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Abstract

We study the effect of product market competition on the incentives to in-

novate and the economy’s rate of growth in an endogenous growth model. We

extend previous works in industrial organization by assuming that innovation is

sequential and cumulative, and early endogenous growth models by accounting

for the possibility that in each period many asymmetric firms (i.e., an endoge-

nously determined number of successive innovators) are simultaneously active.
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We identify the price effect, the front loading of profits, and the productive

efficiency effect associated with an increase in competitive pressure. The price

effect reduces the incentives to innovate, but both the front loading of profits

and the productive efficiency effect raise the incentives to innovate. We demon-

strate circumstances in which the productive efficiency effect dominates the

price effect. In these circumstances, the front loading of profits and the fact

that the productive efficiency effect dominates the price effect compound to

make the equilibrium rate of growth increase with the intensity of competition.
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1. INTRODUCTION

It has often been claimed that competition is good for innovation and growth.

Indeed, what empirical evidence is available suggests an increasing, or inverted U-

shaped, relationship between competition and growth.1 However, there is no straight-

forward theoretical explanation for such a positive link. Quite to the contrary, early

models of endogenous growth tend to conclude that tougher competition erodes the

innovator’s prospective monopoly rents and is therefore detrimental to growth.

This paper aims to reconcile the Schumpeterian view that the search for monopoly

rents is the primary engine of growth and empirical evidence that competition is

good for growth. We argue that the conclusion drawn by early endogenous-growth

models crucially depends upon the simplifying assumption that at every point in

time the technological leader is the only active firm in each industry. In more highly

structured models, which allow for two or more firms to be simultaneously active in

the same industry, two qualitatively new effects arise — the front loading of profits

and the productive efficiency effect — that can generate a positive relationship between

product market competition, innovation and growth.

Any definition of competition involves the idea that more intense competition

reduces the equilibrium price, thus exerting downward pressure on the innovator’s

prospective rents (we call this effect the price effect). However, in more competitive

markets, a larger fraction of these rents accrues in the early stages of the innovative

firm’s life cycle (this we call the front loading of profits following Segal and Whin-

ston (2003)) and low-cost firms have a larger portion of the market, which reduces

total industry costs (productive efficiency effect). We find circumstances in which

the productive efficiency effect dominates the price effect, namely, when the size of

innovations is large and/or competition is strong. In these circumstances, the front

loading of profits and the fact that the productive efficiency effect dominates the price

effect compound to make the equilibrium rate of growth increase with the intensity

of competition.

As a modeling strategy, we depart from standard quality ladder models of endoge-

nous growth only to the extent that is necessary to allow for several firms to be

1See Nickell (1996), Blundell, Griffiths and van Reenen (1995) and Aghion et al. (2002).
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simultaneously active in each industry. We therefore stick to the standard assump-

tion that innovative technological knowledge is proprietary; this implies that firms

are asymmetric in that they have access to different technologies. In early quality

ladder models, the fact that only the technological leader is active in the product mar-

ket rests on the assumption that either innovations are drastic (Aghion and Howitt

(1992)),2 or else firms compete a là Bertrand (Grossman and Helpman (1991)). To

allow for different market structures, we focus on the case of non drastic innovations,

contrasting Bertrand with Cournot competition. With asymmetric firms, the number

of active firms and their respective market shares will depend on the mode of com-

petition, Bertrand or Cournot, and the size of innovations. (In fact we use a more

general reduced-form model which encompasses the Bertrand and Cournot equilibria

as special cases and yields a continuous index of the intensity of competition.)

Our model possesses a steady state in which m+1 firms are simultaneously active,

i.e., the latest innovator and m past innovators, where m is endogenously determined

(with Bertrand competition,m = 0). An innovator, that does not conduct any further

research, will nonetheless remain active, and reap positive profits, form+1 periods (a

period is the random time interval between two innovations, as in Aghion and Howitt

(1992)). As new innovations arrive, the original innovator’s market share shrinks

but he will exit the market only after m + 1 successive innovations have occurred.

Consequently, the value of an innovation, and hence the incentive to innovate, is a

weighted average of all active firms’ profits, where the weights reflect the expected

length of time periods, discounting, and growth. In a stationary environment with

no discounting each innovator would get total industry profits over time periods,

irrespective of the mode of competition.

We show that a rise in competitive pressure makes profits accrue sooner to the

innovator: for example, with Cournot competition each innovator collects its rents

over various time periods, whereas with Bertrand competition all of the rents are

obtained in the one period starting when the innovation is achieved. In a stationary

environment with no discounting, such a front loading of profits would have no effect

on the incentive to innovate. In our model, however, delayed profits increase over

2An innovation is drastic if the innovator is unconstrained by outside competition and can there-

fore engage in monopoly pricing.
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time periods as the economy grows, but firms discount future rents. The transversal-

ity condition implies that discounting prevails over growth, and so the front loading

of profits raises the incentive to innovate implying that competition tends to be pos-

itively associated with growth.

The intensity of competition affects the incentive to innovate also via its effect on

total industry profits. We decompose the effect of product market competition on

industry profits into a price effect and a productive efficiency effect. The price effect

is the change in industry profits that would obtain if all active firms shared the same

technology. This effect is negative, i.e. more intense competition would lead to lower

industry profits if firms were symmetric. With asymmetric firms, however, a rise in

the intensity of competition raises the market shares of low-cost firms, and lowers

those of high-cost firms. For example, under Bertrand competition all of the output

is produced by the most efficient firm — the latest innovator; whereas under Cournot

competition high-cost firms produce a positive share of total output. Therefore, a

rise in competitive pressure improves the productive efficiency of the industry which

is good for industry profits.

We identify two circumstances in which the productive efficiency effect outweighs

the price effect. First, when innovations are almost drastic, the equilibrium price is

close to the monopoly price irrespective of the mode of competition. In this case, the

price effect is second order. However, with Cournot competition the high-cost firm

holds a positive market share (when innovations are almost drastic, only two firms

are active in each period); the productive efficiency effect is therefore first order.

Thus, with large innovations industry profits are greater under Bertrand competition

than under Cournot competition. (In fact, with large innovations industry profits are

monotonically increasing in the intensity of competition). Second, we show that in

the vicinity of the Bertrand equilibrium the productive efficiency effect is remarkably

large: indeed, a unit decrease in the equilibrium price lowers the industry average

cost by as much as one! Therefore, independently of the size of innovations, when

competition is strong a further increase in the intensity of competition must increase

industry profits.

The rest of the paper is organized as follows. In Section 2, we discuss the related

literature. In Section 3, we analyze the value of an innovation when innovation is

5



sequential but innovators are not immediately displaced by the occurrence of the next

innovation. We show that the incentive to innovate depends both on industry profits,

and the distribution of profits across active firms. Section 4 studies how the intensity

of product market competition impacts on the incentive to innovate. In Section 5, the

insights obtained in Sections 3 and 4 are embedded in a simple general equilibrium

endogenous growth model. Finally, Section 6 offers some concluding remarks.

2. RELATED LITERATURE

Our paper is related to two different literatures: the industrial organization liter-

ature that examines the effect of product market competition on the incentives to

innovate, and the recent endogenous growth literature that tries to reconcile theory

and evidence on the relationship between competition and growth.

The industrial organization literature.–
The debate on the effect of competition on the incentive to innovate goes back to

Schumpeter (1942) and Arrow (1962). Schumpeter (1942) claims that there exists

a positive correlation between innovation and market power. He argues that for a

variety of reasons a monopoly may likely develop and employ a more advanced tech-

nology than a competitive industry. This claim has been countered by Arrow (1962),

who argues that the incentive to innovate is higher in competitive industries, because

a monopolist’s post-innovation profits replace his pre-innovation profits, whereas this

replacement effect vanishes under competition. Moving to the case of oligopoly, Del-

bono and Denicolò (1990) find that Bertrand duopolists have greater incentives to

innovate than Cournot duopolists when the product is homogenous. However, Bester

and Petrakis (1993) and Bonanno and Haworth (1998) show that this result can be

reversed with horizontal and vertical product differentiation, respectively, and Syme-

onidis (2003) shows that the same is true when the products are both horizontally

and vertically differentiated. Qiu (1997) develops a model in which the incentive to

innovate is greater with Cournot competition even if the product is homogeneous.

