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Abstract: In this paper we introduce and implement new techniques
to investigate threshold effects in air pollution-mortality relationships. Our
key interest is in measuring the dose-response relationship above and below a
given threshold level where we allow for a large number of potential explana-
tory variables to trigger the threshold effect. This is in contrast to existing
approaches that usually focus on a single threshold trigger. We allow for a myr-
iad of threshold effects within a Bayesian statistical framework that accounts
for model uncertainty (i.e. uncertainty about which threshold trigger and ex-
planatory variables are appropriate). We apply these techniques in an empirical
exercise using daily data from Toronto for 1992-1997. We investigate the exis-
tence and nature of threshold effects in the relationship between mortality and
ozone (O3), total particulate matter (PM) and an index of other convention-
ally occurring air pollutants. In general, we find the effects of our considered
pollutants on mortality to be statistically indistinguishable from zero with no
evidence of thresholds. The one exception is ozone, for which results present
an ambiguous picture. Ozone has no significant effect on mortality when we
exclude threshold effects from the analysis. Allowing for thresholds we find a
positive and significant effect for this pollutant when the threshold trigger is
the average change in ozone two days ago. However, this significant effect is not
observed after controlling for PM.

Key Words: Threshold-air pollution mortality effects, Bayesian model
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1 Introduction

Early epidemiological studies on the health effects of air pollution were con-
cerned with measuring the link between daily deaths and the kind of severe
pollution episodes that occurred in London England in 1952, Donora Pennsyl-
vania in 1948, and the Meuse Valley Belgium in 1930. Using simple methods,
these studies established a link between cardiopulmonary mortality and extreme
levels of sulfur oxide and particulate matter. The alarmingly high number of
deaths attributed to these pollution episodes motivated subsequent public policy
efforts to regulate air pollution. As concentrations of pollutants in the air have
fallen, researchers have turned their attention to measuring mortality effects at
commonly encountered levels of exposure. The shape of the dose-response curve
has also become a key focus of research and policy concern.'

In the past decade, advances in statistical techniques and computing power
have enabled researchers to test these relationships more rigorously, particularly
in respect to temporal confounders. Generalized linear models (GLMs) and
generalized additive models (GAMs) using nonparametric smoothing techniques
are now widely applied in the analysis of pollution health effects. These methods
are more flexible than previous techniques in their treatment of long term trends,
seasonality and other explanatory variables. Moreover, in contrast to previous
models and plot based approaches, they also allow for direct measurement of
threshold effects.? Estimated dose-response curves in these new time series
studies have for the most part indicated the presence of a linear relationship
with no clear evidence of a threshold even at the lowest observed concentration

levels.

'Tn one of the first of such analyses of threshold effects, Ostro (1984), used regression
analysis to estimate linear spline exposure-response functions for London above the then reg-
ulatory limit of 50 pug/m3. Examining data for London winters between 1958/9 and 1971/72,
he found mortality effects at levels much lower than this level. Schwartz and Marcus (1990)
used various autoregressive models to estimate mortality effects in the same data set and
found a curvilinear relationship between mortality and particulate matter with steeper slopes
occurring at lower particulate levels than higher ones.

2Single-city studies include: Fairly (1990), Dockery et al. (1992), Pope et al. (1992),
Schwartz (1991, 1993, 1994), Schwartz & Dockery (1992a, b) and Xu et al. (2000). Multiple-
city approaches include: Schwartz & Zanobetti (2000), Daniels et al. (2000) and Schwartz et
al. (2001), Dominici et al. (2002).



In one of the most comprehensive of such studies, Dominici et al. (2002)
estimate relative rates of daily mortality for PM and the shape of the dose-
response curves for 88 of the largest U.S. cities. The authors estimate regional
PM mortality dose-response curves using a hierarchical spline model that allows
for the number and location of knots to vary from region to region while remain-
ing the same across cities. The resulting curve was essentially linear with some
regions indicating a slight departure from a linear model. Using data from 10
cities, Schwartz and Zanobetti (2000) use nonparametric smoothing functions
to model the dose-response curve for daily mortality and PM and then combine
results across all cities. Performing a number of simulations to confirm the abil-
ity of their approach to detect thresholds and other non-linear associations, the
authors find no threshold levels. Schwartz et al. (2001) extend this nonpara-
metric smoothing technique to allow for random variance components in order
to estimate the shape of the dose-response curve for black smoke for 8 Spanish
cities. The authors find that black smoke has a nearly linear relation with daily
deaths but no threshold. This finding holds at even low pollution levels, and
when other pollution and confounding factors are controlled for, and does not
appear to be due to harvesting [Schwartz (2000a, 2000b, 2003)]. Schwartz et
al. (2002) also fit log linear models using smoothing functions for PMs 5. These
nonparametric smoothing functions are estimated in a GAM that controls for
temporal differences between cities. Log relative risks for exposure and the
pointwise standard error for each city are then estimated for each exposure cat-
egory. Estimates are combined to produce a national curve by regressing them
against indicator variables at each exposure level in a model that also allows for
city differences. The authors find no evidence of a threshold in either the single
or combined dose-response relationship, with an essentially linear relationship
holding between this pollutant and mortality.

The above studies are distinguished by the use of nonparametric smoothing
approaches for estimation of the shape of the dose-response relationship. To

illustrate the basic idea of previous approaches, the model of Dominici et al



(2002) can be written (ignoring the hierarchical aspect) as:

log [E (y¢)] = f (PM; 1) + X{8,

where E (y;) is expected mortality at time ¢ and X; are other explanatory vari-
ables. The effect of air pollution on mortality is measured through the unknown
function f (.) which may have nonlinearities such as threshold effects. There are
many (related) ways of estimating f (.) without assuming a particular paramet-
ric form for this function. Dominici et al (2002) use spline methods but other
nonparametric smoothing methods are also used in this literature. The advan-
tage of such an approach is that the researcher can let the data decide whether
threshold effects (or any other nonlinearities) exist and at what level they occur.
The disadvantage is that only nonlinearities in the PM,;_;-mortality relation-
ship is allowed for. Put another way, this conventional approach is ideally
designed to pick up threshold effects of the form: ” PM;_; has no effect on mor-
tality when yesterday’s PM levels were low, but does have an effect if they were
high”. However, if the variable triggering the threshold effect is not PM;_q,
then the conventional approach will work poorly. For instance, the conventional
approach will have trouble identifying threshold effects of the form: " PM;_4
has no effect on mortality when yesterday’s ozone levels were low, but does have
an effect if they were high” or " PM;_; has no effect on mortality when PM
levels were steady over the past two days, but does have an effect if they have
been rising rapidly”. Even those papers which give a nonparametric treatment
to several explanatory variables (e.g. through a GAM), will not surmount this
basic problem.

