potentially a serious handicap. We restate the LP theory
so that it admits discount functions that are not necessarily the same for losses and gains.
We show that this reformulation is compatible with value functions that exhibit con-

stant loss aversion. We provided a scheme for generating value functions compatible with
the (reformulated) LP theory. The simplest members of this class are just as tractable
as those of the HARA class. They are formed by a product of a HARA function and
a constant relative risk aversion function (CRRA). We call this class the class of simple
increasing elasticity (SIE) value functions, because they are the simplest class compatible
with the (reformulated) LP theory that we could �nd. Their main feature is that they

11



exhibit increasing elasticity. If we are willing to modify the exponential discouting model
to allow for di¤erential discount rates for gains and losses, and reference dependence, then
the SIE class is able to resolve several well known anomalies, such as impatience, gain-loss
asymmetry, magnitude e¤ect, and the delay-speedup asymmetry. Furthermore, if com-
bined instead with generalized hyperbolic discounting, the SIE class in addition can also
explain the common di¤erence e¤ect.

7. Appendix: Proofs

We de�ne two functions, ev+ and ev�, associated with the value function (3.3),
ev+ (x) = ln v (ex) , �1 < x <1,ev� (x) = ln (�v (�ex)) , �1 < x <1. (7.1)

Proof of Proposition 1: Suppose 0 < x < y. By A0, v (x) = v (y)'+ (t) for some
t 2 [0;1). Hence, v(x)

v(y)
= '+ (t). By A1, v (�x) > v (�y)'� (t). Since �y < 0, it

follows that v (�y) < 0 and, hence, v(�x)
v(�y) < '� (t). '+ (t) = '� (t) then gives

v(�x)
v(�y) <

v(x)
v(y)
.

Taking logs gives ln v (y)� ln v (x) < ln (�v (�y))� ln (�v (�x)) and, hence, ln v(y)�ln v(x)
ln y�lnx <

ln(�v(�y))�ln(�v(�x))
ln y�lnx . Letting ex = lnx and ey = ln y, we get ev+(ey)�ev+(ex)ey�ex < ev�(ey)�ev�(ex)ey�ex . Take

limits as ey ! ex, to get dev+
dex � dev�

dex , from which it follows that �v (x) � �v (�x). �
Proof of Proposition 2: Let

0 < x < y (or y < x < 0). (7.2)

By A0, there is a time, t, such that the consumer is indi¤erent between receiving the
increment x now and receiving the increment y, t-periods from now. Then, letting v be
the value function and '+ the discount function, we get

v (x) = v (y)'+ (t) (v (x) = v (y)'� (t) ). (7.3)

Let
a > 1, (7.4)

then the magnitude e¤ect, A2, predicts that

v (ax) < v (ay)'+ (t) (v (ax) > v (ay)'� (t) ), (7.5)

(7.3) gives
v (x)

v (y)
= '+ (t)

�
v (x)

v (y)
= '� (t)

�
. (7.6)

12



Since y; a are positive (resp. y is negative), it follows that ay, and hence, v (ay) are also
positive (resp. negative). Hence, (7.5) gives

v (ax)

v (ay)
< '+ (t)

�
v (ax)

v (ay)
> '� (t)

�
, (7.7)

(7.6) and (7.7) give10

v (x)

v (y)
>
v (ax)

v (ay)
, 0 < x < y (or y < x < 0), a > 1. (7.8)

It follows from (7.8) that the value function, v, is subproportional11. It then follows (see
Appendix B) that the value function is more elastic for outcomes that are larger in absolute
magnitude:

(0 < x < y or y < x < 0)) �v (x) < �v (y) .

Since the value function is subproportional we have, for 0 < x < y, a > 1 (or �y <
�x < 0):

v (ay)

v (ax)
>
v (y)

v (x)
. (7.9)

Start with the case 0 < x < y. Since a > 0; x > 0 and y > 0, and since v (0) = 0 and v
is strictly increasing, it follows that v (x) ; v (y) ; v (ax) and v (ay) are all positive. Hence,
we can take their logs. Let ex = ln x, ey = ln y, ea = ln a (hence, x = eex, y = eey, a = eea).
Then, since x < y and a > 1, it follows that ex < ey, ea > 0. Let ev (ex) = ln v �eex�, then, by
taking logs, and recalling that the logarithmic function is strictly increasing and changes
multiplication to addition, subproportionality. (7.9) gives:

ln v (ay)� ln v (ax) > ln v (y)� ln v (x) ,

ln v
�
eeaeey�� ln v �eeaeex� > ln v �eey�� ln v �eex� ,

ln v
�
eea+ey�� ln v �eea+ex� > ln v �eey�� ln v �eex� .

