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Abstract

A celebrated result in the economics of crime, which we call the Becker propo-
sition (BP), states that it is optimal to impose the severest possible punishment
(to maintain effective deterrence) at the lowest possible probability (to economize
on enforcement costs). Several other applications, some unrelated to the economics
of crime, arise when an economic agent faces punishments/ rewards with very low
probabilities. For instance, insurance against low probability events, principal-agent
contracts that impose punitive fines, seat belt usage and the usage of mobile phones
among drivers etc. However, the BP, and the other applications mentioned above,
are at variance with the evidence. The BP has largely been considered within an
expected utility framework (EU). We re-examine the BP under rank dependent ex-
pected utility (RDU) and prospect theory (PT). We find that the BP always holds
under RDU. However, under plausible scenarios within PT it does not hold, in line

with the evidence.
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“Certainty of detection is far more important than severity of punishment.” Lord Shaw-
ness (1965)!
“...a useful theory of criminal behavior can dispense with special theories of anomie, psy-
chological inadequacies, or inheritance of special traits and simply extend the economist’s
usual analysis of choice.” Gary Becker (1968)
“...public finance models that aim for real world relevance ought to take behavioral insights
into account.” Edward McCaffery and Joel Slemrod (2004)
“Homo economicus is dead but whose Homo behavioralis will replace him?” Ken Binmore
(2004)*

1. Introduction

In one of the major contributions to economics, Gary Becker (1968) opened the way to the
rigorous analysis of crime using the formal methods of modern economics.® A celebrated
proposition from Becker (1968) states that the most efficient way to deter a crime is to
impose the ‘severest possible penalty with the lowest possible probability’. We shall call
this the Becker proposition. The intuition is compelling and simple. By reducing the
probability of detection and conviction, society can economize on costs of enforcement
such as policing and trial costs. But by increasing the severity of the punishment, the
deterrence effect of the punishment is maintained.

The Becker proposition takes a particularly stark form if we add two assumptions:
(1) Risk neutrality or risk aversion on the part of individuals. (2) The availability of
infinitely severe punishments such as ruinous fines, slavery, torture, extraction of body
parts and capital punishment. With these two extra assumption, the Becker proposition
implies that crime would be deterred completely, however small the probability of detection
and conviction. Kolm (1973) memorably phrased this proposition as hang offenders with
probability zero.

1.1. The Evidence on the Becker Proposition

Empirical evidence has not been kind to the Becker proposition. For example, Radelet and
Ackers (1996) survey 67 of the 70 current and former presidents of three professional crim-
inology organizations in the USA. Over 80% of the experts believe that existing research
does not support the deterrence capabilities of capital punishment, as would be predicted
by the Becker proposition. History does not bear out the Becker proposition either. Since
the late middle ages, the severity of punishments has been declining while expenditures on

!Quoted by Gary Becker (1968, footnote 12).
2Cited on the back cover of Samuel Bowles (2004).
3See Polinsky and Shavell (2000) for a brief history of the economics of crime and law enforcement.



enforcement has been increasing. So, either policy makers and criminologists have been
making a big mistake (quite possible), or the Becker proposition is wrong. We call this
the Becker paradox.

A number of explanations of the Becker paradox have been attempted. These explana-
tions include risk seeking behavior on the part of offenders, the ability to avoid severe fines
by declaring bankruptcy, the need for differential punishments, type-I and type-II errors
in conviction, rent seeking behavior, abhorrence of severe punishments, objectives other
than deterrence, and the psychological traits of offenders. We analyze these explanations
in detail in Section 4.1 below. We then go on to argue (section 4.2) that the work of Bar-
Ilan (2000) and Bar-Ilan and Sacerdote (2001, 2004), on the jumping of red traffic lights,
provides near decisive evidence that none of these explanations can provide a satisfactory
resolution of the Becker paradox within an expected utility framework.

1.2. Other Possible Applications and Evidence

The idea behind the Becker proposition, namely the response of individuals to low prob-
ability punishments/rewards can be found in many other economic contexts. We indicate
some of these here.

In principal-agent theory, it is well known that a more efficient contract might be
achieved by what Rasmusen (1994) calls a ‘boiling in oil contract’. To illustrate, suppose
that an agent can undertake two effort levels, a low level (shirking) and a high level. The
principal has access to a monitoring technology, whose cost increases with the probability
of detection. Suppose the contract specifies the severest possible punishment (boiling in
oil) if the agent is caught shirking. Then the high effort level can be induced even with a
cheap monitoring technology that has a low probability of detection. However, we do not
observe such contracts.

Expected utility predicts that a risk averse decision maker will always buy some pos-
itive level of insurance, even when premiums are unfair. What is observed is that many
people do not buy any insurance, even when available. Indeed for several types of risk,
the government has to legislate the mandatory purchase of insurance. Two particularly
striking examples are given in the seminal work of Kunreuther et al. (1978). These are
the unpopularity of flood and earthquake insurance, despite government intervention in
the forms of high subsidies to overcome transaction costs, reduction of premiums below
their actuarially fair rates, provision of reinsurance for firms and the provision of relevant
information. To quote from Kunreuther et al. (1978, p248) “This brings us to the key
finding of our study. The principal reason for a failure of the market is that most individ-
uals do not use insurance as a means of transferring risk from themselves to others. This
behavior is caused by people’s refusal to worry about losses whose probability is below



some threshold.”*

Other studies that reach a similar conclusion, reviewed by Kunreuther et al. (1978,
section 1.4), cover the decisions to wear seat belts, to obtain breast examinations, to stop
smoking, to purchase subsidized crime insurance and to purchase flight insurance. The
last of these, however, shows that people purchase too much flight insurance, compared to
the prediction of EU.

Yet another example comes from legislation regarding usage of mobile phones in moving
vehicles. Such legislation in the UK has been particularly lax up to now. A user of mobile
phones faces potentially infinite punishment (e.g. loss of one’s and/or the family’s life)
with low probability, in the event of an accident. The Becker proposition applied to this
situation would suggest that drivers of vehicles will not use mobile phones while driving or
perhaps use hands-free phones. In the UK, however, evidence is to the contrary. There has
been a growth in mobile phone usage among drivers. In particular, there is evidence that
there has been a relatively greater growth in hand-held mobile usage relative to hands-free

phones.”

1.3. Alternative frameworks

A possible reaction is to entirely reject the economic approach to the study of law and
crime. But we take a less radical approach that maintains an economic analysis, but
uses tools from behavioral economics. Behavioral economics seeks to retain the rigor of
modern economics, however, it draws its inspiration, basic principles and methodology
from cognitive and experimental psychology.

Since von Neumann and Morgenstern (1944), ezpected utility theory (EU) has become
the main tool for studying individual decision making in economics. Following Becker
(1968), EU has also become the main tool for studying individual decision making in the
economics of crime. However, to our minds, an EU framework suffers from two problems.
First, there is the large body of refutations of EU; for surveys see, for instance, Kahneman
and Tversky (2000) and Starmer (2000). Second, EU gives rise to misleading qualitative
and quantitative results when the standard model of crime is applied to tax evasion; see, for
instance, Dhami and al-Nowaihi (forthcoming). Furthermore, the evidence on red traffic
light jumping given by Bar-Ilan (2000) and Bar-Ilan and Sacerdote (2001, 2004) provides,

4Kunreuther et al. (1978) is a major study, involving a very large data set, using three methodologies
i.e. survey data, econometric analysis and experimental evidence. All three methodologies give this same
conclusion.

