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Abstract

Since Kahneman and Tversky (1979), it has been generally recognized that de-

cision makers overweight low probabilities and underweight high probabilities. Of

the several weighting functions that have been proposed, that of Prelec (1998) has

the attractions that it is parsimonious, consistent with much of the available em-

pirical evidence and has an axiomatic foundation. Luce (2001) provided a simpler

derivation based on reduction invariance, rather than compound invariance of Prelec

(1998). This note gives a simpler form of reduction invariance, which we call power

invariance. A more direct derivation of Prelec’s function is given, achieving a further

simplification.
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1. Introduction

It is now generally accepted that decision makers overweight low probabilities and under-

weight high probabilities. Thus they behave as if they transform the objective (cumula-

tive) probability distribution using an inverted S-shaped weighting function (Tversky and

Kahneman, 1992). A number of weighting functions have been proposed. However, the

first axiomatically derived weighting function was that of Prelec (1998). His main axiom

was compound invariance. The importance of this axiom is as follows. In expected utility

theory, the product rule for probabilities allows us to reduce a compound lottery to a

simple lottery of the same expected utility. Once we depart from expected utility theory,

we need a rule that plays an analogous role. Compound invariance is a candidate for such
a rule. Luce (2001) proposed the simpler and more easily testable assumption of reduction
invariance. He also provided a simpler derivation of Prelec’s function.
In this note, we provide a more direct proof and achieve a further simplification. In the

main part of his proof, Luce transforms the problem to be able to apply Cauchy’s functional

equations f (x+ y) = f (x) + f (y) and f (xy) = f (x) f (y) . We proceed as follows. We

start from a simpler form of reduction invariance which we call power invariance. We give
a simple direct proof that if the weighting function satisfies power invariance, then it must
satisfy w

¡
pλ
¢
= (w (p))φ(λ) where p is the cumulative probability function and ϕ is some

function of λ, λ > 0.We then use an appropriate functional equation to derive Prelec’s

function. Theorem 2 of section 4 is our main result. For ease of reference, sections 2 and

3 give fairly standard results and definitions.

2. Lotteries, probability weighting functions, decision weights and

the value of lotteries

Assume n mutually exclusive states of the world, s1, s2, ..., sn, where n ∈ N is a fixed

natural number. State si occurs with probability pi, pi > 0,Σn
i=1pi = 1. An event is a

subset of S = {s1, s2, ..., sn} . The probability of an event A ⊂ S is p (A) = Σ {pi : si ∈ A} .
Let {Ai}mi=1,m ∈ N, be a partition of S, i.e., Ai 6= φ, i 6= j =⇒ Ai∩Aj = φ,∪mi=1Ai = S. Let

x1, x2, ..., xm ∈ R. Then x = {(x1, A1) , (x2, A2) , ..., (xm, Am)} is a simple lottery that pays
xi if eventAi occurs. Hence, the lottery x pays xi with probability p (Ai). Consider an event

A ⊂ S. Let {Ai}li=1, l ∈ N, be a partition of A. Then x = {(x1, A1) , (x2, A2) , ..., (xl, Al)}
stands for the simple lottery

{(x1, A1) , (x2, A2) , ..., (xl, Al) , (0, S −A)}
that pays xi if event Ai occurs, but pays 0 if none of the events A1, A2, ..., Al occur. We

shall describe such a lottery as conditional (on A occurring). A compound lottery, which

is a lottery of lotteries, can be given the following recursive definition.
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Definition 1 : (i) L0 is the set of simple lotteries, defined above.

(ii) Let Lk+1 = Lk ∪ {{(y1, A1) , (y2, A2) , ..., (ym, Am)} : yi ∈ Lk and is conditional on Ai

and {Ai}mi=1is any partition of S}.
(iii) L = ∪∞k=0Lk. L is the set of compound lotteries or, more simply, lotteries.

Often, it suffices to give the probability of each outcome, rather than fully specify the

probability space on which a lottery is defined. For example, if p (Ai) = qi, it is often suffi-

cient to indicate the lottery {(x1, A1) , (x2, A2) , ..., (xm, Am)} by {(x1, q1) , (x2, q2) , ..., (xm, qm)} .
We shall also use the following standard short-hand notation. (x) is the lottery {(x, 1)} that
pays 1 with certainty, (x, p) is the lottery {(x, p) , (0, 1− p)} that pays x with probability p
but 0 otherwise and ((x, p) , q) is the compound lottery {({(x, p) , (0, 1− p)} , q) , (0, 1− q)}
that ’pays’ (x, p) with probability q but 0 otherwise. Our Definition 1 may appear more

formal than necessary. However, it does facilitate an extension of the concept of the value

of a simple lottery (Definition 5) to that of a compound lottery (Definition 6).

Definition 2 : By a value function we mean a strictly increasing function v : R −→ R

such that v (0) = 01.

Definition 3 : By a probability weighting function we mean a strictly increasing function
w : [0, 1]

onto−→ [0, 1] .

