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1 Introduction

Much work in empirical macroeconomics over the last few decades has involved the use

of Vector Autoregressive (VAR) models (see, e.g., Sims, 1972 or 1980). VARs have many

advantages in that they are simple to work with and their properties are well-understood.

However, they have one major disadvantage: they are linear. A plethora of work involving

univariate time series models has provided statistical evidence for nonlinearity in many

economic time series (see, among many others, Beaudry and Koop, 1993, Hamilton,

1989, Pesaran and Potter, 1997, Koop and Potter, 1999b, Skalin and TerÄasvirta, 1999).

Furthermore, many theoretical models of the macroeconomy imply nonlinearity. For these

reasons, there is an increasing interest in nonlinear extensions to VAR models. In this

paper, we propose one such extension: the Vector Floor and Ceiling (VFC) model (see

Altissimo and Violante 1999 for a similar extension and Potter 1995b for the general case).

The VFC model is a parsimonious extension of the VAR model which, we argue, should be

able to capture the types of nonlinearity suggested by economic theory. Estimation and

testing in this model raise some interesting issues for either the Bayesian or non-Bayesian

econometrician. Accordingly, we develop and compare both econometric approaches in

the context of an application involving the commonly-used RMPY variables.1

In order to carry out an empirical analysis using a nonlinear VAR, two preliminary

hurdles must be passed. First, unlike VARs and their relationship to the Wold Represen-

tation, there is no general nonlinear model that can be appealed to. The Vector Floor and

Ceiling model is a particular choice which, we argue, is an attractive one. It is a multivari-

ate extension of the model used in Pesaran and Potter (1997) which allows nonlinearity to

enter through °oor and ceiling e®ects. The intuition for introducing nonlinearity in this

way arises from the long tradition in economics that °uctuations may arise from re°ective

1The RMPY variables are R=the interest rate, M=the money supply, P=the price level and Y=real

output. The data is described below.
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barriers (e.g. °oors and ceilings). Furthermore, the VFC model allows nonlinearity to

enter in a particularly parsimonious manner. Parsimony is crucial since even with linear

VARs it is relatively easy to run into over-parameterization problems. The VFC model

is a tightly restricted version of the Threshold Autoregression (TAR) class introduced by

Tong (see Tong 1990 for an overview).

Second, econometric methods must be developed to estimate and test the VFC model.

It is particularly important to provide evidence that the nonlinear model is statistically

superior to the linear model. In this paper, we use both Bayesian and classical methods.

Estimation, using either paradigm, is relatively straightforward using iterated generalized

least squares2 (for classical analysis) or a Markov Chain Monte Carlo (MCMC) algorithm

(for Bayesian analysis). However, testing is plagued by the presence of Davies' problem

| nuisance parameters which are unidenti¯ed under the null hypothesis of linearity. In

this paper, we show how the classical test procedures of Hansen (1996) and Pesaran

and Potter (1997) can be applied in the vector time series case. In previous univariate

time series work (Koop and Potter, 1999a), we have investigated the properties of Bayes

factors in the presence of Davies' problem. We extend this work in the present paper and

derive a particularly computationally e±cient method for Bayes factor calculation.

The methods described above are applied to a system containing Y=GDP in 1987

dollars, P=the GDP de°ator, R=3month T-bill and M=M2 observed at the quarterly

frequency in the U.S. in the post-Korean war period (1954Q3 through 1997Q4). In terms

of statistical signi¯cance both classical and Bayesian methods indicate that the (Gaussian)

linear model is inadequate. Using impulse response functions we investigate the economic

signi¯cance of the statistical analysis. We ¯nd evidence of strong nonlinearities in the

contemporaneous relationships between the variables and milder evidence of nonlinearity

in the conditional mean.

2Iterated generalized least squares is asymptotically equivalent to maximum likelihood estimation in

the models we discuss and, hence, we use both terms in this paper.
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The structure of the paper is as follows: section 2 develops the vector °oor and ceiling

model; section 3 describes the results and discusses some of the di®erences between

the classical and Bayesian analysis. Much of the technical detail can be found in 4

appendices. Appendix A outlines the calculation of various least squares quantities.