®Use of both kinds of mobile phones, hand-held and hands-free, is dangerous. But there is a relatively
greater risk when one uses hand-held mobile while driving. A recent report by the ‘Royal society for the
prevention of accidents’ (ROSPA) cites three different kinds of survey evidence (on p.2) that indicates
that the usage of mobile phones while driving is respectively, 37%, 39% (for the UK) and 27% (for the
Us).



at least to our mind, a near decisive refutation of the predictions of EU.

Prospect theory (Kahneman and Tversky, 1979) and its later version, cumulative prospect
theory (CP, Tversky and Kahneman, 1992), have emerged from behavioral economics as
the main rivals to EU. There is a substantial body of evidence in support of CP. CP has
been successfully used to explain a range of puzzles in economics, such as the disposition
effect, asymmetric price elasticities, elasticities of labour supply that are inconsistent with
standard models of labour supply, the excess sensitivity of consumption to income and the
equity-premium puzzle in finance; see, for example, Camerer (2000), and, especially, the
collection of papers in Kahneman and Tversky (2000). For applications to tax evasion and
insurance, see Dhami and al-Nowaihi (forthcoming) and al-Nowaihi and Dhami (2006),
respectively.

In EU, carriers of utility are the final levels of wealth (or bundles of goods). By contrast,
in CP, carriers of utility are deviations of wealth (or bundles of goods) from a reference
point®. Another element of CP is the non-linear transformation of probabilities. There is
now a large amount of empirical and experimental evidence that supports the hypothesis
that decision makers overweight low probabilities and underweight high probabilities. A
number of probability weighting functions have been proposed that embody this feature;
we discuss these issues in section 5 below.

When non-linear transformation of probabilities is combined with otherwise standard
EU, we get rank dependent expected utility theory (RDU), which is a less radical departure
from EU than CP, see Quiggin (1993).

1.4. Results

The first contribution of our paper is to show that the Becker paradox reemerges in RDU.
Just as it does under EU, increasing the punishment under RDU reduces the utility from
committing a crime if the offender is caught, but leaves his utility unchanged if not caught.
This allows the probability of detection and conviction to be reduced, economizing on
enforcement costs.

The second contribution of our paper is to show that if we take the reference point for
each activity (crime or no crime) to be the expected income from that activity then the
Becker paradox can be solved in CP. The intuition is as follows. Increasing the punishment
reduces the expected income from crime. This increases the offender’s utility if he commits
an offence and is not caught. To say the same thing in more colorful language, reference

6Consider a student whose reference point is a grade B out of three possible grades A > B > C and let
the actual grade received by the student be g, where g = A, B, C. Then, under EU and RDU the utility
of this individual is simply v(g) while under PT it is v(g — B). Such a student is in the domain of gains
if g = A, and in the domain of losses if ¢ = B. Finally, if the grade is B then the utility under PT is
v(0) = 0.



dependence allows CP to model the elation obtained by engaging in a dangerous activity
and getting away with it. Increasing the punishment has two effects: (1) it increases the loss
if caught and (2) it increases the sense of elation obtained from engaging in the dangerous
activity but not being caught. If the probability weighting function does not excessively
overweight low probabilities, the effect of the latter can overcome the effect of the former
(hence, explaining the Becker paradox).

Thus, our paper contributes to a rapidly growing body of literature that shows that
much empirical evidence about human behavior, that is very difficult to explain using

mainstream economics, can be more easily explained using behavioral economics.

1.5. Organization of the paper

The rest of the paper is organized as follows. Section 2 of our paper formulates a fairly
standard but simple economic model of crime in the spirit of Becker (1968). We show how
this generic model applies to theft/ robbery, tax evasion, enforcement of pollution and
principal-agent problems in general. A proof of the Becker proposition is given (for the
case of EU) in section 3. In section 4, we critically survey the main solutions that have
been proposed for the Becker paradox. Section 5 is on probability weighting functions,
which are critical to the explanation of the Becker paradox in our paper. In sections 6
and 7 we reexamine the Becker Paradox from the perspective of behavioral economics and
demonstrate how it can be resolved. Section 8 concludes.

2. A simple model of crime

Suppose that an individual receives income y, > 0 from being engaged in some legal
activity but income y; > 1o from being engaged in some illegal activity. Hence, the
benefit, b, from the illegal activity equals y; — yo > 0. If engaged in the illegal activity,
the individual is caught with some probability p, 0 < p < 1. If caught, the individual is
asked to pay a fine F',

b< F < Fpp < 0.

Given the enforcement parameters p, F' the individual makes only one choice: to commit
the crime or not. We assume that all individuals are identical. Furthermore, we restrict
attention in this paper to those illicit activities where an individual can engage in a fized
level of a criminal activity.

This generic situation can describe several important settings in the economics of illicit

activity, for example:

Example 1 (Theft/robbery): If an individual does not engage in theft then yo = 0.
Engaging in theft gives a monetary reward b = y; > 0. If caught (with probability p > 0)
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the goods in possession of the individual (i.e. b) are impounded and, in addition, the
offender pays a fine, f (or faces other penalties such as imprisonment equivalent to this
monetary value). Hence F' =0+ f.

Example 2 (Tax Evasion): Consider the following widely used model (Allingham and
Sandmo, 1972; Yitzhaki, 1974). A taxpayer has taxable incomes z; and zy from two
economic activities both of which are taxed at the ratet > 0. Income z; cannot be evaded
(for instance, it could be wage income with the tax withheld at source). However, the
individual can choose to evade or declare income z,.” It follows that yo = (1 —t) (21 + 22).
Suppose the taxpayer chooses to evade income zs. Hence, y; = (1 —t) z1 + 22 > yo and
the benefit from tax evasion is b = tzo > 0. If caught evading, the individual is asked to
pay back the tax liabilities owed, b = tzo, and an additional fine f = Atzy where A > 0 is
the penalty rate. Hence, F' = (1 + \) tzs.

Example 3 (Enforcement of Pollution): Consider a firm that produces a fixed output ¢
that is sold in the market at a price p. Let the profit from the product market be .
As a by-product, the firm creates emissions, e, that are greater than the allowable legal
limit on emissions, €. With probability p > 0 the firm’s emissions are audited by the
appropriate regulatory authority. Emission can be reduced at a cost of ¢ > 0 per unit.
Hence, yo = m—c (e —€), while y; = 7 so that b = ¢ (e — €) > 0 is the benefit arising from
not lowering emissions to the legal requirement. If caught, the firm pays b = c(e —€) as
well as a monetary fine f > 0. Hence, F = f + c(e —€).

It is easiest to think of the punishment, F', as a monetary fine (as in the above exam-
ples). However, F' can also be interpreted as the monetary equivalent of a non-monetary
punishment, such as imprisonment.®

Let T (p, F') > 0 be the total cost to society of crime and of law enforcement, so that

T(p,F)=C(p,F)+D(pF),

where C'(p, F) is the cost to society of law enforcement and D (p, F') is the damage to
society caused by crime. Let us assume that society aims to choose p and F' so as to
minimize T (p, F'). A major insight emerging from the economic approach to crime, is that
it might be optimal not to eradicate all crime, but to tolerate some level of crime, i.e., the

level at which T (p, F') is a minimum.

"Examples include income from several kinds of financial assets, domestic work, private tuition, private
rent, income from overseas, among many others. In actual practice tax evasion often takes the form of
completely hiding certain taxable activities; see Dhami and al-Nowaihi (forthcoming).

8In this paper, we do not consider the important issue of how to measure the monetary equivalent of a
non-monetary punishment. Nor do we consider the optimal combination of monetary and non-monetary
punishments.