In contrast to this dominant approach, we introduce new parametric tech-
niques to measure this relationship. We argue that our approach has benefits
that make it more attractive than existing nonparametric approaches. On a gen-
eral level, these advantages can be described as follows. Nonparametric methods

are useful at tracing out the relationship between a dependent variable and an



explanatory variable when the exact form of the relationship is unknown. How-
ever, they must make assumptions about the smoothness of the relationship
between air pollution and mortality. While they can accommodate any func-
tional form (including thresholds), this extra flexibility may result in imprecise
estimation. In contrast, parametric approaches have the advantage that they
can focus flexibility in the area of interest (e.g. thresholds). This character-
istic can potentially allow for more precise estimation. Second, nonparametric
methods are poor when estimation involves many explanatory variables, all of
which receive a nonparametric treatment (the so-called “curse of dimensional-
ity”). High dimensionality is especially a problem in analyses of air pollution
health effects, where many different pollutants, confounding factors and their
interactions may play a significant role. To a certain extent, studies can avoid
the problem by using GAMS, i.e. making the model additive. However, ad-
ditivity does not come without a cost. The functional form must be assumed
to be additive and hence interaction effects are not allowed for, an assumption
that may not apply to air pollution mortality relationships.

Third, and most importantly in respect to air pollution health effects, as
we have argued above, the question of which threshold triggers are involved
in mortality effects is of great importance. For example, are adverse health
effects triggered if the level of the pollutant is high on a single day? On two
or more successive days? Does it or they have an effect only when pollution
rises quickly? Is the average level of pollutant(s) the most important factor(s)?
Perhaps the threshold effect is only evident in various interactions; for example,
on hot days and when pollution rises rapidly? Ideally, a researcher will want
to include as many potential threshold triggers as physical and health concerns
may indicate, but most mortality-pollution studies look at only one such trigger:
the level of pollution on a single day (usually yesterday). Using our approach,
the researcher can incorporate a myriad of potential threshold triggers in order
to find out which if any is important.

In this paper, we develop a model that allows for a myriad of different thresh-



old triggers. For a given threshold trigger, we have a regression model with a
large number of potential explanatory variables (i.e. pollutants, meteorologi-
cal variables and their lags as well as a spline to control for long term trends
unrelated to air pollution). Different models are defined by different thresh-
old definitions and the inclusion of different explanatory variables and, thus,
our framework allows for a huge number of models. As argued below [see also
Clyde (2000) and Koop and Tole (2004)], with so many models it is important
to address the issue of model uncertainty through the use of Bayesian model
averaging (BMA). In our empirical work, involving a data set from Toronto,
Canada, we find that once we account for model uncertainty, the health effects
of air pollution tend to be small and imprecisely estimated. Thus, the conclu-
sion that air pollution has no effect on mortality (at least at the levels found in
our data set) cannot be ruled out, even when threshold effects are allowed for.
The only exception to this pattern is ozone, for which results are ambiguous.
When Oj is included with other pollutants as explanatory variables, we find
no significant health effects or thresholds. However, when it is the only pollu-
tant included as an explanatory variable, we find a significant mortality effect

if ozone levels have been increasing above a threshold amount.

2 The Model

We have daily time series data for periods t = 1,..,7. Let y; denote the depen-
dent variable (number of deaths) and we divide the explanatory variables into
three categories: i) xfj: the current day’s level of pollutant j for j = 1,.., kp,
ii) zyr: the current day’s value for j = 1,..,k; meteorological variables and
iii) 9: a row vector containing other explanatory variables (in our case these
come from the spline used to control for long term trends and other systematic
variations in mortality that may be unrelated to air pollution).

A standard model that does not allow for thresholds may be written as:



p p p
ye = a+ foﬂuﬁil ++ fofi,kp/@ikp + Zﬂfﬁm‘sil +.o (1)

i=0 =0 =0

P
+ E " g, Oik,, + 270 + &4,

where ¢; is i.i.d N (0, 02). The health effects of the j** pollutant are measured

by By = (ﬂoj, ..7ﬂpj)/. So, for instance, the measure we use, Y7, B.;, is the

jio
cumulative effect of the j** pollutant on mortality.?

If the explanatory variable triggering the threshold effects is known, then
simple extensions of (1) can be developed to investigate threshold behavior.
For instance, with a single pollutant, a (parametric) extension of (1) having

threshold effects similar in spirit to the (semi-parametric) approach of Dominici,

Daniels, Zeger and Samet (2002) will have:
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Yt =

Thus, the effect of pollution on mortality is eitherﬂgl) or 69) depending on
whether yesterday’s air pollution level, 27, is below or above a threshold level,
r. However, it is possible that yesterday’s pollution level is not the threshold
trigger. It may be that it is «f_, for ¢ # 1. Or it may be that steep rises in
air pollution may trigger health effects and thus Az} _, is the threshold trigger.
Likewise, cumulative build-up above some threshold may be key. In short, many
threshold triggers may exist.

In light of these considerations, we extend (2) to:

3Note that we assume Normal errors throughout. Other work with daily mortality counts
often uses Poisson regression methods, but their use would add greatly to the computational
burden (unless approximations were used). Our total mortality data has mean 46.9, standard
deviation 9.2, minimum 23, maximum 82 and a histogram that is roughly Normal. These
considerations suggest that the costs associated with working with Normal errors are small
(i.e. our dependent variable takes on many values and its discrete distribution can be very
well approximated by a continuous Normal distribution). These costs are likely to be much
greater than those associated with the use of approximate Poisson methods.
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Thus, the threshold effect is triggered by an explanatory variable, z;, with a
delay of d days.!