Since ev (x) = ln v (ex), we get
ev (ey + ea)� ev (ex+ ea) > [ev (ey)� ev (ex)] ,

ev (ey + ea)� ev (ex+ ea)� [ev (ey)� ev (ex)] > 0. (7.10)

Take �x > 0, ea = �x, ey = ex+ �x, then (7.10) gives:
ev (ex+ 2�x)� ev (ex+ �x)� [ev (ex+ �x)� ev (ex)] > 0,

10In the course of their proof, LP derive, incorrectly, the formula (LP (18) p583): v(x)v(y) <
v(ax)
v(ay) ; 0 < x <

y; a > 1 (the �rst < should be >)
11See Kahneman and Tversky (1979, p282) for the de�nition of subproportionality. Note that our, and

LP�s, a > 1 corresponds to their 0 < r < 1.
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ev (ex+ 2�x)� ev (ex+ �x)� [ev (ex+ �x)� ev (ex)]
(�x)2

> 0. (7.11)

Now �
dev
dx

�
x=ex = lim

�x!0

ev (ex+ �x)� v (ex)
�x

,�
dev
dx

�
x=ex+�x = lim

�x!0

ev (ex+ 2�x)� ev (ex+ �x)
�x

,

�
d2ev
dx2

�
x=ex = lim

�x!0

�
dev
dx

�
x=ex+�x � � devdx�x=ex

�x
.

Hence, �
d2ev
dx2

�
x=ex = lim

�x!0

lim
�x!0

ev(ex+2�x)�ev(ex+�x)
�x

� lim
�x!0

ev(ex+�x)�ev(ex)
�x

�x
,

�
d2ev
dx2

�
x=ex = lim

�x!0

ev(ex+2�x)�ev(ex+�x)
�x

� ev(ex+�x)�ev(ex)
�x

�x
,�

d2ev
dx2

�
x=ex = lim

�x!0

ev (ex+ 2�x)� ev (ex+ �x)� [ev (ex+ �x)� ev (ex)]
(�x)2

. (7.12)

Since the limit of a converging sequence of positive numbers in non-negative, we get, from
(7.11) and (7.12): �

d2ev
dx2

�
x=ex � 0,�

d

dx

�
d

dx
ev (x)��

x=ex � 0.
d

dx
(� (x)) � 0.

If � (x) were constant on some non-empty open interval, then the value function would take
the form v (x) = cx
 on that interval, and subproportionality. (7.9) would be violated.
Hence �0 (x) > 0 almost everywhere. Thus � (x) increases with x.
Now consider the case y < x < 0. Then (7.9) still holds. But now we de�ne ex = ln (�x),ey = ln (�y) and ev (ex) = � ln

�
�v
�
�eex��. As before, (7.10) holds and v0 (x) > 0 almost

everywhere. Thus � (x) increases with x.
It then follows that the value function is more elastic for outcomes that are larger in

absolute magnitude. �
Proof of Corollary 2: That �v > 0, follows from (3.3) and (3.4). Also from (3.4) we

get:

v00 (x) =
v (x)

x

�
�0v �

�v (1� �v)
x

�
. (7.13)
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If x > 0 then v(x) > 0, v00 (x) < 0, �0v (x) � 0. From (7.13) it follows that, necessarily,
�v < 1.
If x < 0 then v(x) < 0, v00 (x) > 0, �0v (x) � 0. From (7.13), it follows that, again, �v < 1.
�
Proof of Proposition 3: Let

0 < x < y. (7.14)

By A0, there is a time, t, such that the consumer is indi¤erent between receiving the
increment x now and receiving the increment y, t-periods from now. Then, letting v be
the value function and ' the discount function, we get

v (x) = v (y)'+ (t) . (7.15)

Multiply (7.15) by '+ (s), where s > 0, to get

v (x)'+ (s) = v (y)'+ (s)'+ (t) , (7.16)

A3a, (7.14)and (7.15) give

v (x)'+ (s) = v (y)'+ (s+ t+ �+st) , �+ > 0, (7.17)

(7.16) and (7.17) give
'+ (s+ t+ �+st) = '+ (s)'+ (t) (7.18)

Let
X = 1 + �+s; Y = 1 + �+t. (7.19)

Hence
s =

X � 1
�+

; t =
Y � 1
�+

; s+ t+ �+st =
XY � 1
�+

. (7.20)

De�ne the function G : [1;1)! (0;1) by

G (X) = '+

�
X � 1
�+

�
. (7.21)

Hence,

G (Y ) = '+

�
Y � 1
�+

�
; G (XY ) = '+

�
XY � 1
�+

�
. (7.22)

From (7.18);(7.20);(7.21);(7.22)

G (XY ) = '+

�
XY � 1
�+

�
= '+ (s+ t+ �+st) = '+ (s)'+ (t)

= '+

�
X � 1
�+

�
'+

�
Y � 1
�+

�
= G (X)G (Y ) .
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De�ne the function h : [0;1)! (0;1) by

h(x) = G(ex); x � 0 (7.23)