Appendix B gives a detailed development of the Bayesian analysis. Appendix C describes

classical estimation and testing. Appendix D provides information on the calculation of

the generalized impulse response functions.

2 A NONLINEAR VAR WITH FLOOR AND CEIL-

ING EFFECTS

In this section we develop and motivate a parsimonious nonlinear VAR which we call the

Vector Floor and Ceiling model. Variants on this model should, we feel, be suitable for

use in many macroeconomic applications. The univariate version of this model was ¯rst

introduced in Pesaran and Potter (1997).3

There are many reasons for thinking that linear models might be too restrictive when

working with economic time series (see, among many others, Beaudry and Koop, 1993,

Koop, 1996 or Koop, Pesaran and Potter, 1996). For instance, in a macroeconomic

context, linear models imply that positive and negative monetary shocks have the same

e®ect on output (in absolute value). Furthermore, a monetary shock of a given magnitude

will have the same e®ect regardless of whether it occurs in a recession or in an expansion.

However, it is easy to say linear models are too restrictive, but it is much harder to choose

a particular nonlinear speci¯cation from the myriad of possibilities.

Economic theory o®ers only limited guidance in this regard. However, a common

thread underlying a great deal of macroeconomic theory is that dynamics should vary

3See also Koop and Potter (1997) for a Bayesian analysis of a generalization of the univariate °oor and

ceiling model.
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over the business cycle (see Kapetanios, 1998, for a general discussion). Nonlinear time

series econometricians have typically interpreted this as implying di®erent regimes exist.

The two most commonly-used classes of models have this property. Threshold autore-

gressive (TAR) models divide the data into di®erent regimes based on lagged values

of the time series (see Tong, 1990 or TerÄasvirta, 1994 for a popular variant called the

smooth transition threshold autoregressive model or STAR). Markov switching models

assume the time series switches between regimes with transition probability following a

Markov chain (Hamilton, 1989). Most empirical work has been univariate (exceptions

are Chauvet 1998, Weise 1999 and Altissimo and Violante 1999).

Even in univariate contexts, nonlinear time series models have been criticized for their

lack of parsimony. For instance, the simplest TAR allows for a di®erent AR(p) model to

exist in each di®erent regime. If the number of regimes and/or lags is at all large, over-

parameterization can be a worry. Furthermore, the number of regimes is rarely speci¯ed

by economic theory. Consider the example of real GDP dynamics. One might suspect

di®erent regimes to apply in the case where the economy is in a recession, expansion or

normal times. This suggests three regimes. However, dynamics might di®er within these

regimes (e.g. dynamics might change if the economy starts to overheat, indicating that a

di®erent speci¯cation might be appropriate early in an expansion than that which applies

late in an expansion). All in all, a case can be made that many di®erent regimes should

exist, exacerbating parsimony problems.

With multivariate models, these over-parameterization worries are greatly increased.

It becomes essential to work with a multivariate nonlinear time series model which both

allows for many regimes and is not over-parameterized. The Vector Floor and Ceiling

model attempts to do this by using the intuition that, although many di®erent regimes

might exist, dynamics probably only vary slightly over similar regimes. For example, if

the economy has been in a recession for one period, dynamics are probably only slightly

di®erent from the case where the economy has been in a recession for two periods. The
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key properties of the VFC model are:

² It is a nonlinear extension of a VAR.

² It contains three major regimes which we label \Floor", \Ceiling" and \Corridor"
which can be thought of as relating to recessions, expansions and normal times.

² Within the °oor and ceiling regimes there are various sub-regimes.

² Dynamics in the sub-regimes are modelled through variables which can be thought
of as re°ecting the current depth of recession and the amount of overheating in the

economy.

These general considerations are formalized and expanded on in the context of our

empirical application in the remainder of this section.4 We begin by de¯ning the notation

used throughout the paper. Xt will be a 4 £ 1 vector of observations, with X1t being
the log level of output, X2t be the log of prices, X3t the interest rate, X4t the log level

of money. Yt will be the vector of ¯rst di®erences of Xt.
5 1(A) is the indicator function

equal to 1 if the event A occurs, 0 otherwise. Vt will be a 4£1 vector of i.i.d. multivariate
standard Normal random variables.