Boone (2000, 2001) generalizes these findings and shows that the relation between

competition and incentives to innovate is generally non monotone. In short, the in-

dustrial organization literature on the effect of product market competition on the
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value of an innovation is largely inconclusive.3 In part, these conflicting results are

due to different assumptions on the nature of technical progress (tournament or non-

tournament) and on who conducts the research (incumbents or outside firms). The

remaining ambiguity rests on the fact that in more highly competitive industries the

technological leader has a larger market share, and this market share effect may or

may not outweigh the negative effect of more intense competition on the equilibrium

price.

All of these papers focus on a single innovation framework and therefore identify

the incentive to innovate with the (increase in the) profits of the technological leader.

We depart from this literature by modeling an infinite sequence of innovations. In

our framework the incentive to innovate cannot be equated to the leader’s profits, but

is a weighted average of all active firms’ profits. As such, the positive effect of more

intense competition on the leader’s market share does not translate mechanically into

higher incentives to innovate, but operates only via the productive efficiency effect

and the front loading of profits. Our contribution is to show that these indirect effects

may nevertheless be substantial.

Segal and Whinston (2003) independently study a model of successive innovations

in which each innovator stays active for two periods. Our analysis has many elements

in common with theirs, including the front loading of profits. However, their model

differs from ours in various respects; for example, they posit a rectangular demand

function, a fixed timing of innovations, and an exogenously given number of firms

(m = 1). Moreover, they do not compare Bertrand and Cournot competition, but

focus on various business practices that may or may not be anti-competitive. Notwith-

standing these differences, our conclusions and theirs complement and reinforce each

other.

The growth literature.–
A small endogenous growth literature tries to reconcile theory and empirical evi-

dence on the relationship between competition and growth. One strand of this litera-

ture introduces agency issues into the picture (Aghion, Dewatripont and Rey (1999)).

3Equally inconclusive is the related literature on the effects of product market competition on

managerial incentives: see Raith (2003).
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In these models, non-profit maximizing managers delay the adoption of new technolo-

gies until profits fall below a threshold level. The effect of tougher competition is to

reduce profits thereby speeding up the adoption process.

In the non-tournament models of van de Klundert and Smulders (1997) and Peretto

(1999), tougher competition reduces the equilibrium number of varieties and increases

the size of active firms, which raises their incentive to innovate. These papers posit a

positive, deterministic relationship between the level of R&D investment and the size

of the innovation. In a related contribution, d’Aspremont, Dos Santos Ferreira and

Gerard-Varet (2002) consider the case in which R&D investment affects the proba-

bility of success rather than the size of innovations, but still many firms can innovate

simultaneously. Thus, in each period there are some firms which have successfully

innovated, and others that have access only to the prior art, which is in the public

domain. They compare the Cournot and Bertrand equilibria, and also analyze an

intermediate case in which all successful innovators co-operatively engage in limit

pricing. They show that growth is fastest in this intermediate case, and conclude

that the relationship between competition and growth is inverted U-shaped.

Aghion et al. (2001) develop a general equilibrium model of step-by-step tech-

nical progress in which two firms produce horizontally differentiated products, and

show that more competition (as measured by an increase in the degree of product

substitutability)4 may be beneficial to growth. In step-by-step models, firms’ incen-

tive to innovate is greatest when they are neck-and-neck (which can never occur in

leapfrogging models). In such a state, the incentive to gain a technological lead is

greater when competition is intense; however, with fierce competition the fraction

of industries in which firms are neck-and-neck tends to be lower. The interaction of

these effects can generate an increasing, or inverted U-shaped, relationship between

competition and growth. Encaoua and Ulph (2000) argue that introducing into this

model the possibility of leapfrogging strengthens the positive effect of competition on

growth.

The main difference between these papers and ours is that we do not make any

special assumption: we use the standard leapfrogging model with profit-maximizing

4In a simplified version of the model, Aghion, Harris and Vickers (1997) parametrize the intensity

of competition also as a switch from Cournot to Bertrand competition.

8



firms and tournament technical progress. The novelty of our analysis lies in that we

allow for several firms to be simultaneously active — which requires that innovations

are non-drastic and competition is Cournot rather than Bertrand.

3. THE INCENTIVE TO INNOVATE WITH SEQUENTIAL
INNOVATIONS

In this section we analyze the key determinants of the incentives to innovate in a

model of repeated innovations. We extend previous works in industrial organization

by assuming that innovation is sequential and cumulative, and earlier endogenous

growth models by accounting for the possibility that in each period many firms are

simultaneously active.

Throughout, the following assumptions will be maintained. Innovative activity

happens at a rate determined by R&D efforts. In each period k, where k − 1 is the
number of past innovations, there is a patent race for innovation k. (Time is con-

tinuous but can be divided into periods, where a period is the random time interval

between two innovations.) Patent races come in a sequence in the sense that only

after one innovation is achieved can the race for the next one begin. The size of

innovations is exogenous but the timing of innovations is a probabilistic function of

the amount invested in R&D by research firms; specifically, the R&D effort deter-

mines the expected time of successful completion of the R&D project according to a

Poisson discovery process with a hazard rate zk. We assume that incumbents do no

research; research is conducted by outsiders, and so in each period the current leader

is systematically replaced.5

To fix ideas, suppose that there is perfect, infinitely-lived patent protection, so that

nobody can imitate the innovation without infringing the patent.6 Because innovative

technological knowledge is proprietary, in period k only the (k − i)th innovator, who

5The possibility that incumbents invest in R&D so that technological leadership may persist over

time periods will be discussed in the concluding section.
6In practice, there are various means of protecting innovative technological knowledge, including

patents, copyrights, secrecy, lead time etc. Typically the protection an innovator enjoys declines

over time, but for simplicity we abstract from this additional source of dynamics.
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holds a patent on the (k−i)th innovation, can practice it.7 Under the assumption that
all innovations are obtained by outsiders, nobody holds multiple patents. In period

k, innovator k − 1 is the technological leader, but we allow for m past innovators to

remain active. Let πi,k be the flow of profit earned by innovator k − 1− i in period

k. Thus, π0,k is the technological leader’s profit; π1,k is the profit of the second most

efficient firm (i.e., innovator k − 2); and so on. Later m and zk will be determined

endogenously (for example, m = 0 with Bertrand competition), but for the moment

we take them as given.

To determine the expected value of innovation k, E(Vk), one must take into account

that the kth innovator’s rents will not be terminated by the occurrence of the (k+1)th

innovation: although competition from the (k + 1)th innovator will reduce all past

innovators’ market shares and profits, only the least efficient among active firms will

be driven out of the market when a new innovation occurs. Thus, E(Vk) is determined

by the following asset condition:

rE(Vk) = π0,k+1 − zk+1
£
E(Vk)−E(V 1

k )
¤

where r is the interest rate. This equation says that securities issued by the leader pay

the flow profit π0,k+1 in period k+1, less the expected capital loss zk+1 [E(Vk)−E(V 1
k )]

that will be incurred when the next innovation is achieved. Such a capital loss is the

difference between the value of being leader and that of being the second most efficient

firm in the market, i.e. E(Vk) − E(V 1
k ), where E(V

h
k ) is the value of innovation k

after h periods, i.e. in period k+h. The value of being the second most efficient firm

in the market, E(V 1
k ), is in turn determined by the asset condition

rE(V 1
k ) = π1,k+2 − zk+2

£
E(V 1

k )−E(V 2
k )
¤
,

and so on. Eventually, afterm+1 innovations, the kth innovator will exit the market,

so that E(V m+1
k ) = 0. Consequently, we have

rE(V m
k ) = πm,k+m+1 − zk+m+1E(V

m
k ).