In the existing literature, semiparametric or spline-based approaches to smooth-
ing are common . These have the advantage that they can allow for a wide range
of nonlinearities in functional form. But they also have the disadvantage that
they focus on the nonlinear effects of a single explanatory variable. As discussed
previously, a spline approach to estimating the unknown function f (xf_l) will
work very well threshold effects exist and x}_; is the threshold trigger. However,
it will work poorly if an explanatory variable other than z} , is the threshold
trigger. Our parametric approach, which can accommodate many potential
threshold triggers, will work well in both cases. Of course, it may not work well
in the presence of other types of nonlinearities. But given the importance of
threshold effects to policymakers, a parametric model that focuses on threshold
issues in a very general and flexible way has advantages over alternative ap-
proaches (which are possibly flexible in many directions of little interest, but
may not be flexible enough in the threshold-effect direction).

In this paper, we allow for z; to depend on various possible transformations

of the pollutant. This yields the following threshold triggers:

1. zpqg=2af ,ford=0,.,q

2. zt_d:%ford—l

3. zp_q=Az} ,ford=0,..,q—1.

P, _nP
4. z_g =" ford=2,.,q

4In the previous equations, we have assumed the same number of lags for every explanatory
variable. This assumption can easily be relaxed. However, as we shall see in our discussion of
Bayesian model averaging, p is a maximum lag length and our estimation procedure considers
models with shorter lag lengths that may differ across explanatory variables.



The first of these threshold triggers allows levels of variables up to ¢ days ago
to be the threshold trigger, while the second allows for average levels over d days.
The third allows for changes in variables to trigger threshold effects, while the
fourth depends on average changes over the last d days. All of these threshold
triggers are plausible in the context of an air pollution-mortality study. The first
is the standard definition but the second is also plausible if only consistently
high pollution levels over several days trigger health effects. The third and
fourth definitions relate to growth rates in air pollution and, if rapid changes
in air pollution levels trigger mortality effects, these may be the reasonable
definitions. Note that the fourth definition is good at capturing a cumulative
buildup of air pollutants as a trigger in threshold effects.’

To avoid confusion, we remind the reader of our terminology. We refer to z;
as the “threshold trigger” that depends on the “delay” (d) and the “threshold”
(r). Note, too, that the model given by (3) can be extended in many directions.
It is trivial to extend our framework such that z; depends on any explanatory
variable for which the researcher has data, w;. In this paper, we set w; = ¥,
thus allowing for threshold effects triggered by the pollutant. However, w; = zy;
or wy = x?}zf for j =1, .., ky can easily be accommodated. Furthermore, z;_4
may be a vector of several possible triggers. Likewise, z;_4 can depend on un-
known parameters (e.g. an unknown weighted average of pollution levels over
several days). Or we could allow for several thresholds (e.g. equation 3 could be
augmented with a third equation and we could allow for air pollution to have
different mortality effects depending on whether z;_4 was high, medium or low).
In this paper, we do not consider such extensions as our model is already very
flexible and risks over-parameterization. Furthermore, our computer programs,
although simple to write, take a long time to run. Dealing with such extensions
risks turning a computationally demanding project into a computationally in-

feasible one.

5To avoid reundant or degenerate definitions we allow the delay parameter, d, to vary
across definitions.



3 Overview of Econometric Methods

In previous work, we argued for the use of Bayesian model averaging in the
context of air pollution studies [Koop and Tole (2004)]. In that paper, we re-
mained within the linear framework of (1). We argued that the need to include
many pollutants and meteorological variables (and their lags) as well as a spline
to control for trends in mortality unrelated to air pollution means that such
studies will naturally include a large number of potential explanatory variables.
With large numbers of potential explanatory variables, serious problems asso-
ciated with over-parameterization may occur [see the discussion and references
in Koop and Tole (2004)]. For our purposes, it is sufficient to note that it is
not sensible to include all potential explanatory variables (many of which may
end up having no explanatory power) in one large regression. Including irrele-
vant variables reduces the accuracy of any estimation procedure. This problem
has motivated the use of sequential hypothesis testing as a way of eliminating
apparently irrelevant explanatory variables. The problems associated with the
presentation of results from a single model selected on the basis of a sequence
of hypothesis tests have long been recognized in the statistical literature. In-
tuitively, each time a hypothesis test is carried out, a possibility exists that a
mistake has been made (i.e. the researcher will reject the better model for a
not so good one). This possibility multiplies sequentially with each hypothesis
test. Second, even if a sequential hypothesis testing procedure does lead to the
selection of the best model, decision theoretical arguments imply that it is rarely
desirable to present results for this model while ignoring all evidence from the
not quite so good model(s).

Bayesian model averaging is a common way of surmounting problems as-
sociated with selection of a single model. Koop and Tole (2004) and others
[e.g. Clyde (2000)] discuss the benefits of Bayesian model averaging (both the-
oretically and for empirical practice) in air pollution-mortality studies. Results

are based on a weighted average of results from many models. The weights in

10



the average are based on the probability that each model is the correct one.
The basic idea behind Bayesian model averaging can be summarized as follows:
Suppose a researcher is entertaining R possible models, denoted by M7y, ..., Mg,
in order to learn about a parameter of interest, 6 (e.g. the effect of a pollutant
on health). Since it is not known which model is correct, models are treated
as random variables. The posterior model probability, p (M,.|Data) summarizes
what we know about the models after seeing the data. The rules of conditional

expectation imply that:

R
E (0|Data) = Y _p(M,|Data) E (6| Data, M,) .

r=1

In words, the overall point estimate of 6 is the weighted average of the point
estimates in every model. The weights in the weighted average are the poste-
rior model probabilities,’ p (M,|Data) for r = 1,.., R." The reader interested
in more justification for and discussion of Bayesian model averaging is referred
to: Draper (1995), Fernandez, Ley, and Steel (2001a, b), Hodges (1987), Hoet-
ing, Madigan, Raftery and Volinsky (1999) and Raftery, Madigan, and Hoeting
(1997).

In general, if we have K potential explanatory variables and wish to consider
all models defined by inclusion/exclusion of every potential explanatory variable
then we must deal with 2% models. Even in the standard Normal regression
model (without thresholds), if K is at all large (e.g. K > 20) it is computa-
tionally difficult and even impossible to obtain results for every possible model.
This motivates our use of a computationally more efficient algorithm referred
to as Markov Chain Monte Carlo Model Composition (or MC?) originally de-

veloped by Madigan and York (1995). More detail is provided in the Technical

6For the non-Bayesian, the posterior model probability is proportional to the marginal
likelihood. The log of the marginal likelihood is, asymptotically, closely related to common
information criteria (e.g. the Schwarz or Hannan-Quinn criteria). Hence crude intuition
implies that Bayesian model selection is comparable to model choice using an information
criterion and Bayesian model averaging is comparable to averaging across models using weights
proportional to (the exponential of) the information criterion.

