

**University of
Leicester**

DEPARTMENT OF ECONOMICS

**INCREASING ELASTICITY OF THE VALUE
FUNCTION IN THE LOEWENSTEIN-PRELEC
THEORY OF INTERTEMPORAL CHOICE**

**Ali al-Nowaihi, University of Leicester, UK
Sanjit Dhami, University of Leicester, UK**

**Working Paper No. 07/13
October 2007**

Increasing elasticity of the value function in the Loewenstein-Prelec theory of intertemporal choice

Ali al-Nowaihi* Sanjit Dhami†

12 October 2007

Abstract

In a critique of the Loewenstein and Prelec (1992) theory of intertemporal choice, al-Nowaihi and Dhami (2006) point out to four errors. One of the alleged errors was that the value function in prospect theory is decreasing. But it is in fact increasing. We provide a correction and a formal proof. As a corollary, we show that the elasticity of the value function is bounded between zero and one. Nevertheless, all the remaining points in al-Nowaihi and Dhami (2006) remain valid.

Keywords: *Anomalies of the DU model, Intertemporal choice, Generalized hyperbolic discounting.*

JEL Classification Codes: *C60(General: Mathematical methods and programming); D91(Intertemporal consumer choice).*

*Department of Economics, University of Leicester, University Road, Leicester. LE1 7RH, UK. Phone: +44-116-2522898. Fax: +44-116-2522908. E-mail: aa10@le.ac.uk.

†Department of Economics, University of Leicester, University Road, Leicester. LE1 7RH, UK. Phone: +44-116-2522086. Fax: +44-116-2522908. E-mail: Sanjit.Dhami@le.ac.uk.

1. Introduction

In a recent critique of Loewenstein and Prelec's (1992) theory of intertemporal choice published in this journal, the current authors noted four errors. Unfortunately, we made a mistake in relation to one point.¹ This is the alleged Error 1 on pages 105-106 of al-Nowaihi and Dhami (2006). al-Nowaihi and Dhami (2006) claimed that the elasticity of the value function in prospect theory is decreasing. We show here that this is wrong. We show that the elasticity is *increasing* as correctly claimed by Loewenstein and Prelec (1992). In consequence, our correction of the claimed Error 1 was invalid. Nevertheless, all the remaining points in al-Nowaihi and Dhami (2006) remain valid.

2. The Model

Consider a decision maker who, at time t_0 , formulates a plan to choose c_i at time t_i , $i = 1, 2, \dots, n$, where $t_0 < t_1 < \dots < t_n$. Loewenstein and Prelec (henceforth, LP) assume that the utility to the decision maker, at time t_0 , is given (LP (9), p579) by :

$$U((c_1, t_1), (c_2, t_2), \dots, (c_n, t_n)) = \sum_{i=1}^n v(c_i) \varphi(t_i) \quad (2.1)$$

LP adopt the utility function (2.1) taking v to be the value function introduced by Kahneman and Tversky (1979). Thus v satisfies (among other properties)

$$\begin{aligned} v : (-\infty, \infty) &\rightarrow (-\infty, \infty) \text{ is continuous, strictly increasing,} \\ v(0) &= 0 \text{ and is twice differentiable except at 0} \end{aligned} \quad (2.2)$$

LP define the *elasticity* of v (LP (16), p583) by:

$$\epsilon(c) = \frac{c}{v} \frac{dv}{dc}, \quad c \neq 0. \quad (2.3)$$

For $c > 0$ it follows, from (2.2), that $v(c) > 0$. Let $\tilde{c} = \ln c$, $\tilde{v}(\tilde{c}) = \ln v(e^{\tilde{c}})$ and $\tilde{\epsilon}(\tilde{c}) = \epsilon(e^{\tilde{c}})$. Then, from (2.3),

$$\tilde{\epsilon}(\tilde{c}) = \frac{d\tilde{v}}{d\tilde{c}}. \quad (2.4)$$

LP introduce five assumptions, all with good experimental bases (LP, II pp574-578). The two relevant ones here are:

A0 (Impatience) $\varphi : [0, \infty) \rightarrow (0, \infty)$ is strictly decreasing². If $0 < x < y$ then $v(x) = v(y) \varphi(t)$ for some $t \in [0, \infty)$.

¹Professor Kris Kirby recently asked us for a more detailed proof of one of the Propositions. The error came to light when we were drafting a reply. We are very grateful to Professor Kris Kirby for initiating this discovery.

²It is sufficient that φ be strictly decreasing in some interval: $(a, a + \delta)$, $a \geq 0, \delta > 0$.

A2 (*The magnitude effect*) If $0 < x < y$, $v(x) = v(y)\varphi(t)$ and $a > 1$, then $v(ax) < v(ay)\varphi(t)$.