7We follow the vast majority of endogenous growth models in ruling out patent licensing. The

standard justification for this assumption is that licensing agreements between successive innovators

would have anti-competitive effects and thus would be prohibited by antitrust authorities. When

licensing improves productive efficiency, however, such a justification loses some of its strength. After

developing our results, we discuss licensing agreements more fully in the concluding section.
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These m+ 1 equations can be solved recursively yielding

E(Vk) =
π0,k+1
r + zk+1

+
zk+1

(r + zk+1)

π1,k+2
(r + zk+2)

+ ...

+

"
mY
i=1

zk+i
(r + zk+i)

#
πm,k+m+1

(r + zk+m+1)

=
mX
i=0

"
πi,k+i+1

(r + zk+i+1)

iY
h=1

zk+h
(r + zk+h)

#
(1)

When m = 0, this expression reduces to the standard formula

E(Vk) =
π0,k+1

(r + zk+1)

that is, the value of the kth innovation is the discounted value of the innovator’s

profits, where the interest rate is augmented by the factor zk+1 that captures the

expected duration of the innovator’s leadership. More generally, equation (1) says

that the value of the kth innovation is the expected present value of all future profits

that the innovator will get in the m + 1 periods for which he will be active in the

product market. In each period, the discount factor is augmented to keep into account

the probability that the current flow of profits is terminated by the occurrence of

the next innovation. Moreover, because innovation is cumulative future profits are

weighted by the factors
iQ

h=1

zk+h
(r+zk+h)

, which can be interpreted as the “discounting-

adjusted probabilities” that future innovations are achieved: with a Poisson discovery

process, each future innovation eventually occurs with probability one, but since there

is discounting, a delayed success counts less than instant success. Thus,
iQ

h=1

zk+h
(r+zk+h)

is

the “discounting-adjusted probability” that innovation k+i occurs and period k+i+1

profits start accruing to the kth innovator.

More intuition on the determinants of the incentive to innovate can be gained by

focusing on the case of a stationary environment in which zk and πi,k are constant

across periods. In the limiting case in which z tends to zero, the value of the innovation

will then depend only on the technological leader’s profit, π0. This limiting case

effectively corresponds to a single innovation framework, like that envisaged in the

early industrial organization literature. In the polar case in which r tends to 0,

the value of the innovation would depend only on the sum total of firms’ profits,
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Π =
mX
i=0

πi. In general, both industry profits and the profit distribution across firms

matter.

4. INTENSITY OF COMPETITION AND INCENTIVE TO
INNOVATE

In this section we analyze the effect of an increase in the intensity of competition

on the incentives to innovate. Building on the result of the previous section, we focus

on how competition affects industry profits and their distribution across firms. We

identify the front loading of profits, the price effect, and the productive efficiency effect

associated with a change in competitive pressure. We also demonstrate circumstances

in which the productive efficiency effect dominates the price effect. To underscore

that our results are independent of the details of the particular growth model that

we develop below, the analysis is cast in a partial equilibrium framework.

Preliminaries.–
Consider an industry comprising s+ 1 asymmetric firms, indexed by i = 0, 1, ..., s,

producing a homogeneous product. Let firms’ marginal cost be constant at ci per

unit, and label firms so that c0 < c1 < ... < cs. Thus, firm 0 is the technological

leader (e.g. the latest innovator), firm 1 is the leader’s most efficient competitor

(e.g. the penultimate innovator) and so on. The number of firms that are active in

equilibrium, m+1, is determined endogenously; firm m is the least efficient amongst

active firms. Let demand be given by X(p), where p is price, X is output, and X(.) is

a strictly decreasing and twice differentiable function on [0, p̄] and is zero on [p̄,∞). It
follows that inverse demand, p(X), is decreasing and twice differentiable on [0, X(0)].

For simplicity, we assume that the following regularity condition holds: 2p0(X) +

p00(X)X < 0 on [0, X(0)]. This assumption of decreasing marginal revenue simplifies

the exposition (in particular, it implies that the function Π(X) = [p(X) − ψ]X is

strictly concave for any constant ψ < p̄) but is not needed for many of our results.

The individual firm’s profit function is πi = [p(X)− ci]xi, where xi is the individual

firm’s output. To keep the analysis interesting, assume that c1 is lower than the

monopoly price associated with c0, pM(c0) = argmax(p−c0)X(p). If this assumption
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failed, firm 0 could engage in monopoly pricing without fear of being displaced by its

competitors.

Bertrand and Cournot competition.–
Initially we parametrize the degree of competition by a switch from Cournot to

Bertrand competition. With Bertrand competition, the outcome is a limit-pricing

equilibrium in which price equals the marginal cost of the second most efficient firm

and all of the output is produced by the low-cost firm: pB = c1, mB = 0, and

xB0 = XB = X(c1). In a Cournot equilibrium, the first-order conditions are8

p0(XC)xCi + pC = ci i = 0, ...,m (2)

where XC =
mP
i=0

xCi and mC is the greatest integer such that pC ≥ cm holds. For

future reference, note that

xCi
xCj

=
pC − ci
pC − cj

i, j = 0, ...,m

that is, in the Cournot equilibrium, the ratio of any two active firms’ market shares

equals the ratio of their respective price-cost margins. This relationship trivially holds

also in the Bertrand equilibrium. However, in the Cournot equilibrium high-cost firms

hold positive market shares, which means that the Cournot equilibrium exhibits pro-

ductive inefficiency. This productive inefficiency is important to explain why industry

profits can be larger under Bertrand competition, even if the Bertrand equilibrium

price is lower than the Cournot price.

It is indeed well known that with Cournot competition both the equilibrium price

and the number of active firms are higher than under Bertrand competition. There-

fore, a switch from Cournot to Bertrand competition is associated with an increase in

the intensity of competition. To facilitate the comparison we now present a general

solution that encompasses the Bertrand and Cournot equilibria as special cases. This

will also allow us to obtain a continuous index of the intensity of competition.

8With constant marginal costs, the assumption 2p0(X) + p00(X)X < 0 ensures that the second

order conditions are satisfied and the Cournot equilibrium is unique.
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A reduced-form model.–
The intensity of competition can be measured in many different ways, but any

definition of competition involves the idea that more intense competition reduces

the equilibrium price of a homogeneous product. Accordingly, we use a reduced form

specification in which the intensity of competition is simply identified with the (inverse

of the) equilibrium price.9 Thus, let p range from the Cournot equilibrium price pC

to the Bertrand equilibrium price pB = c1 as product market competition increases.

Industry output is X(p). To pin down the industry equilibrium, assume that the

ratio of any two active firms’ market shares equals the ratio of their respective price-

cost margins without making any more specific assumption on the nature of product

market competition:

xi
xj
=

p− ci
p− cj

i, j = 0, ...,m. (3)

The number of active firms, m(p) is determined as a function of p as the largest

integer such that p > cm (it is understood that xi = 0 when p < ci). The active

firms’ equilibrium outputs and profits are then uniquely determined by the adding

up condition
m(p)X
i=0

xi = X(p).

To show existence and uniqueness of the solution, note that for any given p, m(p) is

uniquely determined. Equations (3) provide m(p) independent conditions. Together

with the adding up condition, they comprise a system ofm(p)+1 linearly independent

equations in the m(p) + 1 unknowns x0, ..., xm, the solution of which exists and is

unique. It is easy to show that individual outputs are

xi =
p− ci
p− ĉ

X(p)

[m(p) + 1]
(4)

where ĉ =
m(p)X
i=0

ci
[m(p) + 1]

is the unweighted average of the marginal costs of active

9Previous work on competition and growth has often measured the intensity of competition by

the inverse of the elasticity of demand, which determines the size of the innovator’s mark-up. Our

reduced-form model allows us to obtain a continuous measure of the intensity of competition that

disentangles the effects of a change in the degree of competition from those associated with changes in

structural (taste and/or technology) parameters that ultimately determine the elasticity of demand.
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firms.