"This equation can be extended to any function of the parameters, f (). For instance,
setting f (0) = 62 will allow for the calculation of E (02|Dam)7 which is needed to calculate
the posterior standard deviation.

11



Appendix. However, we note that even with this algorithm, the computational
demands of our approach are very high and limit the number of possible thresh-
old definitions we can consider.

Problems arising from a large number of potential explanatory variables are
exacerbated by the need to control for long term trends and other systematic
variations in mortality that may be unrelated to air pollution. Splines are
typically used to correct for such effects. Recent statistical work on the use of
splines in air pollution-mortality studies [e.g. Clyde (2000)] makes three main
conclusions: i) including a spline is potentially important; ii) the precise choice
of class of spline (e.g. cubic, thin plate, etc.) is relatively unimportant; iii)
the precise choice of time scale (i.e. the number of knots) is potentially very
important. In respect to the latter, if we include too few knots, we do not fully
correct for the unknown trend terms (e.g. the increase in mortality caused by
flu epidemics could be attributed to air pollution). However, if we include too
many knots, then important health effects may be removed (i.e. the spline will
be so flexible as to explain all the variation in mortality, leaving nothing left
for air pollution to explain). Thus, we follow a commonly-used strategy [see,
e.g., Clyde (2000) or Smith and Kohn (1996)]. We choose a particular class of
spline, put in numerous knots, and then use Bayesian model averaging to deal
with the excessive number of explanatory variables.

In this paper, we use a thin plate spline with a knot placed every 60 days.
If we let n; denote the knot at time j and N the number of knots, then the

unknown trend is given by:

N
f(t)=ao+zajbj (t),

where

bj (t) = (t —n;)*log (|t —ny1).

From a statistical point of view, the key point to note is that b; (t) can be

12



interpreted as an explanatory variable. In terms of (3), the explanatory variables
implied by the spline are included in z7.

For a given threshold variable, (3) contains 2 X (ky, +kp)(p+1) + N +1
potential explanatory variables.® In our empirical work, we have k,, = 4, p = 3,
N =36 and k, = 1 or 2. Thus, we have either 77 or 85 potential explanatory
variables. However, we also have a large number of possible threshold triggers.
We choose a maximum delay parameter of ¢ = p and, thus, have eight possible
choices for z;_4. We consider three possible thresholds corresponding to un-
usually low, average and unusually high levels of the threshold trigger (i.e. we
set 7 = —1,0,1 standard deviations of z;_4). Thus, we use 36 (for the single
pollutant) or 72 (for the case with two pollutants) models of the form of (3).
Our empirical work involves a huge BMA exercise averaging over all potential
explanatory variables for all threshold trigger/threshold choices.

The statistical methods used to carry out Bayesian inference (including
Bayesian model averaging) are described in the Technical Appendix. Here we
include only a brief summary. Let ¢ be a 4-vector to denote which of the four
types of threshold definition is used such that ¢, = 1 if the §*" definition is
used (¢; = 0 otherwise) and let w = (¢/,r, d)/. Conditional upon a choice
for w, (3) can be written as one big Normal linear regression model (i.e. all
explanatory variables, including the thresholds, are known and the two equa-
tions are written as one using appropriately defined dummy variables). Let
K denote the number of potential explanatory variables in this big model and
v = (v1,-7x) be a vector of 0-1 random variables denoting which of the po-
tential explanatory variables is contained in a particular model. So, for instance,
v =(1,..,1)" is the big model containing all the potential explanatory variables,
v=(1,.,1, 0) contains all explanatory variables with the exception of the last
one, etc.. As described above, there are 2% possible configurations of y. Finally,
let ¥ = (a’, 8,8 N, 02)/ denote all the other parameters of the model.

We treat w,y and % as unknown parameters and develop a posterior sim-

8 An intercept is included in all models and thus is not included in the calculation of this
total.
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ulation algorithm that allows for Bayesian inference. This algorithm draws
from p (y|Data,w) for a particular configuration of w. Standard methods for
Bayesian model averaging [Koop and Tole (2004)] can be adapted to draw
from p (y|Data,w). At each draw, appropriate functions of p (1|Data,w, ")
are evaluated (e.g. FE (¢|Data,w,v)). Assuming a natural conjugate prior,
p (¢|Data,w, ) has the Normal-Gamma form. These draws are then averaged
to provide F (v|Data,w) and other relevant functions of ¢. Standard textbook
results (based on the marginal likelihood for the Normal linear regression model
with natural conjugate prior) provide a formulae for p (w|Data, ) [e.g. Koop
(2003)]. Thus, p (w|Data,~) can be evaluated at every draw for 7. Averaging
over all draws provides an estimate that is proportional to p (w|Data) .

In this way, BMA results can be obtained for a given choice of w and
p (w|Data) can be evaluated for that choice. By repeating the steps outlined in
the previous paragraph for every possible configuration of w we obtain BMA re-
sults that average over all possible explanatory variable choices for all threshold
definitions.

Although we advocate the use of Bayesian model averaging, it is worthwhile
noting that the posterior simulator can also be used in Bayesian model selection.
This can be done by finding the 7, w combination or the configuration of w with

the highest probability.
4 Empirical Results

This section presents empirical results from daily time series data for Metropol-
itan Toronto for the years 1992-1997. The complete data set is described in the
Data Appendix. Our explanatory variables include those from the spline de-
scribed in the previous section, four meteorological variables (i.e. " in equation
3 contains measures of barometric pressure, temperature, relative humidity and
cloud) and pollutants. Given the serious computational demands of Bayesian
model averaging in such a framework, we limit the number of pollutants to one

or two. When working with two pollutants, we use O3 and PM as having the
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greatest potential importance based on recent studies and policy concern. When
working with one pollutant, one approach we adopt is to calculate a Pollution
Index. To do this, we take our data on SOz, NO, NOy, CO, O3 and PM and
use principal component methods to extract the first factor.” We also present
results using O3 and PM individually.