3. Correction

Theorem 1 (Loewenstein and Prelec, 1992): *A0 and A2 imply that the value function is more elastic for outcomes of larger absolute magnitude: $(0 < x < y \text{ or } y < x < 0) \Rightarrow \epsilon(x) < \epsilon(y)$.*

Proof: From assumption A0, LP prove³ that the value function is *subproportional*: For $0 < x < y$, $a > 1$,

$$\frac{v(ay)}{v(ax)} > \frac{v(y)}{v(x)}. \quad (3.1)$$

Taking logs of (3.1) we get, in succession, $\ln \frac{v(ay)}{v(ax)} > \ln \frac{v(y)}{v(x)}$, $\ln v(ay) - \ln v(ax) > \ln v(y) - \ln v(x)$ and, hence,

$$\ln v(ay) - \ln v(ax) - [\ln v(y) - \ln v(x)] > 0. \quad (3.2)$$

Let $\tilde{x} = \ln x$, $\tilde{y} = \ln y$, $\tilde{a} = \ln a$, $\tilde{v}(\tilde{x}) = \ln v(e^{\tilde{x}}) = \ln v(x)$ and $\tilde{v}(\tilde{y}) = \ln v(e^{\tilde{y}}) = \ln v(y)$, then $\tilde{x} < \tilde{y}$, $\tilde{a} > 0$, $\ln v(ay) = \tilde{v}(\tilde{y} + \tilde{a})$, $\ln v(ax) = \tilde{v}(\tilde{x} + \tilde{a})$, $\ln v(y) = \tilde{v}(\tilde{y})$ and $\ln v(x) = \tilde{v}(\tilde{x})$. Hence, (3.2) becomes:

$$\tilde{v}(\tilde{y} + \tilde{a}) - \tilde{v}(\tilde{x} + \tilde{a}) - [\tilde{v}(\tilde{y}) - \tilde{v}(\tilde{x})] > 0. \quad (3.3)$$

Take $\delta x > 0$, $\tilde{a} = \delta x$, $\tilde{y} = \tilde{x} + \delta x$, then (3.3) becomes $\tilde{v}(\tilde{x} + 2\delta x) - \tilde{v}(\tilde{x} + \delta x) - [\tilde{v}(\tilde{x} + \delta x) - \tilde{v}(\tilde{x})] > 0$ and, hence, $\frac{\tilde{v}(\tilde{x} + 2\delta x) - \tilde{v}(\tilde{x} + \delta x) - [\tilde{v}(\tilde{x} + \delta x) - \tilde{v}(\tilde{x})]}{(\delta x)^2} > 0$. Thus:

$$\frac{\frac{\tilde{v}(\tilde{x} + 2\delta x) - \tilde{v}(\tilde{x} + \delta x)}{\delta x} - \frac{\tilde{v}(\tilde{x} + \delta x) - \tilde{v}(\tilde{x})}{\delta x}}{\delta x} > 0.$$

Let $\delta x \rightarrow 0$, to get $\tilde{v}''(\tilde{x}) \geq 0$. If $\tilde{v}''(\tilde{x}) = 0$ in some non-empty open interval, then $v(x) = x^\beta$ on that interval, which would violate (3.1). Hence, $\tilde{v}''(\tilde{x}) > 0$ almost everywhere. From (2.4) it follows that $\tilde{\epsilon}(\tilde{x})$ is an increasing function of \tilde{x} and, hence, $\epsilon(x) = \tilde{\epsilon}(\ln x)$ is an increasing function of x . A similar argument⁴ shows that $\epsilon(x)$ is decreasing for $x < 0$. Thus, the value function, v , is more elastic for outcomes that are larger in absolute magnitude, as stated correctly by LP. \square

³However, inadvertently they write ' $<$ ' instead of ' $>$ '.

⁴For $y < x < 0$, (3.1) still holds. But now we define $\tilde{x} = \ln(-x)$, $\tilde{y} = \ln(-y)$ and $\tilde{v}(\tilde{x}) = -\ln(-v(-e^{\tilde{x}}))$. As before, (3.3) holds and $\tilde{v}''(\tilde{x}) > 0$ on any non-empty open interval. Thus $\tilde{\epsilon}(\tilde{x})$ is increasing in \tilde{x} . Hence $\epsilon(x)$ is decreasing in x .

4. Bounds on the elasticity of the value function

A standard assumption in prospect theory is that the value function is strictly concave for gains and strictly convex for losses. Combining this with LP's theorem, we get:

Corollary 1 : $0 < \epsilon < 1$.

Proof: That $\epsilon > 0$, follows from (2.2) and (2.3). Also from (2.3) we get:

$$v''(x) = \frac{v(x)}{x} \left[\epsilon' - \frac{\epsilon(1-\epsilon)}{x} \right] \quad (4.1)$$

If $x > 0$ then $v(x) > 0$, $v''(x) < 0$, $\epsilon'(x) \geq 0$. From (4.1) it follows that, necessarily, $\epsilon < 1$. If $x < 0$ then $v(x) < 0$, $v''(x) > 0$, $\epsilon'(x) \leq 0$. From (4.1), it follows that, again, $\epsilon < 1$. \square

5. Acknowledgement

We are grateful to Kris N. Kirby for requesting detailed proofs of the results of al-Nowaihi and Dhami (2006). This led us to spot our error. We are also grateful to the editor, J.-F. Laslier, and especially the anonymous referee for valuable comments.

6. References

References

- [1] al-Nowaihi, A., Dhami, S., 2006. A note on the Loewenstein-Prelec theory of intertemporal choice. *Mathematical Social Sciences* 52, 99-108.
- [2] Kahneman, D., Tversky, A., 1979. Prospect Theory : an analysis of decision under risk. *Econometrica* 47, 263-291.
- [3] Loewenstein G., Prelec D., 1992. Anomalies in intertemporal choice : evidence and an interpretation. *The Quarterly Journal of Economics* 107, 573-597.