The previous VAR literature has not produced any consensus on the important issue of

how to treat the trending behavior that appears to exist in several of the variables. Since

there is only weak and con°icting evidence of a cointegrating relationship, we estimate

the system in di®erences. This has the advantage of allowing us to ignore the behavior of

the test statistics for nonlinearity under non-stationarity. The disadvantage is that the

long run dynamics of the system might be distorted.

4In this paper, we work with a particular variant of the VFC model which is appropriate for the

application at hand. The basic econometric techniques developed in this paper are, of course, applicable

to other variants which may be relevant in other empirical problems.
5We work with log di®erences multiplied by 100 for all variables except the interest rate. We take raw

¯rst di®erences for the latter, since it is already a percentage.
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We begin by de¯ning the three major regimes which we assume are based on the state

of the business cycle as re°ected in output growth (i.e. Y1t). The model contains three

indices de¯ning the three possible regimes of the economy. Ft is the index representing

the °oor regime. It is activated if output falls below the previous maximum minus a

parameter, rF < 0; to be estimated. Ct is the index representing the ceiling regime. This

regime is activated when output growth has been `high' for two consecutive quarters and

the °oor regime is not active. Here the parameter to be estimated will be rC > 0, the

value of `high' growth.

These two indices are then used to recursively cumulate output growth in the re-

spective regimes. The °oor index produces a variable measuring the Current Depth of

Recession (CDR1t) as in Beaudry and Koop (1993).
6 The ceiling index produces a vari-

able measuring the amount of overheating, (OH1t), in the economy. The exact form of

the relationships are:

Ft =

½
Ft = 1(Y1t < rF ); if Ft¡1 = 0,
Ft = 1(CDR1t¡1 + Y1t < 0); if Ft¡1 = 1,

(1)

CDR1t =

½
(Y1t ¡ rF )Ft if Ft¡1 = 0,
(CDR1t¡1 + Y1t)Ft if Ft¡1 = 1.

(2)

Ct = 1(Ft = 0)1(Y1t > rC)1(Y1t¡1 > rC); (3)

OH1t = (OH1t¡1 + Y1t ¡ rC)Ct: (4)

The third index de¯nes the corridor regime which occurs if neither of the other two

regimes are activated (i.e. CORt = 1(Ft + Ct = 0)).

The °oor regime and current depth of recession variable are most easily understood if

rF = 0. In this case, the °oor regime is activated when GDP falls (i.e. a recession begins)

and remains activated until GDP has grown back to its pre-recession level. The current

6Beaudry and Koop (1993) assumes rF = 0.

6



depth of recession variable is then a measure of how deep the recession is (i.e. a measure

of how much GDP has fallen from its pre-recession level). Note that the ceiling regime

is only activated if the °oor index is not. This rules out the possibility that recovery

from the trough of a recession is labelled overheating. Furthermore, the requirement that

the ceiling regime is only activated by two consecutive quarters of fast growth follows

from the reasonable notion that a single quarter of fast growth is unlikely to overheat the

economy. The overheating variable itself can be interpreted as the reverse of the current

depth of recession.

In the model of Pesaran and Potter (1997), the variables CDR1t; OH1t are lagged and

entered into a standard univariate nonlinear model for output with the exception that

the error variance is allowed to vary across the three regimes. That is, their univariate

model is:

Y1t = ®+ Áp(L)Y1t¡1 + µ1CDR1t¡1 + µ2OH1t¡1+

f¾0CORt¡1 + ¾1Ft¡1 + ¾2Ct¡1g Vt;
where Áp(L) is a polynomial in the lag operator of order p.

One can extend this model very parsimoniously to the multiple time series case by

using the indicator variables Ft and Ct de¯ned from the behavior of output alone. Ad-

ditional recursively-de¯ned variables similar to CDR1t; OH1t can then be used to allow

for over-heating or \under-cooling" e®ects in the other variables.7 In particular, we con-

struct:

CDRit = Ft (CDRit¡1 + Yit) ;
7In more general applications it might make sense to consider regimes de¯ned by other variables or

by combinations of variables, but for the present case we consider only the simplest extension to the

multivariate case. In other words, we use only GDP information to de¯ne the state of the business cycle.