The class of models is defined by (3) with definitions of the variables that
might potentially trigger threshold effects given in Section 2. We choose a
maximum lag length of three days (i.e. p = 3), which is enough to capture
any short term effects (and is at least as large as used in other studies in the
literature). For this reason, we set the maximum delay in the threshold effect
to be three days as well (i.e. ¢ = 3). For the thresholds themselves, we use
three possible values corresponding to threshold changes occurring at unusually
low, average, and unusually high levels of the threshold trigger. In terms of (3),
this means that we normalize all threshold triggers (i.e. z;) by subtracting off
their means and dividing by standard deviations and then consider » = —1,0, 1.
Working with two pollutants, implies 72 different potential threshold triggers
whereas one pollutant implies 36.

The decision about which empirical results to present also depends on an
interpretational issue. Recall that the key features of interest in this study are
measures of the effect of pollution on mortality above and below a threshold level
for a certain variable we have called the threshold trigger. In our study, both
the threshold level and the threshold trigger vary across models and, thus, the
concepts implied by the phrase “the effects of the pollutant above and below
the threshold” differ across models. Put another way, one model will produce
“the effect of O3 on mortality, if O3 levels yesterday were above average” while
another model will produce “the effect of O3 on mortality, if the average levels of
O3 over the past three days were unusually high”. These are conceptually quite
different and it does not make sense to simply average over both of them when

presenting evidence relating to the effect of pollution in a high threshold regime.

9The first factor accounts for 85.3% of the total variability in the pollutants.

15



Hence it also does not make sense to carry out Bayesian model averaging over
the thresholds.

In light of these issues (and to present as wide a view of the data as possible),
we present two sorts of empirical results. First, we present traditional Bayesian
model selection results based on the one single model with maximum posterior
model probability (i.e. one single threshold definition and one single choice of
explanatory variables). In terms of the notation of Section 3, we find the values
for v and w that yield the highest posterior model probability. Secondly, we
present results that combine aspects of Bayesian model averaging and Bayesian
model selection. In particular, we choose the single threshold definition that
has the highest posterior probability and carry out BMA using this definition
(and all potential explanatory variables). Thus, we find the value for w that
yields the highest posterior model probability, but carry out BMA over 7. We
also present the probability that the particular threshold chosen is the correct
one (so that the reader may, if desired, weight our results by this probability in
an informal Bayesian model averaging exercise). For comparative purposes, we
also present results for models which do not include any thresholds at all.

In our empirical results, we refer to the effect of a pollutant on mortality.
We remind the reader that this effect is the cumulative effect (i.e. in terms
of equation 3, >0, ,62) and Y0, Bﬁ) are the effects below and above the

threshold). Since our explanatory variables are all normalized, a point estimate

of, say, 0.5 can be interpreted as saying: ”the cumulative effect of a one standard
deviation increase in the pollutant, maintained for p days, is an extra 0.5 of a

death” .10

10Many researchers present mortality effects of air pollution in terms of a 10 unit change
(e.g. 10 pg m~3 for the case of particulate matter). We prefer to express our results as effects
of one standard deviation changes since standard deviations have the same interpretation
for all pollutants. For readers interested in translating our results: One standard deviation
implies 9.15 ppb for Oz and 12.12 pg per m3 for PM.
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Table 1: Estimate of Effect of Pollutant on Mortality with Two Pollutants: O3 and PM
Estimate is Posterior Mean (Posterior standard deviation in parentheses)

Prob. Selected

Pollutant | Effect if z;_q < r | Effect if z,_4 > r | Choice for z;_4 | Choice for r Model is Correct
Bayesian Model Selection for No-threshold case, choosing v (No BMA)
0.516 0.516
O3 (0.175) (0.175) n.a. n.a. 0.002
0.000 0.000
PM (0.000) (0.000) n.a. n.a. 0.002
BMA for No-threshold case
0 0.276 0.276 na na na
3 (0.300) (0.300) ' ' '
0.203 0.203
PM (0.260) (0.260) n.a. n.a. n.a
Bayesian Model selection, choosing v and w (No BMA)
0.000 0.000 PM
Os (0.000) (0.000) d=2 r=-1 0.001
0.000 0.000 PM
PM (0.000) (0.000) d=2 r=-1 0-001
Mixed Bayesian Model Selection (choosing w) and BMA (for
0.241 0.291 PM
Os (0.309) (0.305) d=2 r=-1 0.326
0.051 0.100 PM
PM (0.157) (0.235) d=2 r=-1 0-326
Table 2: Estimate of Effect of Pollutant on Mortality with Single Pollution Index
Estimate is Posterior Mean (Posterior standard deviation in parentheses)
. . . . Prob. Selected
Pollutant | Effect if z;,_4 < r | Effect if z,_q > r | Choice for z;,_4 | Choice for r Model is Correct
Bayesian Model Selection for No-threshold case, choosing v (No BMA)
0.000 0.000
Index (0.000) (0.000) n.a. n.a. 0.003
BMA for No-threshold case
Index 0.277 0.277 n.a n.a n.a
(0.285) (0.285) ’ ' '
Bayesian Model selection, choosing v and w (No BMA)
0.000 0.000 Index - _5
Index (0.000) (0.000) d=0 r=-—1 9.9x10
Mixed Bayesian Model Selection (choosing w) and BMA (for
0.204 0.228 Alndex
Index (0.263) (0.308) d=0 r=1 0.094
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Table 3: Estimate of Effect of Particulate Matter on Mortality
Estimate is Posterior Mean (Posterior standard deviation in parentheses)
. . . . Prob. Selected
Pollutant | Effect if z;_q < r | Effect if z,_4 > r | Choice for z;_4 | Choice for r Model is Correct
Bayesian Model Selection for No-threshold case, choosing v (No BMA)
0.000 0.000
PM (0.000) (0.000) n.a. n.a. 0.003
BMA for No-threshold case
0.238 0.238
PM (0.267) (0.267) n.a n.a n.a
Bayesian Model selection, choosing v and w (No BMA)
0.000 0.000 PM
PM (0.000) (0.000) d=2 r=-1 0-002
Mixed Bayesian Model Selection (choosing w) and BMA (for
0.067 0.274 PM
PM (0.191) (0.270) d=2 r=-1 0.573
Table 4: Estimate of Effect of Ozone on Mortality
Estimate is Posterior Mean (Posterior standard deviation in parentheses)
. . . . Prob. Selected
Pollutant | Effect if z;_q < r | Effect if z,_4 > r | Choice for z,_4 | Choice for r Model is Correct
Bayesian Model Selection for No-threshold case, choosing v (No BMA)
0.516 0.516
O3 (0.175) (0.175) n.a. n.a. 0.004
BMA for No-threshold case
0 0.317 0.317 na na na
3 (0.308) (0.308) ' < '
Bayesian Model selection, choosing v and w (No BMA)
0.000 0.900 AOs3 _
Os (0.000) (0.242) d=2 r=0 0-007
Mixed Bayesian Model Selection (choosing w) and BMA (for v
0.162 0.780 AO3 -
O3 (0.283) (0.362) d=2 r=0 0-406