Clearly, because (3) holds both at the Bertrand and Cournot equilibria, these equi-

libria are reproduced for p = pB and p = pC, respectively. For intermediate values of

the price, our solution can be interpreted as a reduced form of a more highly struc-

tured model where firms can collude partially (Cabral (1995)), or can choose both

capacities and prices (Maggi (1996)).10 Alternatively, and perhaps more prudently,

the solution can be thought of as an analytical tool that helps compare the Bertrand

and Cournot equilibria.

The productive efficiency effect.–
Consider now an increase in the intensity of competition, i.e. a fall in the equilib-

rium price. If the number of active firms and their respective market shares stayed

constant, the fall in the equilibrium price would unambiguously reduce industry prof-

its Π =
sP

i=0

πi. This is the price effect. The reason why the price effect is negative is

that industry profits are Π = [p(X)−c̄]X, where c̄ =Pm
i=0

xi
X
ci is the industry average

cost, i.e. weighted average of firms’ marginal costs. With constant market shares, c̄

is constant; since Π(X) is quasi-concave, any fall in price must then reduce industry

profits if the price is lower than the monopoly price. However, the number of active

firms and their market shares change with the equilibrium price. As a consequence,

c̄ changes with the intensity of competition, and the associated change in industry

costs and profits is the productive efficiency effect.

Formally, the change in industry profits associated with a change in the intensity

10If fact, our solution coincides with the conjectural variations equilibrium under the assumption

that the conjectural variations parameter is the same for all firms. To see this, note that in a

conjectural variations equilibrium, the first-order conditions (2) become

(1 + φi)p
0(X)xi + p = ci i = 0, ...,m

where φi is the conjectural variations parameter of firm i. Provided that φi is the same for all firms,

it is immediate that (3) holds at equilibrium.
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of competition is11

dΠ

dp
= X + (p− c̄)

dX

dp| {z }
price effect

−dc̄
dp

X| {z }
productive efficiency effect

(5)

We now show that an increase in the intensity of competition improves the productive

efficiency of the industry; a fall in the equilibrium price, that is to say, lowers the

industry average cost.

Lemma 1 The productive efficiency effect is positive.

Proof. Simple algebra (the details are in the Appendix) shows that

dc̄

dp
X =

m(p)X
i=0

(ci − c̄)
dxi
dp

=
X(p)σ2c

[m(p) + 1] (p− ĉ)2
> 0 (6)

where σ2c is the variance of active firms’ marginal costs. ¥

The intuition behind Lemma 1 is that a rise in competitive pressure raises the

market shares of low-cost firms and lowers the market shares of high-cost firms. This

reduces the total cost at which any given industry output is produced. An immediate

corollary of Lemma 1 is that a switch from Cournot to Bertrand competition improves

the productive efficiency of the industry. This is obvious, because with Bertrand

competition all of the output is produced by the low-cost firm, whereas under Cournot

competition high-cost firms have positive market shares.

Before proceeding, we pause here to show that an increase in price is positively

associated with an (inverse) index of the intensity of competition that is commonly

used in empirical work, namely, the industry average price-cost margin (p− c̄). 12

11Because m(p) jumps up at certain critical points c1, c2, ..., cm as p increases, variables like out-

puts, profits etc. are piecewise differentiable. Consequently, caution should be used in differentiating

those variables with respect to p. Any such derivative calculated at cj , where cj is the critical value

of p at which m jumps up from j − 1 to j, must be interpreted as the right derivative under the

conventional assumption xj(cj) = 0.
12To measure the intensity of competition, Nickell (1996) and others also use indices of market

concentration. In our model, however, an increase in price is negatively associated with market con-
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Lemma 2 A rise in price p (weakly) raises the industry average price-cost margin

(p− c̄).

Proof. See the Appendix. ¥

With these preliminary results in place, we are now ready to state the main results

of this section.

Competition and industry profits.–
We start focusing on the effect of product market competition on industry profits.

In particular, we look for circumstances in which the productive efficiency effect

dominates the price effect so that more intense competition raises industry profits.

As is clear from equation (6), if firms were symmetric (σ2c = 0) the productive effi-

ciency effect would vanish. However, with asymmetric firms, σ2c > 0, the productive

efficiency effect is first order. When the price effect is second order, it must therefore

be dominated by the productive efficiency effect. But the price effect will, indeed, be

second order when the price is close to the monopoly price. This observation leads to

the following result.

Proposition 1 When the marginal cost of the second most efficient firm c1 is close

to the monopoly price pM(c0), industry profits are greater under Bertrand competition

than under Cournot competition.

Proof. The proof is in the Appendix. Here we sketch the proof of a more general

claim, i.e. that when c1 is close to pM(c0), industry profits are monotonically increas-

ing in the intensity of competition. To prove this claim, note that when c1 is just

below pM(c0), p must be close to pM(c0);13 moreover, x1 must be close to zero and so

centration. More precisely, let LX( h
s+1) =

sP
i=s−h+1

xi
X be the Lorenz curve of the output distribution,

showing the proportion of industry output produced by any given percentage of the population of

firms, starting from the smallest firm. Proceeding as in the proof of Proposition 3 below, it can

be shown that a rise in price shifts the Lorenz curve LX down. This implies that as the price in-

creases, market concentration falls according to any of the most commonly used measures of market

concentration, like Cn, the sum of the market shares of the largest n firms, or the Herfindhal index.
13Remember that p ranges from pB = c1 to pC , which cannot exceed pM (c0).
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c̄ must be close to c0. Using (6), equation (5) therefore reduces to

dΠ

dp
= X[pM(c0)] + [p

M(c0)− c0]
dX

dp| {z }
=0

−X[pM(c0)]
σ2c

2[pM(c0)− ĉ]2

= −X[pM(c0)] σ2c
2[pM(c0)− ĉ]2

< 0

Thus, industry profits monotonically decrease with price.¥

The intuition is that at c1 = pM(c0) both Bertrand and Cournot competition

yield the monopoly solution. Starting from c1 = pM(c0), consider now the effect of

decreasing c1. With Bertrand competition, the presence of firm 1 now constrains the

low-cost firm (i.e., firm 0) that must price at p = c1, but when c1 is close to the

monopoly price the effect of competition on the low-cost firm’s profit is second order

— the profit function is flat at p = pM(c0). With Cournot competition a fall in c1

reduces the equilibrium price less than under Bertrand competition, but now it also

increases the high-cost firm’s market share. Since c1 > c0, with Cournot competition

the negative effect on industry profits of a fall in c1 is first order, whence the result

follows.

Proposition 1 might suggest that the productive efficiency effect is small and can

prevail over the price effect only if the latter is negligible. Quite to the contrary, the

productive efficiency effect can be surprisingly large: a unit increase in the equilibrium

price can raise the average industry cost by as much as one! (Lemma 2 ensures

that c̄ cannot increase by more than one.) This is indeed what happens in the

vicinity of the Bertrand equilibrium — the equilibrium which most quality ladder

models of endogenous growth with non-drastic innovations focus on. Consequently,

starting at Bertrand competition, a small decrease in the intensity of competition will

unambiguously lead to a fall in industry profits.

Proposition 2 Starting at the Bertrand equilibrium price, a small increase in price

lowers industry profits.