Note that a probability weighting function, w, has a unique inverse, w−1 : [0, 1] onto−→
[0, 1] and that w−1 is strictly increasing. Hence, w−1 is also a probability weighting func-
tion. Furthermore, it follows that w and w−1 are continuous and must satisfy w (0) =

w−1 (0) = 0 and w (1) = w−1 (1) = 1.

Definition 4 : (Prelec, 1998). By the Prelec function we mean the probability weighting
function w : [0, 1]

onto−→ [0, 1] given by

w (p) = e−β(− ln p)
α

, α > 0, β > 0 (2.1)

Definition 5 : Let {(x1, A1) , (x2, A2) , ..., (xm, Am)} be a simple lottery, where x1 ≤ x2 ≤
... ≤ xk < 0 ≤ xk+1 ≤ ... ≤ xm. Let w

− be the probability weighting function associ-
ated with losses (xi < 0) and w+ the probability weighting function associated with gains

(xi ≥ 0). We define the decision weights π1, π2, ..., πm as follows,
π1 = w− (p (A1)) , if k ≥ 1
πj = w−

¡
Σj
i=1p (Ai)

¢− w−
¡
Σj−1
i=1p (Ai)

¢
; j = 2, 3, ..., k; if k > 1

1The value function was introduced by Kahnemann and Tversky (1979). They interpret xi = zi − r,
where zi is the ith outcome and r is some reference point for the individual. When zi = r, a natural
normalization is v(r − r) = v(0) = 0.
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πj = w+
¡
Σm
i=jp (Ai)

¢− w+
¡
Σm
i=j+1p (Ai)

¢
; j = k + 1, ...,m− 1; if k < m− 1

πm = w+ (p (Am)) , if k < m

Let v : R −→ R be a value function, i.e., a strictly increasing function such that v (0) = 0,

then the value of the simple lottery x = {(x1, A1) , (x2, A2) , ..., (xm, Am)} to the decision
maker is given by V (x) = Σm

j=1πjv (xj) .

Definition 6 2: Let y = {(y1, A1) , (y2, A2) , ..., (ym, Am)} ∈ Lk+1, so yi ∈ Lk, and is

conditional on Ai, i = 1, 2, ...,m. Let the value of yi be V (yi) . Assume that V (y1) ≤
V (y2) ≤ ... ≤ V (yk) < 0 ≤ V (yk+1) ≤ ... ≤ V (yn) . Let w

− be the probability weighting
function associated with losses and w+ the probability weighting function associated with

gains. We define the decision weights π1, π2, ..., πn as in definition 5:
π1 = w− (p1) , if k ≥ 1
πj = w−

¡
Σj
i=1pi

¢− w−
¡
Σj−1
i=1pi

¢
; j = 2, 3, ..., k; if k > 1

πj = w+
¡
Σn
i=jpi

¢− w+
¡
Σn
i=j+1pi

¢
; j = k + 1, ...,m− 1; if k < m− 1

πm = w+ (pm) , if k < m

Then the value of y is V (y) = Σm
j=1πjV (yj) .

Definition 7 : Two lotteries, x and y, are equivalent if, and only if, they have the same
value : V (x) = V (y) .

Example 1 As an illustration, consider Problems 5 and 6 from Kahneman and Tversky

(1984). Problem 5 asks a decision maker to choose between the two compound lotteries

A = ((30, 1) , 0.25) and B = ((45, 0.8) , 0.25). Problem 6 asks the decision maker to choose

between the simple lotteries C = (30, 0.25) andD = (45, 0.2). Note that in expected utility

theory A ∼ C and B ∼ D. However empirical evidence shows that, for most decision

makers, A Â B but C ≺ D. On the other hand, using the value function v (x) = x0.6 and

the Prelec probability weighting function w (p) = −e−(− ln p)0.65 (from Prelec, 1998), gives

V (A) = V ((30, 1) , 0.25) = v (30)w (0.25) = 300.6e−(− ln 0.25)
0.65

= 2.234 9

V (B) = V ((45, 0.80) , 0.25) = [v (45)w (0.80)]w (0.25) = 450.6e−(− ln 0.8)
0.65

e−(− ln 0.25)
0.65

=

1.954 7

V (C) = V (30, 0.25) = v (30)w (0.25) = 300.6e−(− ln 0.25)
0.65

= 2.234 9

V (D) = V (45, 0.20) = v (45)w (0.20) = 450.6e−(− ln 0.2)
0.65

= 2.513

Hence, for prospect theory, A Â B and C ≺ D, which is in agreement with the empirical

evidence.

2Our Definition 6 extends the standard definition of the value of a simple lottery to compound lotteries.

It is in agreement with the usage of Luce (2001) for the special case of compound lotteries of the form

((x, p) , q), where (x, p) is the simple lottery that pays x with probability p. To the best of our knowledge,
this definition is new.
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3. Reduction invariance and Luce’s derivation of Prelec’s function

Definition 8 : (Luce, 2001). Let λ > 0. The probability weighting function, w, satisfies

λ-reduction invariance if whenever ((x, p) , q) ∼ (x, r), then ¡¡x, pλ¢ , qλ¢ ∼ ¡x, rλ¢ . The
probability weighting function, w, satisfies reduction invariance if it satisfies λ-reduction
invariance for all λ > 0.