Hence, and in the light of A0, h satis�es12:

h : [0;1)! (0;1) is strictly decreasing and h (x+ y) = h (x)h (y) . (7.24)

As is well known, see for example Corollary 1.4.11 in Eichhorn (1978), the solution of
(7.24) is the exponential function

h (x) = ec+x, x � 0, c+ < 0, (7.25)

(7.19), (7.21), (7.23), (7.25) give

'+ (t) = (1 + �+t)
c+ . (7.26)

Let
�+ = ��+c+, (7.27)

(7.26), (7.27) give

'+ (t) = (1 + �+t)
� �+
�+ , �+, �+ > 0, t � 0, (7.28)

where � > 0 because � > 0 and c < 0. �
Proof of Proposition 4: Suppose 0 < x < y. By A0, v (x) = v (y)'+ (t) for some

t 2 [0;1). By A1, v (�x) > v (�y)'� (t). Hence, from A6, ��v (x) > ��v (y)'� (t).
Hence, v (y)'� (t) > v (x) = v (y)'+ (t). It follows that '� (t) > '+ (t). We also get
v(�x)
v(�y) =

��v(x)
��v(y) =

v(x)
v(y)
. Finally, �v (�x) = �x

v(�x)v
0 (�x) = �x

��v(x)
�
���dv

dx

�
= x

v(x)
dv
dx
= �v (x).

�
Proof of Proposition 5: Consider the two consumption streams: ((0; 0) ; (c; s) ; (0; s+ t))

and ((0; 0) ; (0; s) ; (c; s+ t)), where c > 0. If the consumer receives ((0; 0) ; (0; s) ; (c; s+ t))
when he was expecting ((0; 0) ; (c; s) ; (0; s+ t)) then, according to prospect theory, he
codes the postponement of c as a loss in period 2 but a gain in period 3. Accord-
ing to (3.1), V ((0; 0) ; (0; s) ; (c; s+ t)) = v (0)'+ (0) + v (�c)'� (s) + v (c)'+ (s+ t) =
��v (c)'� (s) + v (c)'+ (s+ t), where the last inequality comes from v (0) = 0 and
v (�c) = ��v (c). On the other hand, if the consumer receives ((0; 0) ; (c; s) ; (0; s+ t))
when he was expecting ((0; 0) ; (0; s) ; (c; s+ t)), he codes the bringing forward of con-
sumption as a gain in period 2 but a loss in period 3. Hence, V ((0; 0) ; (c; s) ; (0; s+ t)) =
v (0)'+ (0)+v (c)'+ (s)+v (�c)'� (s+ t) = v (c)'+ (s)��v (c)'� (s+ t). We thus have:
V ((0; 0) ; (c; s) ; (0; s+ t)) + V ((0; 0) ; (0; s) ; (c; s+ t)) = v (c)'+ (s) � �v (c)'� (s+ t) �
12It is su¢ cient that h be strictly decreasing in some interval: (a; a+ �), a � 0; � > 0.
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�v (c)'� (s)+v (c)'+ (s+ t) = �
�
�
�
'� (s+ t) + '� (s)

�
�
�
'+ (s) + '+ (s+ t)

��
v (c) <

0, since v (c) > 0, '� (s+ t)+'� (s) � '+ (s+ t)+'+ (s) (Proposition 4) and � > 1 (A6).
Hence, V ((0; 0) ; (c; s) ; (0; s+ t)) < �V ((0; 0) ; (0; s) ; (c; s+ t)). �
Proof of Proposition 6: The result is obvious for the CRRA and CARA classes,

from (4.1) and (4.3), respectively. We shall concentrate on giving the proof for the HARA
class (4.2). For the remaining two classes: the logarithmic (4.4) and the quadratic (4.5),
the proof is similar but easier and, so, will be omitted. Let f (y) = ln y � 
 ln (�+ y) �
ln
�
(�+ y)1�
 � �1�


�
, y = �x



, y � 0. Then, from (4.2), �v (x) = (1� 
) ef(

�x

 ). Hence,

�v is decreasing if, and only if, f (y) is decreasing. Let g (y) = �2�
 + (1� 
)�1�
y �
� (�+ y)1�
, then it is straightforward to show that f 0 (y) < 0 if, and only if, g (y) > 0.
Simple calculations show that g (0) = 0, g0 (0) = 0 and g00 (y) = 
� (1� 
) (�+ y)�
�1 > 0.
Hence, g (y) > 0 for y > 0. Hence f and, thus, also �v, is decreasing. �
Proof of Proposition 7: Follow from (5.6) by direct calculation. �
Proof of Proposition 8: Can be veri�ed by direct calculation using (5.6), (5.7) and

(5.8). �
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