Since, in our model, an individual makes only one choice: to commit the crime or not,
and since all individuals are identical®, the choice facing society is either to deter all crime
or tolerate all crime. If crime is deterred, then D = 0 and T (p, F) = C (p, F'). If crime is
not deterred, then D (p, F) = D > 0'° and T (p, F) = C (p, F) + D. We shall assume that
C (0,0) = 0, thus T (0,0) = D. We shall also assume that C' is differentiable with

oC oC

— > 0;— >0.

dp "OF ©
Thus, the cost of law enforcement can be reduced by reducing the probability of detection
and conviction, p. In general, an increase in the punishment, F', will increase the cost
of law enforcement (for example, increasing the length of prison sentences). However, we

note a special case below.

Definition 1 (Ideal fine): The case 5= = 0 can be thought of as that of an ideal fine,
which has a fized administrative cost and involves a transfer from the offender to the victim
or society (so there is no aggregate loss to society other than the fixed administrative cost).

Definition 2 (Punishment function): By a punishment function we mean a differentiable
function F : (0,1] — [0, Fax] that assigns to each probability of detection and conviction,
p, a punishment F' (p).

Definition 3 (Cost and fine elasticities): C,, = 3@ is the probability elasticity of cost,

Cp = ggg is the punishment elasticity of cost and F —& Cfil; is the probability elasticity
of punishment.!!

Lemma 1 : dipC(p,F(p)) > 0 if, and only if, C, > CrpF,.

Proof: £C (p, F (p)) = 92+394E = € [(£98) + (£59) (44)| = € [C, - Cr ) >
0 C,>CpF, R

The condition C, > CrF), is most likely to hold when the costs of administering fines
is relatively low (compared to imprisonment, say). It will be satisfied for an ideal fine,
since C, > 0 and Cp = 0 for an ideal fine (see definition 1). A particularly interesting
punishment function is given in the following definition.

90f course, in reality populations are heterogenous. Furthermore, there are many types of crime where
an individual might have a choice as to the level of the illegal activity, such as the amount of tax to evade.
These can be accommodated within our model but we abstract here from such issues.

10Recall our assumption that if individuals choose to be dishonest then they can engage in a fized level
of the criminal activity. This fixity of the level ensures that the damage, D, to society is also fixed at
some level, D , should the illegal activity be undertaken.

HRather than the standard practice of using a subscript to indicate a partial derivative, it will be
convenient for us to follow a non-standard practice of using a subscript to indicate an elasticity.



Definition 4 (Hyperbolic punishment function): A hyperbolic punishment function is de-
fined by

F(p) = —. (2.1)

The name derives from the fact that in p, F' space, the hyperbolic punishment function
plots as a rectangular hyperbola. We show below that the hyperbolic punishment function
will deter a risk neutral or risk averse offender under expected utility theory. Since F), = 1,
it will be socially beneficial to reduce p as long as €}, > Cp. In particular, this always
holds for an ideal fine (since Cr = 0 for such a fine).

Finally, we an assumption to guarantee that our model is not vacuous, i.e., that it is
worthwhile to prevent crime. We shall assume that

C(1,b) < D. (2.2)

Under the assumptions % > 0; % > 0, C'(1,b) is the maximum cost at the lowest fine.
Because, by (2.2), damages to society from the illegal activity exceed this cost, crime

prevention is worthwhile.

2.1. A principal-agent interpretation

We can also interpret this model, more generally, as that of a principal-agent relationship.
A principal contracts an agent to perform a certain task in exchange for the monetary
reward 3. The agent can either carry out his task honestly, or can improperly exploit
the principal’s facilities to enhance his income to y; > yy. This causes damage, D, to the
principal. The principal can introduce a monitoring technology and a system of sanctions
at a cost C (p, F') to the principal. The total cost to the principal would then be T' (p, F) =
C(p,F)+ D (p, F), where p is the probability of detection and F is the sanction. The
analogue of Becker’s proposition is to impose the severest sanction on the agent with the
minimum probability of detection, i.e., offer, what Rasmusen (1994) calls, a boiling in oil
contract.

3. The Becker proposition under expected utility theory (EU)

In this section, we consider Becker’s proposition in the framework he originally formulated
it, namely, expected utility theory (EU). Consider an individual with continuously differ-
entiable and strictly increasing utility of income, u. If he does not engage in crime, his
income is 1. His payoff, Un¢, is given by

Unc = u (Yo) - (3.1)



On the other hand, if the individual engages in crime, his income is y; > ¥, if not caught
but y; — F <y, if caught. Since he is caught with probability p, his payoftf, EU¢s, under
EU is given by

EUc=pu(yr — F)+ (1 —p)u(y1). (3.2)

The individual does not find it worthwhile to engage in crime if the following no-crime
condition (NCC) is satisfied i.e.
EUc < Uo. (3-3)

Substituting (3.2), (3.1) in (3.3), the NCC becomes
pu(yr — F)+ (1 =p)u(y) < uly). (3.4)

Since y1 — b = ¥, (3.4) is clearly satisfied for p = 1 and F' = b. Let F be a differentiable
function of p satisfying

F:10,1] = [0, Frax), F (1) =0, F' (p) < 0. (3.5)
The NCC (3.4) continues to hold, as p is reduced from 1, if, and only if, the following is
the case,
d
;E@uwrfF@»+U—mNNmﬂ20, (3.6)

which will be the case if, and only if,

u(y1) —u(ys — F (p))
—pF’ (p) '

For the case of the hyperbolic punishment function (2.1), the NCC (3.7) reduces to

(y1) —u(y1 — F (p))
F(p) '

If the decision maker is risk averse or risk neutral, so that u is concave, then the NCC

u (y1 — F (p)) > (3.7)

(g — F (p) > = (3.8)

(3.8) will hold for all p € (0,1]. In Figure 3.1 we show, in p, u space, the utility function
in bold (the curve oe) for a risk averse individual. The NCC is illustrated by the fact that
ac is greater than bc.

We show in Proposition 1 below that not only does the Becker proposition hold for
risk-neutral and risk averse criminals, its implementation is socially desirable because it
reduces the total cost of crime T (p, F') for society.

Proposition 1 : Under EU:
(a) If the individual is risk neutral or risk averse, so that u is concave, then the hyperbolic
punishment function F (p) = % will deter crime. It follows that given any probability of

10
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Figure 3.1: The NCC holds for risk-averse and risk-neutral criminals

detection and conviction, p > 0, no matter how small, then crime can be deterred by a
sufficiently large punishment.

(b) If, in addition, C}, > Cp (Definition 3), then reducing p reduces the total social cost of
crime and law enforcement, T (p, F).

Proof: If F (p) = :% then the NCC (3.8) holds for concave u and, hence, (a) follows.
If F(p) = ]%, then (from Definition 3) F), = _%% = 1. Since C, > Cp it follows, from
Lemma 1, that dipC(p,F(p)) > (0. Since crime is deterred, D (p, F'(p)) = 0. Hence,
T (p, F (p)) =C (p,F (p)). Hence, dipT(p, F'(p)) > 0. This establishes part (b). B

As illustrations, we give two examples from Bar-Ilan (2000):

Example 4 : Consider the utility function u(y) = —e™ Y. Note that v’ (y) = e ¥ > 0,
u” (y) = —e ¥ < 0. From the second inequality, we see that this utility function exhibits
risk averse behavior. Hence from part (a) of Proposition 1, it would be possible to deter

crime, however small the probability of detection and conviction.

Example 5 : Consider the utility function u(y) = eY. Note that u'(y) = e¥ > 0,
u” (y) = €Y > 0. From the second inequality, we see that this utility function exhibits risk
seeking behavior. Hence, Proposition 1 (a) does not apply. In fact, substituting u (y) = e¥
in the NCC (3.4), and allowing infinitely large fines, gives that crime is deterred if, and

11



u(yo)
u(y1)
would be possible to deter crime only if the probability of conviction was above a certain

only if, p > pmin = 1 — > 0. Hence, even if infinite punishments were available, it

minimum. Hence, the Becker proposition need not hold in the case of risk seeking behavior.