The case where the growth rates of the other variables are recursively cumulated is considered here but

there are many other possibilities. For example one might want to cumulate a linear relationship suggested

by economic theory between variables in the VFC model.
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OHit = Ct fOHit¡1 + Yitg ; for i = 2; 3; 4:

Note that these new variables do not depend on the thresholds rF and rC . This makes

them easy to interpret. For instance, CDR3t measures the deviation of the interest rate

from that which occurred when a recession began. In recessions, interest rates tend to

fall; CDR3t is a measure of the magnitude of this fall. Similarly, OH2t is a measure of the

deviation of the price level from that which occurred at the beginning of a period of over-

heating. Hence, it measures how bad in°ationary pressures were during expansionary

periods. Analogous interpretations hold for the other variables.

The four current depth of recession and overheating variables are entered into a stan-

dard VAR framework, with the exception that the error covariance matrix is allowed to

vary across the regimes:

Yt = ®+©p(L)Yt¡1+£1CDRt¡1+£2OHt¡1+fH0CORt¡1 +H1Ft¡1 +H2Ct¡1gVt (5)

where ® is a k £ 1 vector, ©p(L) is a pth order matrix polynomial in the lag operator,
£1;£2 are k£k matrices, H0;H1;H2 are k£k matrices with a lower triangular structure
(i.e. §i = HiH

0
i is the error covariance in regime i, i=0,1,2) and

CDRt¡1 = (CDR1t¡1; CDR2t¡1; : : : ; CDR4t¡1);OHt¡1 = (OH1t¡1; OH2t¡1; : : : ; OH4t¡1);

are K £ 1 vectors. In our empirical work, K = 4:
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It is possible to unravel the vector °oor and ceiling model in an illuminating manner:

Yt =

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

®+©p(L)Yt¡1 +H0Vt if CORt¡1 = 1;
®+©p(L)Yt¡1 +£1(Yt¡1 ¡ rF ) +H1Vt if Ft¡1 = 1; Ft¡2 = 0

...
...

®+©p(L)Yt¡1 +£1
Pj

s=1(Yt¡s ¡ rF ) +H1Vt if
Qj

s=1 Ft¡s = 1 and Ft¡j¡1 = 0:
...

...

®+©p(L)Yt¡1 +£2(Yt¡1 ¡ rC) +H2Vt if Ct¡1 = 1 and Ct¡2 = 0;
...

...

®+©p(L)Yt¡1 +£2
Pj

s=1(Yt¡s ¡ rC) +H2Vt if
Qj

s=1Ct¡s = 1 and Ct¡j¡1 = 0:
...

...

(6)

where rm = (rm; 0; : : : ; 0)
0;m = F;C are k £ 1 vectors and Ft; Ct are determined by

Equations 1 and 3.

Equation 6 shows how the VFC model can be interpreted as having many di®erent

sub-regimes within each of the two outer regimes. For instance, a di®erent dynamic speci-

¯cation exists when the economy has been in recession for one period (Ft¡1 = 1; Ft¡2 = 0)

than when the economy has been in recession j periods (
Qj

s=1 Ft¡s = 1 and Ft¡j¡1 = 0).

Furthermore, the speci¯cation is quite parsimonious in that di®erences between major

regimes only depend on two K £K matrices, £1 and £2. Di®erences between dynamics

in the many subregimes also only depend of these two matrices. The conditional mean

of the VFC model depends on ®;©p;£1;£2;rF and rC, which contain K
2(p+ 2) +K + 2

distinct parameters. In contrast, a three regime multivariate TAR model which allowed

for di®erent VAR dynamics in each regime contains 3pK2 + 3K + 2 parameters. In the

present application, k = 4. For the case where p = 1, the VFC model has 54 conditional

mean parameters, whereas the TAR has 62. However, if p = 4 these numbers change to

102 and 206, respectively, indicating the strong parsimony of the VFC model relative to

the TAR.