Proof. From (5) and (6) we get

dΠ

dp
= X + (p− c̄)

dX

dp
−X

σ2c
2(p− ĉ)2
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When p is slightly increased starting at p = pB = c1, only two firms, 0 and 1, will be

active. Consequently, σ2c = (c1 − ĉ)2 + (c0 − ĉ)2 = 2(c1 − ĉ)2 = 2(p− ĉ)2, whence we

get
dΠ

dp
|p=pB= (p− c̄)

dX

dp
< 0.¥

Proposition 2 effectively shows that starting at the Bertrand equilibrium price, a

small increase in price leaves the industry average price-cost margin (p−c̄) unchanged.
The intuitive reason is that when p = c1, a unit increase in price raises the market

share of firm 1 (the high-cost firm) from zero to 1
c1−c0 , and this causes a unit increase

in c̄. Because the industry average price-cost margin (p − c̄) is unchanged, a rise in

price must necessarily lower industry profit.

[Figure 1 here]

Figures 1 and 2 illustrate Propositions 1 and 2, respectively, in the linear demand

case p = 1 − X with c0 = 0. Figure 1 plots industry profits under Bertrand and

Cournot competition as c1 ranges from 0 (the symmetric case) to 0.50 (the monopoly

price). Industry profits are greater with Bertrand competition for c1 > 0.28. Figure 2

displays the regions in which industry profits increase or decrease with the intensity

of competition as c1 ranges from 0 to 1
2
and p ranges from pB = c1 to pC = 1+c1

3
.

Although our qualitative results are local, Figures 1 and 2 show that the productive

efficiency effect prevails over the price effect in a sizeable region of parameter values.

[Figure 2 here]

Competition and the distribution of profits.–
Product market competition affects not only the sum total of all firms’ profits, but

also another key determinant of the incentive to innovate, namely, the distribution of

profits across active firms. Accordingly, we now focus on how a rise in the intensity

of competition affects the profit distribution, for any given level of industry profits.

Let the profit distribution be the s + 1-dimensional vector Π = (π0, π1, ..., πs).

Because c0 < c1 < ... < cs, we have π0 ≥ π1 ≥ ... ≥ πs, with strict inequalities
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whenever profits are strictly positive. The Lorenz curve of the profit distribution is

LΠ(
h

s+1
) =

sP
i=s−h+1

πi
Π
, where Π is industry profits. It shows the proportion of industry

profits earned by any given percentage of the population of firms, starting from the

least profitable firm.

Our next result is that the profit distribution becomes more unequal according to

the Lorenz dominance criterion as competition becomes more intense. That is to say,

the Lorenz curve of the profit distribution shifts down as the intensity of competition

increases. Lorenz dominance implies that profit inequality would increase as the

intensity of competition increases according to a wide set of inequality measures.

Proposition 3 If there are at least two active firms, an increase in the intensity
of competition makes the profit distribution more unequal according to the Lorenz

dominance criterion.

Proof. See the Appendix. ¥

Proposition 3 follows from the simple fact that low-cost firms gain, and high-cost

firms lose in relative terms when the market becomes more competitive. The reason is

twofold: first, the market shares of low-cost firms tend to increase with the intensity

of competition, and second, when the equilibrium price falls, the percentage decrease

in the price-cost margin is larger for high-cost firms.

In the dynamic model of successive innovations to be developed presently, each

innovator will be active, and reap positive profits, for m + 1 periods: in the first

period after his innovation is achieved, he is the technological leader, in the second

period he is the second most efficient firm, in the third period he is the third most

efficient amongst active firms, and so on. Over time periods, the innovator reaps total

industry profits irrespective of the intensity of competition. However, the Lorenz

dominance result means that as the intensity of competition increases the innovator

will get a larger proportion of his prospective rents in the first i periods for which

he is active, for all i = 1, ...,m (over m + 1 periods he always gets 100 per cent of

industry profits). This is the front loading of profits associated with more intense

competition. Proposition 4 below shows that the front loading of profits tends to

increase the incentives to innovate, for any given level of industry profits.
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5. A GROWTH MODEL

We now embed the insights from the previous sections in a simple growth model.

To eschew distracting assumptions, we use a one-sector version of the text-book model

of Barro and Sala-i-Martin (1995, ch. 7), but the main results are more general and

can be reproduced in many other models with quality improvements.14

Preferences and technology.–
The economy is populated by identical individuals whose mass is normalized to 1.

Each individual has linear intertemporal preferences:

u(c) =

Z ∞

0

c(t)e−rtdt

so that the rate of time preference r coincides with the equilibrium rate of interest.

Each individual inelastically offers one unit of labor.

The final good y is produced in a perfectly competitive market using labor (which

is in fixed supply) and an intermediate good the quality of which increases over time

because of technical progress. We normalize at 1 the quality of the intermediate good

at time 0, and we denote by q > 1 the size of each innovation. In period k, where

k− 1 is the number of past innovations, the final good can be produced according to
the following constant-returns-to-scale production function:

yk = bX α
k , 0 < α < 1, (7)

where labor input is set equal to one, (1 − α) is the share of labor’s income, andbXk =
Pk

i=0 q
i−1xi is the quality-adjusted index of a composite good which combines all

past generations of intermediate goods. It is convenient to rewrite bXk as bXk = qkXk,

where Xk =
Pk

i=0 q
i−k−1xi measures the input of the composite intermediate good

in efficiency units relative to the last vintage. From the production function (7) one

obtains the demand for the intermediate good (measured in efficiency units)

Xk = α
1

1−αp
− 1
1−α

k q
α

1−αk (8)

14In particular, the growth model we develop exhibits scale effects, but our results would continue

to hold in a model with no scale effects, provided that greater incentives to innovate lead to faster

growth (see for example Howitt (1999)).
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where pk is its price. The final good may be consumed, used to produce intermediate

goods, or used in research. Independently of its quality, the intermediate good is

produced using the final good with a constant marginal rate of transformation that

is normalized to 1.

Technical progress.–
In each period there is a patent race. Incumbents do no research, and there is

free entry by risk-neutral outsiders. In period k, each firm c participating in the race

decides its R&D effort nck to obtain the kth innovation. The R&D effort determines

the expected time of successful completion of the R&D project according to a Poisson

discovery process with a hazard rate equal to λknck, with λk > 0. The projects of

different firms are independent, so that the aggregate instantaneous probability of

success is simply the sum of the individual probabilities. Let nk =
P

c nck denote

aggregate R&D investment in period k. Then, the innovation occurs according to a

Poisson process with a hazard rate zk = λknk.15

If innovations were drastic, the technological leader would be unconstrained by

outside competition and could engage in monopoly pricing, and so the model’s equi-

librium would be independent of the mode of competition in the product market. We

therefore assume that innovations are non-drastic, which in the current setting means

that

q ≤ 1

α
.

Steady state.–
In a steady-growth equilibrium the price of the (latest vintage of the) intermediate

good, in terms of the consumption good, will be constant. This implies that Xkwill

grow at rate q
α

1−α , and from (7) it then follows immediately that yk will also grow at

rate q
α

1−α . This is the growth factor between periods, and we denote it by g ≡ q
α

1−α .

In a steady state, output, consumption, the input of intermediate goods, profits, and

R&D investment will all grow at rate g between periods.

In order to guarantee the existence of a steady state with positive growth, following

15Our results immediately extend to the case where zk = λkn
β
k , with 0 < β ≤ 1 . The case β < 1

may reflect the presence of external diseconomies in research.

22



Barro and Sala-i-Martin (1995, p. 250) we assume that λk = λg−k. Because in a

steady state nk grows at rate g across periods, under this assumption the hazard

rate zk = λknk can be constant across periods. Finally, note that the following

transversality condition must hold (see Barro and Sala-i-Martin, 1995, p. 248):

r > z(g − 1).

If this condition is violated, consumers have an incentive to postpone consumption

indefinitely.