In our previous work with linear models, Koop and Tole (2004), we found

that point estimates (i.e. posterior means) of the mortality effects of air pol-

lution were consistently positive (indicating pollution was bad for health), but

that they were all small relative to their posterior standard deviations (i.e. the

Bayesian analysis to the standard error).!! In fact, we found that a mortality

effect of air pollution of zero was always plausible. The overall message of Ta-

bles 1 through 4 is similar (with one important exception). In addition, there

HFor the non-Bayesian reader, note that the posterior standard deviation is analogous to
the standard error. We adopt the commonly used rule-of-thumb that a posterior mean that
is two standard deviations from zero is “significant”.
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is little evidence of threshold effects in the air pollution-mortality relationship
(with one important exception). We expand on these points in the remainder
of this section.

Table 1 contains results using two pollutants, O3 and PM. It is very inter-
esting to note, if we do not allow for thresholds and do not carry out BMA,
that O3 appears to have a substantive (and significant) effect on mortality (i.e.
the posterior mean of the effect is 0.516, which is almost three times as large as
its standard deviation). However, when we carry out BMA and, thus, allow for
a proper treatment of model uncertainty, the point effect becomes smaller and
is not significant. That is, the point estimate is 0.276, which is less than one
posterior standard deviation from zero. This strengthens the case, emphasized
in our previous work, that model selection procedures that ignore model un-
certainty can lead to seriously misleading results. Furthermore, even when we
carry out Bayesian model selection, allowing for threshold effects removes the
apparent importance of O3 for mortality. In fact, the point estimate of 0.000
implies that the single most probable model does not even include O3 as an
explanatory variable.

In Table 1, PM has no appreciable effect on mortality irrespective of whether
Bayesian model averaging is performed and whether thresholds are included.

Tables 2 and 3 include results from single pollutant cases, using our Pollution
Index (constructed using six individual pollutants) and PM, respectively. They
reveal a familiar pattern: point estimates of the health effects of air pollution
are positive or zero, but are all small relative to posterior standard deviations
that take into account model uncertainty. This statement holds irrespective of
whether thresholds are included.

Tables 2 and 3 thus indicate that no strong threshold effects of any sort
exist in the pollution-mortality relationships we examine. Nevertheless, it is
interesting to see which threshold definitions are favored by the data and, in
particular, how the preferred choices vary both across pollutants and statisti-

cal methodology. For instance, in Table 1, when we select a single threshold
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and then carry out BMA over all potential explanatory variables, our preferred
threshold trigger is the level of PM two days ago and we obtain r = —1 (i.e. it is
at unusually low levels of PM that the threshold occurs). The comparable BMA
results in Table 2 imply that the preferred threshold trigger is the growth rate
of pollution over the current day and r =1 (i.e. it is at unusually high rates of
pollution growth that the threshold occurs). However, if we carry out Bayesian
model selection, Table 2 implies it is unusually low levels of pollution today
that trigger the threshold. In short, there is an enormous degree of uncertainty
over which is the appropriate threshold trigger. This is reflected in the the last
columns of the tables. For instance, Tables 1 and 2 indicate that there is only
a 38.3% and 9.4% chance, respectively, that the chosen threshold is the correct
one. Thus, by choosing a single threshold choice, we ignore other choices with
a 62.7% and 90.6% probability of being correct.

Table 4 contains the one exception to these findings: ozone. The model for
this pollutant without thresholds reveals the same patterns as in Table 1. That
is, if we simply select the most probable model, we find O3 to have a positive and
significant (i.e. more than two posterior standard deviations from zero) effect
on mortality. Yet, when we perform BMA in this no-threshold case, the effect
vanishes. However, when we allow for thresholds the effect of O3 on mortality is
positive and significant. This table implies a clear pattern: Below a threshold,
O3 has no effect on mortality, but above the threshold O3 has a positive effect.
The positive effect kicks in if above average changes in ozone two days ago (a
different threshold trigger than in other studies) occur. However, it is worth
stressing that this significant effect occurs with a threshold trigger which is only
40.6% likely to be the appropriate definition.

The results in Table 1 and Table 4 are apparently in contradiction with one
another. Table 1 indicates that there are no significant mortality effects of ozone,
whereas Table 4 indicates a positive and significant effect above a threshold.
The reason for this apparent contradiction is that, in our mixed Bayesian model

selection and BMA approach we first choose a threshold definition and then
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present BMA results for that definition. This definition differs between Tables
1 and 4. In Table 1, the level of PM two days ago is the threshold trigger; in
Table 4 it is the growth rate of ozone two days ago. It is interesting to note that,
in Table 1, the most probable threshold definition receives 32.6% probability.
The second most probable threshold definition (with 23.5% of the probability)
is the same as that in Table 4. If we perform BMA using both pollutants and
this second most probable threshold definition, the point estimate of the effect
of O3 on health in the above threshold regime is positive and almost significant
(i.e. posterior mean 0.711, standard deviation 0.389). Hence, if we had gone
with this second most probable threshold choice, results in Table 1 and Table 4
would have been quite similar.!?

These results may indicate some more complicated role for PM and ozone,
perhaps due to complex interactions between ozone and PM arising from gas to
particle conversion processes [Meng et al. (1997)]. Alternatively, it may simply
be due to the model containing only ozone suffering from the omitted variables
bias. Another possibility may be multicollinearity; that is, a strong correlation
between PM and ozone that makes it impossible to disentangle the individual
effects of each. However, the correlation between the two is only .21, which
indicates multicollinearity is not a problem.