The following two examples show that the conditions of Proposition 1(a), although
sufficient, are not necessary.

Example 6 : Consider the utility function u(y) = Iny. Then, it follows from the NCC
(3.4), that the probability of detection and conviction, p > 0, can be made arbitrarily low,
by choosing the punishment F' = y,. Hence, the hyperbolic punishment function F = 1% 18

sufficient, but not necessary.

Example 7 : Consider the following utility function used by Tversky and Kahneman
(1992).
u() =y, y=0; uly)=—(-y)" y<0 0<y <1 (3.9)

This utility function is (strictly) concave for y > 0 but strictly convex for y < 0. Hence,
we have risk seeking behavior in the region y < 0. However, the NCC (3.4) holds for
1

any p € (0,1], if the punishment is given by F (p) = y; + <#>;. However, F,, =

— 00 as p — 0. Hence, it would be socially beneficial to drive the probability

of detection and conviction down to zero if ideal fines (Cr = 0) were available or if C}, — oo
faster than CrF,. Hence, risk seeking behavior is not sufficient to explain the Becker
paradoz.

4. The Becker paradox

The consensus of opinion is that, if the Becker proposition is correct, then the prevailing
system of punishments is far from optimal, with punishments too low. Moreover, the
historic trend has been towards more lenient punishments. Since Becker (1968), a con-
siderable effort has gone into explaining the ‘Becker paradox’. Several explanations have
been proposed. These are briefly and critically discussed in section 4.1 below. Section 4.2
then argues that these explanations are not sufficient on their own.

4.1. Explanations

1. Risk seeking behavior: If decision makers are not risk-averse but risk-seekers (com-
pare Examples 4 and 5, above) then the Becker proposition need not go through.
Hence, this could be a potential explanation, and is the one given by Becker (1968),

12



for why we do not observe it in the real world. The main problem with this expla-
nation is that it creates great difficulties for almost all other areas of mainstream
economics in explaining behavior under uncertainty. Examples include insurance,
investment, saving, risk management, principal-agent theory and mechanism design.
A crucial aspect of all of these is the assumption of risk averse behavior (or the
different degrees of risk aversion among the decision makers). Moreover, risk-seeking
behavior is not sufficient, as shown by Example 7.

. Bankruptcy issues: The possibility of declaring bankruptcy puts an upper bound on
the level of fines that can be usefully imposed. There are several objections to this
explanation. First, it takes fines too literally, rather than the more general inter-
pretation as the monetary equivalent of punishment. Second, even when fines are
interpreted literally, they can be backed up by other punishments such as impris-
onment (which is currently the case) or penal slavery (which used to be the case)
for those (and their descendants) unwilling or unable to pay the fine. Third, the
historic trend has been to limit, rather than enhance, the consequences of declaring
bankruptcy. Witness, for example, the emergence of the limited company. See, for
instance, Friedman (1999).

. Differential punishments: The argument for a system of differential punishments is
unassailable. However, it does not explain why the whole portfolio of punishments
cannot be made more severe while maintaining differentiation. For example, we could
combine imprisonment and capital punishment with various degrees of torture. In
fact, the historic trend is to make prisons (and capital punishment, where it still
remains) more humane. See Polinsky and Shavell (2000).

. Errors in conviction: To our minds, this is one of the two most cogent explanations
for the Becker paradox (the other being rent seeking behavior). The penal system
may fail to convict an offender (a type I error), or might falsely convict an innocent
person (a type II error). The possibility of falsely convicting an innocent person
causes a loss to society. Unboundedly severe punishments then cause potentially
unbounded losses to society. This destroys one of the fundamental assumptions of
the economic model of crime (namely, that increasing p is more costly to society
than increasing F'). Furthermore, more severe punishments encourage defendants
(or society on their behalf) to spend more on detection and trial, which is socially
wasteful. Again, this undermines the basic assumption that an increase in F' is less
costly to society than an increase in p. See Polinsky and Shavell (2000).

. Rent seeking behavior: The possibility of a false conviction and the availability of out
of court settlements, encourages malicious accusations. This temptation increases

13



with increasing F', thus undermining the basic assumption that increasing F' is less
costly to society than increasing p. The possibility of failing to convict an offender
encourages payments by offenders to lawyers to defend them or (even worse) to pay
police (and other monitoring authorities) to ‘turn a blind eye’. Again the possibility
of these undermines the assumption that increasing F' is less costly to society than
increasing p; see, for instance, Friedman (1999). To our minds, explanations 4 and
5 should certainly be part of a full explanation. But they cannot be the full story,
in light of the evidence discussed in section 4.2, below.

. Abhorrence of severe punishments: If we accept this explanation (and there is much
truth in it), and if we want to retain an economic explanation of crime, then we have

to explain why it is beneficial for individuals in society to adopt such an attitude.

. Objectives other than deterrence: It is usual to attribute objectives to punishment
other than deterrence. These include incapacitation and retribution. It is straightfor-
ward to incorporate incapacitation into an economic model of crime (because it has
measurable monetary benefits and costs). It may be possible to give an evolutionary-
economic explanation to the emergence of the desire by individuals for retribution.
Such a desire would clearly help law enforcement, so would be beneficial to society

and, hence, to its members.

. Pathological traits of offenders. Colman (1995) shows how the persistence of "crim-
inal types" (the most notorious being psychopaths) can be part of an evolutionary
stable Nash equilibrium. These individuals are predisposed to commit crime irre-
spective of the enforcement parameters p, F'. Although this explains why the Becker
proposition fails when applied to the most heinous crimes, it does not explain why the
Becker proposition fails, for instance, for ordinary principal-agent problems where,
according to the proposition, principals should impose the severest possible punish-
ment on an agent with the lowest possible probability (boiling in oil contracts).

4.2. Why do these explanations not suffice? Evidence from jumping red traffic

lights

Bar-Ilan (2000) and Bar-Ilan and Sacerdote (2001, 2004) provide, what is to our minds,
near decisive evidence that none of the explanations in subsection 4.1 above, singly or

jointly, can provide a satisfactory explanation of the Becker paradox within an EU frame-
work. Bar-Ilan and Sacerdote (2001, 2004) estimate that there are approximately 260,000
accidents per year in the USA caused by red-light running with implied costs of car re-

pair alone of the order of $520 million per year. Clearly, this is an activity of economic

significance. Using Israeli data, Bar-Ilan (2000) calculated that the expected gain from
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jumping one red traffic is, at most, one minute (the length of a typical light cycle). Given
the known probabilities “If a slight injury causes a loss greater or equal to 0.9 days, a risk
neutral person will be deterred by that risk alone. The corresponding numbers for the
additional risks of serious and fatal injuries are 13.9 days and 69.4 days respectively”. To
these, should be added the time lost due to police involvement, time and money lost due
to auto-repairs, court appearances, fines, increase in car-insurance premiums and the cost
and pain of injury and death.

Clearly expected utility theory combined with risk aversion would find it very difficult to
explain this evidence. Explanations 2-7 in section 4.1, are not applicable here, because the
punishment is self inflicted. Explanation 8 is also inadequate, for Bar-Ilan and Sacerdote
(2004) report “We find that red-light running decreases sharply in response to an increase
in the fine... Criminals convicted of violent offences or property offences run more red
lights on average but have the same elasticity as drivers without a criminal record”.