To provide even more intuition, let use write out the conditional mean for a sequence
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of time periods where the economy is in the corridor regime in period t-1, then enters

the °oor regime in period t and remains there for several periods. We will assume p=2

and let ©i indicate the appropriate element of ©p(L).

² Yt = ®+©1Yt¡1 +©2Yt¡2

² Yt+1 = (®¡£1rF ) + (©1 +£1)Yt +©2Yt¡1

² Yt+2 = (®¡£1rF ) + (©1 +£1)Yt+1 + (©2 +£1)Yt

² Yt+3 = (®¡£1rF ) + (©1 +£1)Yt+2 + (©2 +£1)Yt+1 +£1Yt

² Yt+4 = (®¡£1rF ) + (©1 +£1)Yt+3 + (©2 +£1)Yt+2 +£1Yt+1 +£1Yt:

For this example, for the common case where £1 is small, one can see how the original

VAR(2) speci¯cation gradually changes to a VAR(2) with di®erent intercept and ¯rst

order coe±cient matrix, then a VAR(2) with di®erent second order coe±cient matrix,

then a VAR(3), then a VAR(4), etc. This illustrates how the model allows for many

di®erent subregimes, but the coe±cients change only gradually across regimes. A similar

illustration could be done when the economy starts to overheat.

In our empirical work, we also discuss three restricted versions of the VFC model. We

will refer to the model with no heteroskedasticity, §0 = §1 = §2, as the homoskedastic

Vector Floor and Ceiling model (VFC-homo). The model with heteroskedasticity, but

linearity in conditional mean, £1 = £2 = 0K£K , will be referred to as the heteroskedastic

Vector Autoregressive model (VAR-hetero). The standard VAR has restrictions £1 =

£2 = 0K£K and §0 = §1 = §2. Bayesian and classical estimation and testing in these

models is discussed in Appendices A, B and C.
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3 Empirical Results

This section contains Bayesian and non-Bayesian results on estimation, testing and im-

pulse response analysis for the data set described above. In order to simplify discussion,

we focus on the case where the lag length is equal to one (i.e. p=1). The value p=1 is

chosen using Bayesian posterior odds analysis. Using a standard VAR, the Schwarz (SC)

and Hannan-Quinn (HQ) information criteria both also choose p=1, although the Akaike

information criteria (AIC) chooses p=4. If we search over all models (linear and nonlin-

ear) and all lag lengths, we ¯nd p=1 chosen by SC, p=2 chosen by HQ and p=4 chosen

by AIC. Except for AIC, we are thus ¯nding that virtually all of the evidence indicates

p=1. Monte Carlo results (e.g. Kapetanios 1998) suggest that the Akaike information

criterion tends to overestimate lag length and perform poorly in nonlinear time series

models. Furthermore, most of the results presented in this paper are qualitatively similar

for p=1, 2, 3 and 4 (e.g. P-values for all tests roughly the same). For all these reasons, we

feel focussing on the case p=1 for simplicity is warranted. We provide Bayesian results

for two sets of priors: prior 1 assumes that all 32 coe±cients in £1and £2 are potentially

non-zero, prior 2 assumes that only 8 out of 32 coe±cients are likely to be non-zero.

Further details on the prior are given below.

3.1 Model Comparison Results

Table 1 contains the results of classical tests of linearity. These tests are described in more

detail in Appendix C. Su±ce it to note here that the tests labelled \SUP WALD",\EXP

WALD" and \AVE WALD" are all based on Wald tests of the null hypothesis of lin-

earity. However, under this hypothesis, the thresholds are not identi¯ed. The presence

of such nuisance parameters which are not identi¯ed under the null leads to a violation

of the regularity conditions necessary for deriving the standard Chi-squared asymptotic

distribution for Wald statistics. Hence, we use the simulation method of Hansen (1996)

11



in order to calculate P-values. Following Andrews and Ploberger (1994), we take the

average (AVE), exponential average (EXP) and supremum (SUP) of the Wald statistic

over all threshold values in order to obtain the three test statistics. We also use a test for

nonlinearity in the conditional mean of the series described in Pesaran and Potter (1997).