What overall conclusion should the reader take from these empirical results?
First, with the exception of ozone, for no pollutant do we find a threshold effect.
We have argued that model uncertainty is an important issue in any air pollution
modelling strategy. Hence our use of a Bayesian model averaging approach that
presents measures of uncertainty (e.g. posterior standard deviations) reflecting
our ignorance about which model is the true one. When we perform BMA we are
unable to find point estimates that are “significant” in a conventional sense. The
second most important message concerns the pollutant ozone, for which results

are ambiguous. Ozone appears to be quite sensitive to the type of pollutants

12Note that our modeling strategy also allows for threshold effects in the impacts of meteo-
rological variables. For the sake of brevity, we do not focus on these impacts here. However,
it is worthwhile noting that they do explain why some threshold definitions are preferred by
the data even if they imply no threshold effects in the impacts of the pollutants on mortality.
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included in the analysis. If we include both ozone and particulate matter as
explanatory variables (and, thus, measure the effect of ozone after controlling
for PM) we find no significant threshold effects (unless we work with threshold
definitions that are not preferred by the data). If we include only ozone as an
explanatory variable (and, thus, measure the effect of ozone without controlling
for PM) we do find significant threshold effects. Which result is more compelling
will partly depend on which set of controls the reader is interested in. A third
message concerning ozone is that threshold effects, when found to exist, seem
to be triggered by unconventional variables. It is common for researchers [e.g.
Dominici, Daniels, Zeger and Samet (2002)] to investigate the use of yesterday’s
pollution level as a threshold trigger. In no case have we found this to be the
most plausible threshold trigger. This suggests that our modelling strategy,
which allows for a myriad of possible threshold triggers, is a useful alternative
to nonparametric approaches that depend on a single threshold trigger.
Finally, as with any air pollution-mortality study using daily time series
data, it is important to stress that our findings do not necessarily imply that
air pollution does not have adverse health effects. Rather, our results indicate
that there is no reliable statistical evidence for a link between air pollution and
mortality in the particular daily time series data set that we consider. It is
possible that health effects short of mortality (e.g. asthma attacks) are caused
by air pollution. Furthermore, studies involving daily time series data will be
unable to pick up any long term health effects of air pollution. Nevertheless,
given that studies with daily time series data are widely used to set air pollution
standards in the U.S. and elsewhere in the world, we argue that it is important
that researchers use appropriate statistical methods to estimate air pollution

impacts. We hope that our modeling strategy is a step in this direction.
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6 Data Appendix

In this study, we use daily data on mortality, pollutants and meteorological
variables from 1992-1997. Each variable is discussed below. The chosen time
span was dictated by the fact that mortality data was only available through
1997 and regular collection of data on some of the key pollutants only began in
1992.

Mortality Data

The mortality data was provided by the Toronto Department of Public
Health and covers all deaths in the Metro Toronto area (i.e. the municipal-
ities of Toronto, Etobicoke, York, North York, East York and Scarborough).
The data contain total daily deaths and deaths by various disease categories.

Of these, we use the variables: total deaths, deaths due to diseases of the circu-
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latory system and deaths due to diseases of the respiratory system. For reasons
of confidentiality, if the number of deaths in any disease category is between 1
and 4 the precise value is not reported. In our data, this suppression of infor-
mation only occurs with deaths due to diseases of the respiratory system and
helps motivate our focus on total mortality. When we ran our programs using
respiratory deaths, we coded all suppressed values as the average of 1 and 4 (i.e.
2.5). We do not report these results here since they were similar to those found
using total mortality.

Weather Data

Hourly data on the following climate variables was provided by Ontario Cli-
mate Centre at Environment Canada from their Pearson International Airport

monitoring station:
e Pressure (0.01 kilopascals).
e Temperature (0.1 degrees C).
e Relative humidity (%).
e Total cloud amount (tenths).
e Precipitation (0.1 mm). Note: this variable is a daily total.
o Visibility (0.1 km).

e Wind direction (10s of degrees). Note: this variable is transformed into a

1-8 scale in the standard way [see Delfino et al. (1995), page 22).

Wind speed (km per hour).

The first four of these are used directly in our regressions, the last four are
used only in the regression to fill in missing values for particulate matter (see
below). There are very few missing values in the hourly data. Absent values are
replaced by an average of values for the hours before and after the missing value.
To create daily data from this hourly data, we take a daily mean. Empirical

results using daily maxima are very similar.
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Pollution Data
Hourly data on the following air pollution variables was provided by the Air

Monitoring Section of the Ontario Ministry of Environment:

° SOQ (ppb)

NO (ppb).

NO: (ppb).

NOX (ppb).
e COH = coefficient of haze (0.1 COH/1,000 ft.)

e CO (ppm).

O3 (ppb).

We average data from the six monitors that have nearly complete data for
1992-1997. These monitors are widely dispersed across various street loca-
tions in Metro Toronto: In downtown Toronto (Bay/Grosvenor), Scarborough
(Lawrence/Kennedy), North York (Yonge/Finch), Etobicoke (Elmcrest), Etobi-
coke (Evans/Arnold) and York (Clearview/Keele). Missing values are handled
in the same manner as the weather variables. There are relatively few missing
values. The worst monitor had 2% of its hourly observations missing. To create
daily data from this hourly data, we simply take a daily mean. Empirical results
using daily maxima are very similar.

Daily averages for airborne particulate matter were provided by the Analy-
sis and Air Quality Division of Environment Canada. Fine particulate matter
(PMy 5) is defined as having a size less than 2.5 micrograms. Coarse particulate
matter (PMjg_2.5) is defined as being between 2.5 and 10 micrograms in diam-
eter. Total particulate matter, PM, is the sum of fine and coarse particulate
matter. For the years 1992-1994 the only available monitor was at Bay /Wellesley

streets. For 1996-1997 the only available monitor was at Evans/Arnold streets.
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For 1995, data from both monitors were available. This overlap year was used
to correct for the small difference in means between the two monitors.