Theorem 1 : (Luce, 2001). The following are equivalent

(i) The probability weighting function, w, satisfies λ-reduction invariance for λ ∈
{2, 3} .
(ii)The probability weighting function, w, satisfies reduction invariance.
(iii) The probability weighting function, w, is the Prelec function.

4. ‘Power invariance’ and a simple derivation of Prelec’s function

Definition 9 (PI): The probability weighting function w satisfies power invariance (PI)
if, for all p, q ∈ [0, 1] , λ ∈ (0,∞) and m ∈ N, (w (p))m = w (q) =⇒ ¡

w
¡
pλ
¢¢m

= w
¡
qλ
¢
.

Definition 10 (PIPI): The probability weighting function w satisfies probability inde-
pendent power invariance (PIPI) if there is a function ϕ : R++ −→ R, such that for all

p ∈ [0, 1] , λ ∈ (0,∞) , the equality w ¡pλ¢ = (w (p))φ(λ) holds3.
Theorem 2 : The following are equivalent

(i) The probability weighting function w satisfies PI.

(ii) The probability weighting function w satisfies PIPI.

(iii) The probability weighting function, w, is the Prelec function.

Proof: (i) =⇒ (ii). Let p, q ∈ [0, 1] , λ ∈ (0,∞) and n ∈ N and assume that

(w (p))n = w (q) (4.1)

Hence, by power invariance, ¡
w
¡
pλ
¢¢n

= w
¡
qλ
¢

(4.2)

Eliminating q from (4.1) and (4.2), we get4¡
w
¡
pλ
¢¢n

= w
¡
w−1 (w (p))n

¢λ
(4.3)

Taking logs and reversing sign, gives

−n lnw ¡pλ¢ = − lnw ¡w−1 (w (p))n¢λ (4.4)

3Notice that φ (λ) =
lnw(pλ)
lnw(p) is independent of the probability p, hence, the name.

4Here we use the standard notation, w(z)n = w ((z)n).
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For given λ ∈ (0,∞) , define the function (note that this is essentially the RHS of (4.4)) :

f (y) = − lnw ¡w−1 ¡e−y¢¢λ , y ≥ 0 (4.5)

Hence,

f (−n lnw (p)) = −n lnw ¡pλ¢ (4.6)

In particular, for n = 1,

f (− lnw (p)) = − lnw ¡pλ¢ (4.7)

From (4.6) and (4.7),

f (n (− lnw (p))) = nf (− lnw (p)) (4.8)

As p varies from 1 down to 0, − lnw (p) varies from 0 up to ∞. Hence, (4.8) gives, for all
n ∈ N and all y ∈ (0,∞) ,

f (ny) = nf (y) (4.9)

Extend (4.9) from natural numbers to positive reals in the usual way. Let x = 1
n
y.

Then f (y) = f (nx) = nf (x) = nf
¡
1
n
y
¢
. Hence f

¡
1
n
y
¢
= 1

n
f (y) and, hence, f

¡
m
n
y
¢
=

mf
¡
1
n
y
¢
= m

n
f (y) . Since f is continuous, it follows that, for all x, y ∈ (0,∞) , f (xy) =

xf (y) . In particular, for y = 1, f (x) = xf (1) . Letting φ = f (1), we get, for all x ∈
(0,∞) ,

f (x) = φx (4.10)

Recall that the above derivation is conditional on a given λ ∈ (0,∞). Hence, φ is a function
of λ, φ = φ (λ) . (4.7) and (4.10) give, for all p ∈ [0, 1] , λ ∈ (0,∞) ,

w
¡
pλ
¢
= (w (p))φ(λ) (4.11)

We now show that (ii) =⇒ (iii). Introduce the new function

g (x) = ln
¡− lnw ¡e−x¢¢ , x > 0 (4.12)

From (4.11) and (4.12), we get that for all λ, x ∈ (0,∞) , g (λx) = g (x)+lnφ (λ) . Since g is

strictly monotonic, this functional equation has the unique solution g(x) = ln (βxα) , α 6=
0, β > 0 (see, for example, Theorem 2.7.3 of Eichhorn (1978)5). Substituting from (4.12)

gives Prelec’s function

w (p) = e−β(− ln p)
α

, α > 0, β > 0 (4.13)

where α is taken to be positive to ensure that w (p) is strictly increasing, rather than just

strictly monotonic.

Finally, (iii) =⇒ (i) follows by direct calculation. ¥
5There is a minor error on p42 of Eichhorn (1978): In (2.7.4), the first occurrence of λ should be γ.
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From Theorem 1, reduction invariance is equivalent to the probability weighting func-
tion being the Prelec function. From Theorem 2, power invariance is also equivalent to
the probability weighting function being the Prelec function. Hence, we get the following

result.

Corollary 1 : Power invariance is equivalent to reduction invariance of Luce (2001).
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