This leaves explanation 1, i.e., that offenders are risk seeking. Unfortunately, Bar-Ilan
(2000) and Bar-Ilan and Sacerdote (2001, 2004) do not report the attitude of offenders
to insurance. It is clear that offenders do have car-insurance, for Bar-Ilan and Sacerdote
(2004) report that “in California a single traffic ticket would raise the insurance premiums
of the average driver by approximately $160 per year for 3 years”. However, it is not
reported whether this insurance is compulsory or entered into voluntarily. If it turns out
that red-light runners also voluntarily take up insurance of any sort (such as extended
warranties, extra life cover etc.), then the explanation based on EU with risk seeking
behavior, would not be tenable.

4.3. Other offenses: Driving and talking on car mobile phones

The work of Bar-Ilan (2000) and Bar-Ilan and Sacerdote (2001, 2004), on jumping red
traffic lights, receives corroboration from other sources. For example, usage of mobile
phones in moving vehicles. A user of mobile phones faces potentially infinite punishment
(e.g. loss of one’s and /or the family’s life) with low probability, in the event of an accident.
The Becker proposition applied to this situation would suggest that drivers of vehicles will
not use mobile phones while driving or perhaps use hands-free phones. In the UK, however,
evidence is to the contrary. Various survey evidence indicates that up to 40 percent of
individuals drive and talk on mobile phones; see, for example, The Royal Society for the
Prevention of Accidents (2005).

4.4. Alternative frameworks

In light of this evidence, we, therefore, turn to frameworks other than EU. In section 6 we
consider rank dependent expected utility (RDU) and in section 7 we consider cumulative
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prospect theory (CP). For each of these alternative frameworks, non-linear transformations
of objective probabilities is a fundamental element. We explain this in more detail, next.

5. Probability weighting functions

Empirical evidence strongly suggests that decision makers overweight small probabilities
and underweight large probabilities; see, for example, the collection of papers in Kahneman
and Tversky (2000). Here we discuss two broad classes of probability weighting functions.
The first, which include those of Tversky and Kahneman (1992) and Prelec (1998), we call
standard probability weighting functions. The second, we call new probability weighting
functions. In section 7, below, we show that they lead to very different behavior under

CP.

Definition 5 : By a probability weighting function we mean a strictly increasing function
onto

w:[0,1] — [0,1].

Remark 1 : Note that a probability weighting function, w, has a unique inverse, w~! :
[0,1] 222 [0, 1] and that w™? is strictly increasing. Furthermore, it follows that w and w™

are continuous and must satisty w (0) = w™" (0) =0 and w (1) = w™* (1) = 1.

5.1. Standard probability weighting functions
5.1.1. Prelec’s probability weighting function

The Prelec (1998) probability weighting function has the attraction that it is parsimo-
nious, is consistent with much of the available empirical evidence and has an axiomatic
foundation'?. Therefore, we chose it as our starting point.

Definition 6 : (Prelec, 1998). By the Prelec function we mean the probability weighting

onto

function w : [0,1] — [0, 1] given by
w (0) =0, (5.1)
w(p):efﬁ(*lnp)a, 0<p<l,0<a<l >0. (5.2)

Note that & = § = 1 gives the the identity transformation w (p) = p, which is the
case used by EU. For a = 0.35, 8 = 1 we get w (p) = e~ (~mp)**
This represents a decision maker who overweights low probability and underweights high

, which we plot below.

probabilities.

12Prelec (1998) gives a derivation based on ‘compound invariance’, Luce (2001) gives a derivation based
on ‘reduction invariance’ and al-Nowaihi and Dhami (forthcoming) give a derivation based on ‘power
invariance’. Since the Prelec function satisfies all three, ‘compound invariance’, ‘reduction invariance’ and
‘power invariance’ are all equivalent.
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Figure 5.1: A Prelec function

For 5 > 1, we have e #(-1nP)" < ¢=(=n»)" " Thijs represents a decision maker who,
in addition to overweighting low probabilities and underweighting high probabilities, also
systematically underweights all probabilities (relative to the case f = 1). So, we may
describe such a decision maker as ‘optimistic’ in the sense that he systematically under-
weights the probability of being caught, relative to the case f = 1. Similarly we may
describe a decision maker with § < 1 as ‘pessimistic’. We record this in the following
definition.

Definition 7 : Consider the Prelec weighting function given in (5.2). A decision maker
is said to be optimistic if § > 1 and pessimistic if § < 1.

Proposition 2 : For Prelec’s function (Definition 6) and for v > 0, lir%% = 00.
p*)

) (B
Proof: Since p™7 = e 7P (5.2) gives %f) = (v (*lnml*‘*). Note that liII(l) (—Inp)
p*)

0o. Since 0 < a < 1, we get lin%ln(—lnp)lfa = oo. Hence, since v > 0, we get
p*)

im%2®) — 5. W
p—0 P”

5.1.2. Other standard probability weighting functions
Tversky and Kahneman (1992) proposed the following probability weighting function
w (p) = B 05<o<], (5.3)
7+ (1 =p)]"

where the lower bound on ¢ comes from Rieger and Wang (2006). Experimental evidence

from Tversky and Kahneman (1992) suggests that v = 0.88, where «y is a parameter of
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the utility function given in (3.9) and that furthermore, o < -y. Hence, this function also
has the property that lir%% = o0. It can be shown that other probability weighting
p*)

functions that have been proposed, for example, Gonzalez and Wu (1999) and Lattimore,
Baker and Witte (1992), also have this feature. For this reason we refer to these, as well

as the Prelec function, as the standard probability weighting functions. Thus we have,

Proposition 3 For the standard probability weighting functions lin%%f) = 00.
p—)

5.2. New probability weighting functions

Whilst the standard probability weighting functions appear to fit well the evidence in
the middle ranges of probability, they are less successful in their predictions when the
probability of an event is at one of the two extremes. Blavatsky (2004) and Rieger and
Wang (2006) have shown that the St. Petersburg paradox reemerges under CP with the
standard probability weighting functions. Al-Nowaihi and Dhami (2006) show that for low
probability events, the standard probability weighting functions predict over-insurance,
even when insurance is actuarially unfair. We consider below some of the new probability
weighting functions that have been proposed and are able to address these problems.

5.2.1. The probability weighting function of Rieger and Wang
Rieger and Wang (2006) show that the probability weighting function:

3(1—1b)

2
- —(1 2 3 | 1 u
1_a+a2[ap (1+a)p +p},a€(9,),b€(0,) (5.4)

w(p) =p+

solves the St. Petersburg paradox by generating a finite expected utility under cumulative
prospect theory.!3

Proposition 4 : For 0 < v < 1 the Rieger-Wang probability weighting function (5.4)

satisfies:
lim w(p)
p—0 p’Y

=0.

Proof: Obvious from (5.4). &

5.2.2. Higher order Prelec probability weighting functions

According to Prelec (1998, p505), the infinite limits of propositions 2 and 3 capture the
qualitative change as we move from impossibility to probability. Al-Nowaihi and Dhami
(2006) show that this leads people to fully insure against all losses of sufficiently low

13The lower bound on a comes from al-Nowaihi and Dhami (2006).
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probability, even with actuarially unfair premiums and fixed costs to insurance. This is
contrary to observation; see, for example, Kunreuther et al. (1978).

The results of propositions 2 and 3 also contradict the observed behavior that people
ignore events of very low probability and code very high probability events as certain.
Following Kahneman and Tversky (1979), we could rely on an initial editing phase, where
the decision maker chooses which improbable events to treat as impossible and which
probable events to treat as certain. While we are persuaded by this choice heuristic, as
yet there is no general theory of the editing phase.