Equilibrium in the product market.–
To proceed, remember that only the kth innovator, who holds a patent on his

vintage of the good, can produce the intermediate good of vintage k. Independently

of its quality, the intermediate good is produced using the final good on a one-to-one

basis. However, in period k it takes qi−1 units of the intermediate good of vintage

k− i to make one unit of the intermediate good k in efficiency units. Innovator k−i’s
unit cost of producing the intermediate good, measured in period k efficiency units,

is therefore qi−1. Thus we can proceed as if the intermediate good was homogeneous

but firms had different production costs, i.e. 1 for the latest innovator, q for the

penultimate innovator, q2 for the third latest innovator and so on.

Given the demand function (8), the Cournot equilibrium price can then be easily

calculated as

pC =
1 + q + q2 + ...+ qm

C

mC + α
(9)

where mCis the largest integer such that16

1 + q + q2 + ...+ qm

m+ α
≥ qm+1.

16It can be shown that mC is constant across periods. With mC
k + 1 active firms in period k, the

Cournot equilibrium price is

pCk =
1 + q + q2 + ...+ qm

C
k

mC
k + α

and so mC
k is the largest integer such that

1 + q + q2 + ...+ qm
C
k

mC
k + α

≥ qm
C
k +1.

Because all the parameters in this inequality are constant, mC
k must be constant across periods.
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Individual outputs can be obtained by substituting (9) into (4). Clearly, in each pe-

riod low-cost firms hold larger market shares than high-cost firms. However, when

innovations are non-drastic different vintages of the intermediate good will be simul-

taneously produced, even if older vintages are less productive.

In contrast, the Bertrand equilibrium is a limit-pricing equilibrium where the leader

prices at pB = q and drives its competitors out of the market. At this limit-pricing

equilibrium, there is no productive inefficiency. The corresponding profits are πBi,k = 0

for i ≥ 1, and:
πB0,k = ΠB

k = (q − 1) q−
1

1−αα
1

1−αgk.

Such a Bertrand equilibrium is standard in the endogenous growth literature. The

next Lemma confirms that a switch from Cournot to Bertrand captures the notion of

tougher competition.

Lemma 3 The equilibrium price under Cournot competition is greater than under

Bertrand competition.

Proof. We have

pC =
1 + q + q2 + ...+ qm

m+ α

>
αq + q + q2 + ...+ qm

m+ α
because innovations are non-drastic (αq < 1)

>
αq +mq

m+ α
because q > 1

= q

= pB ¥

Like in Section 4, we also use a more general reduced-form solution that encom-

passes the Bertrand and Cournot equilibria as special cases. In this solution, p ranges

from pB = q to pC, and the corresponding individual outputs are given by (4). The

equilibrium number of active firms other than the latest innovator,m(p), is the largest

integer such that m(p) ≤ log p
log q

.

Equilibrium in the research industry.–
To complete the derivation of the model’s equilibrium, we next focus on the research

sector. The expected discounted profit of an outside firm that invests nck units of the
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final good in period k to obtain innovation k, as of the start of the race and given

that aggregate investment in R&D is nk, is

λknckE(Vk)− nck
r + nkλk

where E(Vk) is the expected value of the kth innovation, and is given by (1). At

equilibrium, outsiders’ expected net profit must be equal to zero:

λkE(Vk) = 1 (10)

In a steady state, z is constant and profits grow at rate g between periods: πi,k =

πig
k, where πi = πi,0. Equation (1) then reduces to:

E(Vk) =
mX
i=0

zigk+i+1πi

(r + z)i+1
(11)

Equilibrium in the research industry is then determined by inserting (11) into the

free-entry condition (10)

H(z) =
1

λ
. (12)

where H(z) ≡ Pm
i=0

zigi+1πi
(r+z)i+1

. Equation (12) determines the equilibrium hazard rate,

z∗, and hence the economy’s rate of growth. To see this, note that the growth factor

between periods, g, is constant. This means that the equilibrium rate of growth is

entirely determined by the expected length of each period, which in turn depends

on the speed of technical progress: with an exponential distribution of the timing of

success, the expected waiting time for each innovation is 1
z
. Consequently, an increase

in z is associated with faster growth.

Lemma 4 Assume that gπ0
r

> 1
λ
. Then a unique, strictly positive equilibrium hazard

rate z∗ exists.

Proof. See the Appendix. ¥

Condition gπ0
r

> 1
λ
ensures that research is sufficiently profitable that some research

is conducted at equilibrium. It is easy to show that the steady state level of research,

z∗, is an increasing function of the productivity of R&D effort λ. For any other

arbitrary parameter a that influences z∗, the sign of ∂z∗
∂a
equals the sign of ∂H

∂a
. Using
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this fact, it is immediate to show that z∗ is a decreasing function of the rate of time

preference r and an increasing function the step size between innovations q. It is also

clear that the economy’s rate of growth increases with the incentives to innovate. Our

next task is to analyze the impact of a switch from Cournot to Bertrand competition,

or, more generally, a rise in competitive pressure, on the economy’s rate of growth.

Competition and growth.–

Proposition 4 If industry profits are weakly increasing in the intensity of competi-
tion, an increase in the intensity of competition raises the equilibrium rate of growth.

Proof. Let p and p0 denote two price levels, with p < p0. The move from p0

to p corresponds to an increase in the intensity of competition. By assumption,

Π(p) ≥ Π(p0). Proposition 3 then implies that

hX
i=0

πi(p) ≥
hX
i=0

πi(p
0) (13)

for all h, with a strict inequality for at least one h. We also know that m(p) ≤ m(p0).

We must show that H(p) > H(p0), i.e.

m(p)X
i=0

πi(p)

∙
gz

(r + z)

¸i
>

m(p0)X
i=0

πi(p
0)
∙

gz

(r + z)

¸i
.

This can be rewritten as

m(p0)X
h=0

(
hX
i=0

πi(p)

"µ
gz

(r + z)

¶h−1
−
µ

gz

(r + z)

¶h
#)

>

>

m(p0)X
i=0

(
hX
i=0

πi(p)

"µ
gz

(r + z)

¶h−1
−
µ

gz

(r + z)

¶h
#)

where the terms inside square brackets are positive by the transversality condition.

By inequality (13), each term inside curly brackets on the left hand side is at least

as large as the corresponding term on the right hand side, with at least one strict

inequality. This completes the proof of the Proposition. ¥
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The intuition is as follows. We have shown in Section 3 that the value of an inno-

vation is a weighted average of all active firms’ profits,
Pm

i=0 ωiπi, where the weights

ωi reflect the expected length of time periods, discounting, and growth. In a steady

state, the expected length of time periods is constant. The transversality condition

implies that discounting prevails over growth, and so the weights are decreasing in i :

ω0 ≥ ω1 ≥ ... ≥ ωm. The Lorenz dominance result (Proposition 3) shows that a rise

in competitive pressure shifts profits from the least profitable firms to the most prof-

itable ones. With declining weights, such a front loading of profits implies that the

incentive to innovate
Pm

i=0 ωiπi increases with the intensity of competition, provided

that industry profits do not fall. And in a neo-Schumpeterian model an increase in

the incentive to innovate must cause an increase in the economy’s rate of growth.

Proposition 4 leads to the following corollaries.

Corollary 1 If innovations are sufficiently large (i.e., if the size of the innovations,
q, is close to 1

α
), then the rate of growth under Bertrand competition is higher than

the rate of growth under Cournot competition.

Proof. Follows from Propositions 1 and 4. ¥

Numerical calculations show that as q falls, eventually ΠB(q) < ΠC(q). By Proposi-

tion 4, this means that the rate of growth can (but need not) be greater with Cournot

competition if the size of innovations is sufficiently small. Numerical calculations also

show that the interval in which aggregate profits are greater under Bertrand competi-

tion, and thus more competition is surely associated with faster growth, can be quite

large. Figure 3 illustrates.