Missing values are a serious problem in most studies that include particulate
matter. For example, the standard approach in the U.S. is to sample every sixth
day. Our data set is of better quality, providing roughly one observation every
three days. Nevertheless, 66.29% of our raw daily observations are missing. In
order to provide estimates of the missing observations, we follow a procedure
similar to that described in Delfino et al. (1994). In particular, we use the non-
missing particulate matter values to run a regression using relevant explanatory
variables. We then use the values of the explanatory variables on the miss-
ing days and the estimated regression coefficients to predict particulate matter
values for days for which data are missing. Following Delfino et al. (1994),
we use daily means and maximums of all the pollution and weather variables
listed above as explanatory variables. Delfino et al. (1994) suggests a particular
nonlinear transformation of some of the key variables, but we find that simply
adding squares of all explanatory variables provides a better fit. For PMs 5
the resulting regression has an R? of 0.72 while for PM;g_s.5 the R? is 0.50.
Note that the resulting fitted values for the particulate matter data contain in-
formation from other pollutants and weather variables. However, most of the
explanatory power comes from variables that are not included in the mortality
regressions. In particular, visibility, wind direction and the coefficient of haze
provide most of the explanatory power in the regressions in which particulate

matter variables are the dependent variables.

7 Technical Appendix

Our posterior simulator involves sequentially drawing from p (y|Data,w) , p (w|Data, )
and p (¢|Data,w,~y) where these parameter vectors are described in the body
of the paper.

We have data for ¢t = 1,..,7 days'®> and denote data on the dependent

13When p lags are included in the model, we proceed conditionally upon p initial observations
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variable (mortality) by ¥ = (y1,..,y7) . All the potential explanatory variables
including lags and including the threshold variables (see equation 3) are stacked
in a T x K matrix X (w). We stress that the notation X (w) implies that the ex-
planatory variables depend on the threshold triggers. Models are defined, using
7, as containing different subsets of all the explanatory variables in X (w). For
a given choice of w we have r = 1, .., R models, denoted by M,. or, equivalently,

by (). The explanatory variables in M, are denoted by X (w),.. Thus we have

y=ar+ X, (w)B, +e (A1)

where v is a T' x 1 vector of ones , X, (w) is a T' X k, matrix containing some
(or all) columns of X. The T'—vector of errors, ¢, is assumed to be N (OT, 02IT)
where Or is a T'—vector of zeros and I is the T' x T identity matrix. Note that
we are assuming all models contain an intercept.

We use a Normal-Gamma natural conjugate prior with hyperparameters
chosen in the objective fashion described in Fernandez, Ley and Steel (2001b).

To be precise, for the error variance we use the standard noninformative prior:

p(0) o L (A.2)

g

We standardize all the explanatory variables by subtracting off their means and
dividing by their standard deviations. Once this is done, it makes sense to use

a flat prior for the intercept:

p(a) o 1. (A.3)

For the slope coefficients we assume a g-prior of the form:

B, ~N (okr, 0? [g. X, (w)' X ()] ‘1) . (A.4)

and hence y; will actually be the pt* day of January, 1992.

29



It remains only to specify g,. Fernandez, Ley and Steel (2001b) investigate the
properties for many possible choices for g, including values that lead to poste-
rior model probabilities with properties similar to commonly-used information
criteria (e.g. the Schwarz or Hannan-Quinn criteria). Their recommendation is

to choose:

A if T < K2
Ir = { Sier s xe
Our empirical application uses this choice for g,, although other considered
choices lead to qualitatively similar results.

The resulting posterior for 1) (i.e. the regression coefficients and error pre-
cision) conditional upon w follows a multivariate t-distribution with mean, co-
variance and degrees of freedom parameters being of standard textbook form
[see, e.g., Poirier (1995) or Koop and Tole (2004)].

The posterior model probability for model  in the Bayesian model averaging

is:

p(M;|Data,w) = p (W(T)IDatavw> (A.5)
Ey 1 ’ 7%
c( . ) 2 mﬁ/ P)nyJr _ )
gr+1 2 (v —ger) (y — Ger)

where

-1

Px, =Ir — X, () [X, (W) X, ()]~ X, (w)".

and c is a constant that is the same for all models. The fact that Zle p (M,|Data,w) =
1 can be used to evaluate ¢ (if required).

To draw 7(") from (A.5), we adopt the MC? described in Madigan and York
(1995). This Metropolis algorithm is very simple to implement. In particular,
if the current model in the chain is 4(*) then a candidate model, v(), that

is randomly (with equal probability) selected from the set of models including
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+) and which change v(*) by either switching a 1 to a 0 or a 0 to a 1 (i.e.
the algorithm either randomly adds or subtracts one column from X, (w)), is

drawn. vU) is accepted with probability:

(4)
min 1, 207 Data) | (A.6)
P (7(5) \Data)

If ) is not accepted then the chain stays with v(*). It can be shown that the
relative frequency that each model is drawn will converge to its posterior model
probability.

Posterior results based on the sequence of models generated from the MC?
algorithm can be calculated by averaging over draws of «. That is, if S draws of
~ are taken (after discarding initial burn-in draws), then for any function g (.),

E[g (¢) |Data,w] can be approximated by gs where

S
~ 1 s
s =3 Z E [g (¥) | Data,~" ),w} . (A7)
s=Sp+1

BMA results (e.g. posterior moments of the cumulative effect of the pollu-
tant) can be obtained by running this MC? algorithm for all possible configura-
tion of w and then taking a weighted average with weights given by p (w|Data).
To evaluate p (w|Data) we note that all elements of w are discrete random vari-
ables which take on a finite number of values. We allow for r to take on three
possible values: —1,0, 1. Since z;_4 is standardized by subtracting off its mean
and dividing by its standard deviation, these values for r have a simple interpre-
tation common to all threshold triggers. Assuming a noninformative Uniform
prior for each element of w, p (w|Data,y) is proportional to the marginal like-
lihood for the Normal linear regression model defined by w and . Hence, by
evaluating the marginal likelihood for every configuration of w (at each value
for ) we can average (in a manner analogous to A.7) to estimate p (w|Data).

To monitor convergence of the chain we calculate the probability of the ten

most probable models drawn in two different ways. First, we calculate them
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analytically using (A.5). Then we approximate this probability using output
from the MC? algorithm. When these probabilities to three decimal places are
the same, we deem convergence to have taken place. The number of draws
required for the various models considered were typically around 1,000,000 per

threshold definition.
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