Al-Nowaihi and Dhami (2006) propose a class of probability weighting functions that

combine the editing phase of Kahneman and Tversky (1979) with the probability weighting

phase. These probability weighting functions have the property that lir% % = (0 and give a
p*)

better explanation of insurance (and also solve the St. Petersburg paradox under CP). Al-

Nowaihi and Dhami call these higher order Prelec probability weighting functions because

they are generalizations of Prelec’s function. We discuss these weighting functions next.

Lemma 2 : (Prelec, 1998, p507, footnote). Prelec’s function (Definition 6) can be written
as
w(0)=0,w(l) =1, (5.5)

—In(—lnw)=(—Inf)+a(-In(—-Inp)),0 <p < 1. (5.6)

Lemma 2 motivates the following development. Assume that —In(—Inw) can be
expanded as a power series in —In (—Inp), i.e.,

o0

—In(—Inw) =Y ap(=In(=Inp))*,0 < p <1, (5.7)

k=0

or, equivalently,

w (p) = exp <— exp (— > ak(—1In (—lnp))k>) ,0<p<l. (5.8)
k=0
Definition 8 : By a higher order Prelec probability weighting function, we mean a prob-
ability weighting function given by (5.5) and (5.8). If a, # 0 but ay, = 0 for all k > n,
then we say w (p) is a Prelec probability weighting function of order n. In particular, the
original Prelec probability weighting function is of order 1.

We give an example of an infinite order Prelec function. Take ag = —In 3, 5 > 0, a; =
a > 0 and, for k > 1, agr = 0, ager1 > 0, we get that (5.5) and (5.7) define a strictly in-
creasing function, provided the series is convergent. An easy way to guarantee convergence

is to take age1 = Gty Then, for any p € (0,1), the series in (5.7) converges (absolutely
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and uniformly) to —Inf3 + 1o (e"(=lP) —n(=lp)) — —pn 8 4+ asinh (—In(—1Inp))."
To get the ‘right shape’, we take a € (0,1). For probabilities in the middle range,
sinh (—In(—1Inp)) ~ —In(—Inp), hence this function is a good approximation to the
(first order) Prelec function for such probabilities.

Definition 9 : By the hyperbolic Prelec function (HP), we mean the probability weighting
function defined by
w(0)=0,w(l) =1, (5.9)

—In(—Inw)=—-Inf+asinh(—In(—Ilnp)),0<p<l,0<a<1,8>0. (5.10)

Note that (5.9) and (5.10) define a two-parameter family of functions. Hence, a hyper-
bolic Prelec function is just as parsimonious as the (1st order) Prelec function (Definition
6). Figure 5.2 is a graph of (5.9) and (5.10) for # = 1 and o = 3. Its shape is similar to that
of a Prelec weighting function. However, the essential difference from the latter is shown
in Figure 5.3; the hyperbolic Prelec function underweights (not overweights) extremely
low probabilities. This is proved formally in proposition 5 below.

Proposition 5 : Let w (p) be the hyperbolic Prelec probability weighting function. Then
(a) w : [0,1] — [0,1] is continuous and strictly increasing; w is C* on (0, 1),
faw®
(b) lim =5 = 0.

Proof: Part (a) is obvious from the properties of Inp and sinhz. To prove part (b),
let

In % = |y — ﬁeaw[sinmhz—l] , where z = In(—1Inp). (5.11)
p
Let p — 0. Then x — oo and % — 0. Thus, e* — oo and v — ﬁeax[smmhz_l] — —00.

Hence, In %= — —oo0 and, thus, %% — 0. &
p p

A similar proposition holds for Prelec probability weighting functions of order n > 1.
See Proposition 3 of al-Nowaihi and Dhami (2006).

14The hyperbolic sin function is defined as

- 1, . L g2kt
S111 .T—§<€ — e ) —Ekzom.
Hence,
sinhz o x?¥

= g
and, hence,

. sinhz

lim = 00.

r—oo I
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Figure 5.2: A Hyperbolic Prelec Function
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Figure 5.3: A Hyperbolic Prelec Function For Low Probabilities
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In section 7 we compare the behavior of the decision maker when she uses, respectively,
a probability weighting function of order 1 (which is just the standard Prelec function)
and of order greater than one. We show that her behavior differs significantly between the
two cases.

Propositions 4 and 5(b) distinguish the new probability weighting functions from the
standard probability weighting functions and, as we shall demonstrate below, are critical
to understanding differences in the results between the two sets of models.

6. Rank dependent expected utility theory (RDU)

We now model the behavior of an individual using RDU. Appendix-A outlines the basic
concepts in RDU that we shall require in this paper. The payoff from not committing the
criminal activity under RDU is Uy = u (yp). Under RDU, the individual’s payoff from
the criminal activity is

EUc=mu(yy — F)+ (1 —m)u(y), (6.1)

where
T=w(p). (6.2)

Hence, the no-crime condition (NCC), EUc < Uy, gives
mu (1 — F) + (1 = m)u(y) < uly) (6.3)
After some simple algebra, the NCC' (6.3) becomes
1 — wwo)
p>w! L—“%] . (6.4)
u(y1)

As before, let F,.. be the maximum fine that can be imposed and let the corresponding
level of utility be

Umin = U (yl - Fmax) ) (65)
and let
1 — ¥wo)
Punin = ! [—’;(jjl)] . (6.6)
o u(y1)

Then, from (6.4)-(6.6), the NCC' becomes

Proposition 6 : Under rank dependent expected utility theory, if the utility function is
unbounded below, then for any probability of punishment p > 0, no matter how small,
crime can be deterred by a sufficiently severe punishment, F'.
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Proof: Follows from (6.5), (6.6) and (6.7). W

Proposition 7 : Under rank dependent expected utility theory and for the probability
weighting function w (p):

(a) If the utility function, u, is concave, then, given any probability of detection and con-
viction, p > 0, no matter how small, crime can be deterred by choosing the punishment
F(p) = 34

(b) If, in addition, C), > %C’F (Definition 3 and Lemma 1), then reducing p reduces the
total social cost of crime and law enforcement, T (p, F).

Proof: Similar to the proof of Proposition 1, except for the following points: (a)
F(p) = ﬁ (instead of F'(p) = %) and (b) F, = % (instead of Fj, =1). W

7. Prospect theory (PT)

We now turn to the modelling of crime under cumulative prospect theory (CP). Appendix-
A outlines the basic concepts in CP that we shall require in this paper. Suppose that the
reference incomes for the two activities, crime and no-crime, are, respectively, ygr and v,..
Then the payoff from not committing crime is

Ve =v (Yo — yr) - (7.1)

Assume that if an individual commits a crime, and is caught, then the outcome is in the
domain of losses; while if he commits a crime and is not caught, then the outcome is in the
domain of gains. Then we have only one outcome in the domain of losses and one outcome
in the domain of gains. So the decision weights are simply w~ (p) and w™ (1 — p).!> Then

the individual’s payoff from committing a crime is
Ve=w (p)v(yy — F —yr) +w" (1 —p)v(ys — yr). (7.2)

Definition 10 (Elation): We shall refer to v(y; — yr) as the elation from committing a

crime and getting away with it.

The NCC' is
Ve < Ve (7.3)

Substituting from (7.1) and (7.2) into (7.3), the NCC becomes

w™ (p)v(yr —F —yr) +w (1 —p)v(yr —yr) <v(yo— ) - (7.4)

15Tn this case, the cumulative prospect theory of Tversky and Kahneman (1992) reduces to the original
prospect theory of Kahneman and Tversky (1979).
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7.1. Fixed reference points

The NCC in (7.4) depends on the two reference points, y, and yg. We now explore the
implications of a prospect theory approach to crime with alternative specifications of the
reference incomes. In this section we assume that the reference points are fixed. In section
7.3 the reference point for each activity will be the expected income from that activity. In
appendix-B below the expected income from crime is the reference point for both activities.