[Figure 3 here]

Stokey (1995) notes that if innovations occur every few years, a reasonable range

for q is 1.02 to 1.04; if innovations occur only a couple of times per century, then

a reasonable range for q is 1.25 to 1.50. Barro and Sala-i-Martin (1995) note that

reasonable values for α, the share of capital’s income, range from 0.30 if capital is

interpreted as physical capital to 0.70 if capital includes human capital. The shaded
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area in Figure 3 corresponds to the “reasonable” range q ∈ [1.02, 1.50] and α ∈
[0.30, 0.70]. Over this range, more intense competition may well be associated with

faster growth.

Corollary 2 If the intensity of competition is sufficiently high (i.e., p is close to the
Bertrand equilibrium price q), a further increase in the intensity of competition raises

the economy’s rate of growth.

Proof. Follows from Propositions 2 and 4. ¥

In fact, the relationship between competition and growth is monotonically increas-

ing when the size of innovations is large. For smaller innovations, numerical cal-

culations show that industry profits first increase and then decrease as p increases.

Consequently, unless the front loading of profits is sufficiently strong to outweigh

the effect of tougher competition on total industry profits, the rate of growth first

decreases and then increases as the intensity of competition increases.17

6. CONCLUDING REMARKS

In this paper, we have re-considered the relationship between competition and

growth in a standard neo-Schumpeterian model with improvements in the quality

of products. Focusing on the case of non-drastic innovations, we have modeled the

notion of lower competition by a switch from Bertrand to Cournot competition, and

more generally by a decrease in the equilibrium price.

We have shown that competition is good for growth either if the size of (non-

drastic) innovations is large, or if the intensity of competition is high, or both. This

result follows from two qualitatively new effects — the front loading of profits and the

productive efficiency effect — that arise when innovators are not immediately displaced

by the occurrence of the next innovation so that two or more asymmetric firms are

simultaneously active in the same industry.

17These results hold provided that only two firms are active in the Cournot equilibrium. When

innovations are still smaller, such that three firms are active under Cournot competition, the rela-

tionship between competition and growth can exhibit two local maxima.
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We conclude with a brief discussion of repeated innovation by incumbents, patent

licensing, welfare, and the inverted-U shaped relationship between competition and

growth.

Persistent leadership.–
In our model, incumbents do no research and are systematically replaced by out-

siders. However, there is ample evidence that incumbents account for much of the

research done and the resulting pattern of persistent leadership is well documented

in many industries. As discussed at greater length in Denicolò (2001), the literature

that tries to explain this pattern of persistent leadership recognizes that in standard

quality ladder models leapfrogging is indeed an equilibrium of a simultaneous moves

R&D game if the size of innovations is not too small. In this case, the assumption

that incumbents do no research is not restrictive. However, the standard model can

be adapted to make room for the persistence of leadership in various ways. If, for

example, it is assumed that incumbents have a first-mover advantage in the patent

race starting after the latest innovation, the outcome is a pre-emption equilibrium in

which all research is done by incumbents. However, the amount of research is still

determined by the outsiders’ zero-profit condition, and thus the incentive to innovate

is driven by the same qualitative effects as in the leapfrogging equilibrium.

Patent licensing.–
We have followed the vast majority of endogenous growth models in ruling out

patent licensing. The standard justification for this assumption is that licensing

agreements between successive innovators would have anti-competitive effects and as

such would be prohibited by antitrust authorities. In our model, however, patent

licensing agreements could be arranged so as to improve productive efficiency with

no anticompetitive effects, and so ruling them out is not as innocent an assumption

as in earlier models.

If patent licensing was ubiquitous, all of the output would be produced with the

most efficient technology and so the productive efficiency effect would vanish. How-

ever, a variety of transaction costs impede licensing agreements. As an example,

royalty licensing is possible only if the output is verifiable; when individual output is

not verifiable, and only fixed-fee licensing is feasible, licensing will occur at equilibrium
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only if the size of innovations is sufficiently small. As another example, incomplete

information over the size of the innovation can lead parties to introduce inefficient

terms in the licensing agreement. In addition, innovative technological knowledge

can be difficult to codify and transmit to others. These transaction costs may likely

result in an equilibrium outcome in which some active firms do not use the latest

generation technology. To the extent that the product market equilibrium exhibits

some productive inefficiency, our qualitative results are likely to continue to hold even

if we allow for some licensing agreements.

Welfare.–
Although a detailed welfare analysis is outside the scope of this paper, a few remarks

are in order. Our analysis shows that an increase in the intensity of competition has

two effects on social welfare, a static effect and a dynamic effect. The static effect is

unambiguously positive. Indeed, for any given state of the technology, the price of the

intermediate good is lower and output is greater with tougher competition. Further, if

competition is Bertrand, only the most efficient firm is active in the intermediate good

industry and so only the highest quality good is produced in equilibrium, ensuring that

productive efficiency is achieved. The dynamic effect, that operates via the incentive

to innovate and the rate of growth, is more complex. As we have seen, competition can

be growth-enhancing or growth-reducing. In addition, the equilibrium rate of growth

can exceed the socially optimal rate, which means that faster growth is not necessarily

socially beneficial. Therefore, the overall welfare effect of tougher competition is

generally ambiguous.

An inverted-U shaped relationship.–
Nickell (1996) and Aghion et al. (2002) find evidence that the relationship between

competition and growth is inverted-U shaped. Although this evidence is hardly con-

clusive,18 it is tempting to speculate whether our model can generate an inverted-U

shaped relationship. While we have let the equilibrium price range from pC to pB = q,

it is possible to extend the analysis to the case p < pB. Of course, in this interval only

the technological leader would be active in the product market. The interpretation

18Aghion et al. (2002) recognize that the evidence is fragmentary, while Nickell (1996) calls the

evidence “thin.”
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of the case p < pB is that because of imperfect patent protection and technologi-

cal spillovers, competitive pressure exerted by the leader’s most efficient rival sets

a tighter constraint on the price that the leader can charge than in the standard

Bertrand equilibrium.19 When p < pB, both the productive efficiency effect and the

front loading of profits disappear, and so tougher competition unambiguously leads

to lower profits and growth. Remember, however, that when the equilibrium price p

is just above pB, tougher product market competition leads to faster growth. This

implies that growth is (locally) fastest with Bertrand competition, and in the vicin-

ity of the Bertrand equilibrium the relationship between competition and growth is

inverted U-shaped.

19It could be debated whether the existence of incomplete patent protection and technological

spillovers can be equated to a rise in competitive pressure. However, the two phenomena are difficult

to distinguish observationally, as they both translate into lower price-cost margins.
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APPENDIX

Omitted details in the proof of Lemma 1.–
To prove the first equality in (6), i.e.

dc̄

dp
X =

mX
i=0

(ci − c̄)
dxi
dp

note that

dc̄

dp
=

d

dp

mX
i=0

xi
X
ci

=

Pm
i=0 ciX

dxi
dp
−Pm

i=0 cixi
dX
dp

X2

=

Pm
i=0 ci

dxi
dp
− dX

dp

Pm
i=0 ci

xi
X

X

=

Pm
i=0 ci

dxi
dp
−Pm

i=0
dxi
dp
c̄

X

whence the result follows immediately. Next, note that

mX
i=0

(ci − c̄)
dxi
dp

=
mX
i=0

ci
dxi
dp
− c̄

dX

dp

From (4) we get
dxi
dp

=
xi
X

dX

dp
+X(p)

ci − ĉ

(p− ĉ)2
1

[m(p) + 1]

Substituting into the above expression we get

mX
i=0

ci
dxi
dp
− c̄

dX

dp
=

mX
i=0

ci
xi
X| {z }

=c̄

dX

dp
+

mX
i=0

X(p)ci
ci − ĉ

(p− ĉ)2
1

[m(p) + 1]
− c̄

dX

dp

=
X(p)