Proposition 8 : Assume that the reference points, vy, and yg, are fixed. If Unboundedly
severe punishments are available and the value function is unbounded below, then, under
prospect theory, crime can be deterred with arbitrarily low probabilities of detection and

conviction.

Proof: Let the probability of detection and conviction be p > 0. Then the NCC (7.4)
can be satisfied by taking the punishment, F', to be sufficiently large. B

Hence, the Becker paradox reemerges under prospect theory if (1) the reference points
are fixed, (2) punishments of unlimited severity are available, (3) the value function is

unbounded below and (4) it is economically worthwhile to deter crime.

7.2. The value function is a power function

To facilitate further development, we adopt the power form of the value function, which
has become almost standard in applications.

Definition 11 (Tversky and Kahneman, 1992, the analogue of CRRA in EU) The value
function satisfies preference homogeneity if (z,p) ~ y = (kx,p) ~ ky, where z,y,p,k € R,
p €[0,1],k > 0 and ~ is the indifference relation.

Proposition 9 : Under preference homogeneity the value function takes the simple form':
v(z)=2",2>0,

v(z)=—-0(—z)",2 <0,

where 7y, § are constants satisfying 0 < v <1, 6 > 1.

Experimental evidence from Tversky and Kahneman (1992) suggests that v = 0.88,
0 = 2.25.
We shall adopt the value function

v(z) = 27, 2>0,
v(z) = —0(—x)", 2 <0,
where 6 > 1,0 <~y < 1. (7.5)

16Tversky and Kahneman (1992) state, without proof, that preference homogeneity is necessary and
sufficient for the value function to take the form v (z) = 27+, > 0; v(z) = —60(—z)"~ ,z < 0. Loss
aversion, however, implies that v, = ~_. See al-Nowaihi, Bradley and Dhami (2006).
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7.3. The reference point for each activity is the expected income from that
activity

It would seem more plausible to assume that the reference point for each activity is the
expected income arising from that activity, i.e., the reference incomes from the honest and
the criminal activity are respectively given by:

Yr = Y0; Yr =Yy1 — pF. (7.6)

Hence, as before, y; — yg = pF and y; — F — yg = — (1 — p) F'. However, yo — vy, = 0.
Hence, the NCC' (7.4) becomes

w™ (p)v(= (1 —=p) F)+w" (1-p)v(pF) <0. (7.7)

For the power function form (7.5) the NCC' (7.7) becomes:
—0(1—p)" F'w™ (p) +p"F'w" (1-p) <0. (7.8)

For F' > 0, this simplifies to

w(p) o wi(l—p)
p T 0(0-p)"

Proposition 10 : As the probability of detection approaches zero, a prospect theory

(7.9)

decision maker facing a strictly positive punishment, i.e. F' > 0, who satisfies preference
homogeneity and whose reference points are given by (7.6), does not engage in the criminal
activity if the probability weighting function satisfies the condition

_w(p) 1

})12% e >3 (7.10)
On the other hand, the same individual engages in crime if

_w(p) 1

[l)lircl) p <3 (7.11)

Proof: If (7.10) holds, then the NCC (7.9) will hold with strict inequality in some
non-empty interval (0, p;). Hence, no crime will occur if p € (0,p;). If (7.11) holds, then
the converse of the NCC (7.9) holds with strict inequality in some non-empty interval
(0,p2). Hence, for punishment to deter in this case, we must have p > p,. B

Proposition 11 If the reference point for each activity, crime and no crime, is taken to be
the expected income from that activity, then the Becker paradox reemerges under prospect
theory if we use any of the “standard” probability weighting functions.
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Proof: For any of the standard Probability weighting functions, lim2® = oo (Propo-
p—0 P7

sition 3). From Proposition 10, it follows that, for some non-empty interval (0, p;), no crime
will occur if p € (0,p;). Hence, D (p, F) = 0 for p € (0,p;). Now note that the only con-
dition on F' is that F' > 0 (in particular F' may be less than b). Since 8%6’ (p, F) > 0,
2C(p,F) > 0 and C(0,0) = 0 (and C is continuous), it follows that C (p, F) can be
made as close to 0 as we like by taking p and F sufficiently small. Hence, the total social
cost of crime, T (p, F'), can be made as close to 0 as we like by choosing p and F' to be
positive but sufficiently small. B
We now state the key proposition in the paper, Proposition 12 below.

Proposition 12 If the reference point for each activity, crime and no-crime, is taken to
be the expected income from that activity, then the Becker paradox is solved if we use the
identity probability weighting function, the Rieger-Wang probability weighting function
or a higher order Prelec probability weighting function.

Proof: Since lin%%@ = lin%]% = 0 for the identity probability weighting function,
p— p—
lin%%v(p) = 0 for the Rieger-Wang function (Proposition 4), the hyperbolic Prelec function
p—)

(Proposition 5) and for Prelec function of order n > 1 (al-Nowaihi and Dhami (2006),
Proposition 3c)) it follows, from Proposition 10, that, for some non-empty interval (0, ps),
no level of punishment, F', no matter how large, will deter crime, if p € (0,p2) . B

7.4. Discussion: Becker’s proposition under CP

We have found that Becker’s paradox reemerges under prospect theory in each of the
following cases:

1. The reference points are fixed (independent of p and F') and the value function is
unbounded below.

2. The value function is the power function and the reference point for both activities
is the expected income from crime (this result is shown in appendix-B).

3. The value function is the power function, the reference point for each activity is the
expected income from that activity and the probability weighting function is any of
the standard probability weighting functions.

On the other hand, we have found that Becker’s proposition does not hold under
prospect theory, and hence Becker’s paradox is resolved, if the following hold jointly:

1. The value function is of the power form.
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2. The reference point for each activity, crime and no crime, is the expected income
from that activity.

3. The probability weighting function is the identity function, the Rieger-Wang function
or a Prelec function of order greater than 1.

The intuition behind these results is as follows. If the reference points are fixed, then
so also are the gains from not engaging in crime or engaging in crime but not being caught.
Thus, crime can be deterred by imposing sufficiently high punishment if caught. On the
other hand, if the reference point for criminal activity is the expected income from that
activity, then increasing the punishment, not only increases the loss (or pain) from being
caught, but also increases the gain (or elation) from committing the crime and not being
caught. This increase in gain can compensate for the increase in loss, if there is no similar
increase in gain from not committing the crime, and if the low probability (of being caught)
is not excessively overweighted.

8. Conclusions

The Becker proposition summarized eloquently in Kolm’s (1973) phrase “hang offenders
with probability zero” has a long and distinguished tradition in the crime and punishment
literature. However it is often noted that it does not hold empirically. This, we called the
Becker paradox. A convenient fix proposed in the literature is to close the model with an
arbitrary upper bound on the amount of fines that can be imposed. This is, of course,
reasonable only if punishments were restricted to purely monetary terms. However, if one
allows for the use of non-monetary punishments, then the Becker paradox reemerges.

A sizeable literature addresses this paradox in an expected utility (EU) framework. We
argued, in section 4, that it is very difficult to explain the evidence on the basis of EU.
For these reasons we reexamined the Becker paradox from the perspective of behavioral
€conomics.

We found that the Becker paradox reemerges under rank dependent expected utility
theory. However, we are able to explain the Becker paradox within prospect theory by
adopting (1) a power function specification for the value function, (2) a probability function
that does not excessively overweight low probabilities and (3) choosing the reference point
for each activity (crime or no crime) to be the expected income under that activity. The
intuition behind this result is as follows. Increasing the punishment has two effects: (1) it
increases the loss if caught and (2) it increases the sense of elation obtained from engaging
in the dangerous activity and not being caught. If the probability weighting function does
not excessively overweight low probabilities, the effect of the latter can overcome the effect
of the former.
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9. Appendix-A
9.1. A note on Rank Dependent Expected Utility (RDU)

Rank dependent expected utility (RDU) was discovered by a number of independent re-
searchers beginning with Quiggin (1979). The major contribution of Quiggin is that he, for
the first time, provided a coherent theory of behavior with non-linear weighting of prob-
abilities. He did this by proposing that it is not individual probabilities that should be
transformed (which is what all earlier researchers had done) but cumulative probabilities.
We shall now explain.

Consider the lottery (x1, za, ..., Tn; p1,D2, ..., pn) that pays z; with probability p;, where
1 < x5 < ... < x,. Let w be a probability weighting function. For RDU, the decision
weights, m;, are defined by 7; = w (2{:1 pi) —w (25;} pi). The decision maker’s rank
dependent expected utility is given by

U (1‘1,1'2, -y Ty P1, P2, "'apn> = Z7]'1=17Tju (l‘]> : (91)

The success of RDU stems from the following facts. (1) All objects of interest such as
random variables, various concepts of stochastic dominance, etc., are defined in terms of
cumulative probability distributions, not individual probabilities. (2) w (p) is not a prob-
ability measure unless w is the identity transformation. (3) On the other hand, if F'(z) is
a cumulative distribution function, then so is'” ® (x) = w (F (z)). (4) The point transfor-
mation approach cannot be extended to continuous distributions because, necessarily, the
probability, p, of each point is zero and, hence, the transformed ‘probabilities’, w (p), are
all zero. It follows that all concepts of stochastic dominance in EU carry over to RDU.
In particular, under RDU, a decision maker will never choose a first order stochastically
dominated prospect. In fact, we can view RDU as simply EU applied to a transform of
the cumulative probability distribution. This is formalized by Quiggin’s correspondence
principle (Quiggin, 1993). This is clearly of tremendous utility, since the whole machinery
of risk analysis in EU can be transferred to RDU. See Quiggin (1993) for further details.

9.2. A note on Cumulative Prospect Theory (CP)

In prospect theory, carriers of utility are not final bundles of goods (as under EU and
RDU) but deviations of these from a reference point. In prospect theory, the utility
function is often called a value function, which is defined below. Our definition of a value
function is as in Kahneman and Tversky (1979).

I7If F (z) is a probability distribution, then it is non-decreasing, right-continuous, F (—oo) = 0 and
F (00) = 1. It follows from the properties of w that ® also has these properties and, hence, is also a
probability distribution. Alternatively, we could define ¥ (xz) =1 — w (1 — F (x)). The apparently more
complex V¥ is sometimes slightly more convenient.
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Definition 12 : For simplicity of exposition, assume one good, ‘wealth’, y. The individual
has reference wealth given by y,. Let x = y— y,. A value function is a mapping v : R — R
that satisfies:

1. v (x) is continuous,
v () is strictly increasing,
3. v(0) =0 (reference dependence),
4. v (z) is concave for x > 0 and v (x) is convex for x < 0 (declining sensitivity),
5. lv(—x)] >v(x), x>0 (loss aversion).

These points are illustrated in the following figure.

Utility

Reference Point

Losses )
Gains

Figure 9.1: Preferences Under Prospect Theory
Consider the lottery

(m*ma T_m+1y -y L—-1,T0, L1, L2, ---; Tp ; P—m» P—m+15 -+, P—1, P05 P1, D2, 7pn)
that pays z; with probability p;, where

Tem ST g1 <. L2 <730=0<2 <2< ... <2z

— — n-

To get the decision weights for losses, apply the usual RDU calculations, starting at the
negative extreme and use a probability weighting function, w™. The decision weights for
losses, m;, are defined by m; = w~ (Eg:_m pi) —w” (Zg;im pi); j=-m,—m+1,.., —1.

For gains, start at the positive extreme, and use a probability weighting function, w™.
The decision weights for gains, 7;, are defined by m; = w* (ZZ:J- pk) —wt (EZ:jH pi);
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j=1,2,...,n.'% The value of this prospect is then given by

V=xr_, mv(x),

1=—m"?

which is the objective function that a decision maker using prospect theory maximizes.
In EU, attitude to risk is entirely determined by the shape of the utility function. The
decision maker is, respectively, risk averse, risk neutral or risk seeking according to the
utility function being concave, linear or convex. In CP the situation is more complex.
Attitude to risk is the result of the interaction of the shape of the value function, loss
aversion and non-linear weighting of probabilities. This allows CP to explain much be-
havior under risk that is difficult to explain with EU or RDU. For example, the widely
observed phenomenon that people simultaneously gamble and insure can be explained by
CP as follows. Overweighting of low probabilities makes a high reward with low probabil-
ity attractive, despite the concavity of the value function for gains. Overweighting of low
probabilities also makes insurance against a large loss with a low probability attractive,
despite the convexity of the value function for losses. For further examples, see Tversky
and Kahneman (1992), Benartzi and Thaler (1995) and al-Nowaihi and Dhami (2006).

10. Appendix-B

10.1. Both reference points are expected income from crime

Assume now that the reference point for both activities is the expected income arising
from crime, i.e.,

Yr = yr =11 — pF. (10.1)
Then
Yo—Yr =pF —b,y1 —yr =pF,yn —F —yr = — (1 —p) F. (10.2)
The NCC' (7.4) becomes
w (p)v(=(1=p)F)+w" (1-p)opF) <v(pF —b). (10.3)

For the power function form (7.5), and for pF' > b, the NCC (10.3) becomes:
—0(1—p)" Flw™ (p) +p"F'w™ (1 —p) < (pF = )", for pF > b. (10.4)

For F' > 0, this simplifies to

N
pPwt(1—p)—0(1—p)w (p) < (p - %) , for F > 0 and pF > b. (10.5)

18To quote from Prelec (1998, last line of Appendix A): “CPT reduces to RDU if w™ (p) = 1—w™* (1 — p).
Empirically, however, one observes w™ (p) = w™ (p).” Our results do not depend on this. Note that the
decision weights do not, necessarily, add up to 1. Since v (0) = 0, my can be chosen arbitrarily. We have
found it technically convenient to define 7o =1 — %1 7, — ¥ m, so that X7 m; =1

1=—m"'?
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We now construct a punishment function as follows:

Pt (L—p) < 6(1—p)w (p)= F(p) = g (10.6)
b
p—[pwt(1—p)—0(1—p) w (p)]

Note that the right hand side of (10.6) is well defined since pw* (1 — p)—6 (1 — p)” w™ (p) >
0 and p > [pYw* (1 —p) =6 (1—p) w™ (p)]".

pwt(l-p > 6(1—p)w (p)=F(p) =

2=

Proposition 13 : Assume that both reference points are expected income from crime
and that the value function is the power function. Then, under prospect theory, and for
the probability weighting function w (p), given any probability of detection and conviction,
p > 0, no matter how small, crime can be deterred by choosing the punishment, F (p),
given by (10.6).

Proof: First check that F'(p), as given by (10.6), satisfies pF' > b. Then verify that
the NCC (10.5) is satisfied. W

Thus, the Becker paradox reemerges under prospect theory if (1) both reference points
are the expected income from crime, (2) punishments of unlimited severity are available,
(3) the value function is a power function and (4) it is economically worthwhile to deter

crime.
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