[m(p) + 1] (p− ĉ)2

mX
i=0

ci (ci − ĉ)

because the first and third term on the right hand side cancel out. But
Pm

i=0 ci (ci − ĉ)

is the variance of active firms’ marginal costs, σ2c , and so the second equality in (6)

is obtained. ¥
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Proof of Lemma 2.–
From (6) we have

d

dp
(p− c̄) = 1−

Pm(p)
i=0 (ci − ĉ)2

[m(p) + 1] (p− ĉ)2

=

Pm(p)
i=0

£
(p− ĉ)2 − (ci − ĉ)2

¤
[m(p) + 1] (p− ĉ)2

≥ 0

where the inequality follows because p ≥ cm(p). ¥

Proof of Proposition 1.–
When c1 = pM(c0) we have pB = pC = pM(c0) and xC1 = xB1 = 0; consequently,

ΠB = ΠC . Starting from c1 = pM(c0), let us consider the effect of a small decrease in

c1, such that xC1 becomes positive. Because Π
B(c1) = (c1 − c0)X(c1), we have

dΠB

dc1
= X(c1) + (c1 − c0)X

0(c1)

and so dΠB

dc1
= 0 at c1 = pM(c0). On the other hand, when c1 is just below pM(c0),

exactly two firms will be active in the Cournot equilibrium. Thus, ΠC(c1) = (p
C −

c0)x
C
0 + (p

C − c1)x
C
1 . Differentiating we get

dΠC

dc1
= XC dp

C

dc1
− xC1 + (p

C − c0)
dxC0
dc1

+ (pC − c1)
dxC1
dc1

At c1 = pM(c0), the second and fourth term vanish, and so

dΠC

dc1
|c1=pM (c0)= XC dp

C

dc1
+ (pC − c0)

dxC0
dc1

From the first order conditions (3) one obtains

dx0
dc1

= −p
0(X) + p00(X)x0
[p0(X)]2

dpC

dc1
.

At c1 = pM(c0) we have x0 = XC and thus

dΠC

dc1
|c1=pM (c0)= XC dp

C

dc1
− (pC − c0)

p0(XC) + p00(XC)XC

[p0(XC)]2
dpC

dc1
.
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But (pC − c0) = −p0(X)x0 and so the derivative reduces to
dΠC

dc1
|c1=pM (c0)=

2p0(XC) + p00(XC)XC

p0(XC)

dpC

dc1
.

The fraction 2p0(XC)+p00(XC)XC

p0(XC)
is positive given the assumption of decreasing marginal

revenue. Clearly, under our assumptions of constant marginal costs and decreasing

marginal revenue we have
dpC

dc1
> 0.20 It follows that

dΠC

dc1
|c1=pM (c0)> 0

This means that ΠC(c1) raises more steeply than ΠB(c1) in a left neighborhood of

pM(c0). By continuity, it follows that ΠB(c1) > ΠC(c1) in a left neighborhood of

pM(c0). ¥

Proof of Proposition 3.–
Let p and p0 denote two price levels, with p < p0. The move from p0 to p corresponds

to an increase in the intensity of competition. We must show that LΠ(p)(
h

s+1
) ≤

LΠ(p0)(
h

s+1
) for all h, with at least one strict inequality. Note that (3) implies

πi
πj
=

µ
p− ci
p− cj

¶2
i, j = 0, 1, ...,m

whenever firms i and j are active at equilibrium. Differentiating we get

d πi
πj

dp
= 2

(p− ci)

(p− cj)3
(ci − cj)

whence it immediately follows that

πi(p)

πj(p)
>

πi(p
0)

πj(p0)
for all i, j = 0, 1, ...,m with j > i. (A1)

20As is well known, under Cournot competition and constant asymmetric marginal costs, the price

is the same as if all firms shared the same cost ĉ. It is also well known that in a symmetric model

with decreasing marginal revenue, the Cournot equilibrium price increases with the marginal cost.

These two facts immediately imply that
dpC

dc1
> 0.
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Inequalities (A1) imply
π0(p)

Π(p)
>

π0(p
0)

Π(p0)

provided that there are at least two active firms at p0, whence it follows that

πs(p) + πs−1(p) + ...+ π1(p)

Π(p)
<

πs(p
0) + πs−1(p0) + ...+ π1(p

0)
Π(p0)

i.e., LΠ(p)(
s

s+1
) < LΠ(p0)(

s
s+1
).

Clearly, (A1) also implies LΠ(p)(
1

s+1
) ≤ LΠ(p0)(

1
s+1
). Now suppose to the contrary

that there exists i such that LΠ(p)(
i

s+1
) > LΠ(p0)(

i
s+1
). Let h be the minimum value

of i for which inequality LΠ(p)(
i

s+1
) > LΠ(p0)(

i
s+1
) holds, so that

πs(p) + πs−1(p) + ...+ πs−h(p)
Π(p)

>
πs(p

0) + πs−1(p0) + ...+ πs−h(p0)
Π(p0)

.

and

πs(p) + πs−1(p) + ...+ πs−h−1(p)
Π(p)

≤ πs(p
0) + πs−1(p0) + ...+ πs−h−1(p0)

Π(p0)
.

These inequalities imply
πs−h−1(p)

Π(p)
<

πs−h−1(p0)
Π(p0)

(A2)

and that there exists at least one j > s− h− 1 such that
πj(p)

Π(p)
>

πj(p
0)

Π(p0)
(A3)

Combining (A2) and (A3) we get

πs−h−1(p)
πj(p)

<
πs−h−1(p0)
πj(p0)

but this violates (A1). This contradiction establishes the result. ¥

Proof of Lemma 4.–
First of all, we show that H(z) is monotonically decreasing in z. Differentiating

H(z) we get:

H 0(z) =
d

dz

mX
i=0

zigi+1πi

(r + z)i+1
= −

m−1X
i=0

(i+ 1)zigi(πi − gπi+1)

(r + z)i+2
− (m+ 1)zmgm+1πm

(r + z)m+2
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A sufficient condition for H 0(z) to be negative is that πi ≥ gπi+1. We know from the

proof of Proposition 3 that the ratio πi(p)
πi+1(p)

decreases with p. Moreover, because

πi
πi+1

=

µ
p− qi

p− qi+1

¶2
(A4)

and qi is a convex function of i, we have

πi
πi+1

<
πi+1
πi+2

for all i and for all p. Consequently, it suffices to show that π0(p) ≥ gπ1(p) when

p equals the monopoly price 1
α
, which always exceeds the Cournot equilibrium price

pC. From (A4) we have
π0(

1
α
)

π1(
1
α
)
=

µ 1
α
− 1

1
α
− q

¶2
Therefore, we must prove thatµ

1− α

1− αq

¶2
≥ g = q

α
1−α

or

(1− α)2 ≥ q
α

1−α (1− αq)2

At q = 1, the weak inequality is satisfied as an equality. To conclude the proof, it

suffices to show that the derivative with respect to q of the right hand side of the

above inequality is negative. Differentiating we get

d

dq

h
q

α
1−α (1− αq)2

i
= − α

1− α
(1− αq) q

α
1−α−1 [(q − 1) + q(1− α)] < 0.

This completes the proof that H 0(z) > 0, which implies that the equilibrium, if it

exists, is unique. To show existence, note that H(0) = gπ0
r

> 1
λ
and limz→∞H(z) = 0.

Because H(z) is continuous, an equilibrium exists. ¥
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Figure 1 
Industry profits under Bertrand and Cournot competition as a function of c1  

when p =  1 – X and  c0 = 0 
 
 
 
 
 

c1 
O 

Π  

 0.5    0.28 

BΠ  

CΠ  



 
 
 
 

Figure 2 
The effect of an increase in the equilibrium price p on industry profits  

as a function of c1 and p when X =  1 – p and  c0 = 0 
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Figure 3 
Industry profits under Bertrand and Cournot competition as a function of the 

elasticity of demand α and the size of innovations q 
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