This test, labelled PP below, is based on the observation that if we are only interested in

testing £1 = £2 = 0K£K , then the local non-identi¯cation problem described above does

not hold (i.e. the null is the VAR-hetero model and the thresholds still enter the error

variance under the null hypothesis of linearity). Hence, a likelihood ratio test comparing

the VFC to VAR-hetero models has a standard Chi-squared asymptotic distribution.

As described in Appendix C, classical estimation and testing involves carrying out

a grid search over every possible °oor and ceiling threshold combination. The °oor

threshold was allowed to vary from -0.492 to -0.0025 (45 grid points) and the ceiling

threshold from 0.599 to 1.284 (61 grid points). The grid was chosen in a data-based

fashion to ensure adequate degrees of freedom are available in each regime. These choices

imply 45£61= 2745 total points in the grid.

Table 1: Classical Linearity Test Results

Test Statistic P-value

SUP WALD 63 0.008

EXP WALD 28 0.010

AVE WALD 52 0.012

PP 37.645 0.226

With the exception of the Pesaran and Potter (1997) test, all of the classical tests

indicate strongly signi¯cant nonlinearities. However, the non-signi¯cance of the PP test

indicates that these nonlinearities are entering largely through the error variance. This

picture is reinforced through an examination of Table 2, which contains various informa-

tion criteria and Bayesian results for the di®erent models. Kapetanios (1998) provides

motivation for the use of information criteria for model selection involving nonlinear time
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series models. Bayesian posterior model probabilities can be calculated from the Bayes

factors comparing the VFC to VFC-homo models, the VFC to VAR-hetero models and

the VAR-hetero to VAR model. These Bayes factors are calculated using the Savage-

Dickey density ratio as described in Appendix B.

Table 2: Information Criteria and Bayesian Posterior Model Probabilities8

Model AIC HQ SC Post. Prob:Prior 1

VFC -5.32 -4.93 -4.37 ¼0
VFC-homo -5.19 -4.81 -4.24 ¼ 0
VAR-hetero -5.47 -5.32 -5.10 1

VAR -4.80 -4.65 -4.44 ¼ 0

Post. Prob:Prior 2.

0.2

¼ 0
0.8

¼ 0

As discussed in Appendix C, we also calculated a minimum likelihood (i.e. we ¯nd

minimum over the gridpoints). In log likelihood ratio units the di®erence was 72 between

the VAR and VAR-hetero (a Chi-squared with 20 degrees of freedom would imply a p-

value of approximately zero) and 106 between the VAR and VFC (a Chi-squared with 52

degrees of freedom would imply a p-value of approximately zero).

It can be seen that each of the information criteria select the VAR model with het-

eroskedasticity (i.e. °oor and ceiling e®ects occur in the error covariance matrix). In each

case, however, the second most preferred model is the unrestricted VFC, except for SC

which chooses the linear model. The Bayesian posterior model probabilities also indicate

strong support for the VAR-hetero model. Under prior 2 the unrestricted VFC also re-

ceived substantial support, a point we will return to shortly. The extremely conservative

minimum-likelihood ratio tests provide further evidence of nonlinearity.

Overall, there seems to be relatively little evidence of nonlinearity in the conditional

mean, but overwhelming evidence of nonlinearity in the conditional error variance. Since

the error variances control the immediate dynamics, we conclude that there is strong

8Prior 1 assumes that the elements of £1;£2 are Normal and independent of one another. Prior 2
assumes that the elements of £1;£2 are a mixture of Normals. Further details on the prior are given below
and in Appendix B.
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evidence of nonlinearities in the contemporaneous relationships between the variables.

That is, the shocks, Vt have a contemporaneous e®ect on Yt and it is the magnitude of

§0, §1 and §2 which control the how the shocks impact on the variables.

There are so many parameters in this model and they are di±cult to interpret, so we

do not provide a detailed discussion of them here. The dynamic properties of the VFC

model are best understood through impulse response analysis, but it is worthwhile to

illustrate the importance of the changes in the variance-covariance matrix across regimes

by considering the mle estimates of individual variances (i.e. evaluated at the mle of the

thresholds). Also presented are the MLE of the variances from the VFC-homo model and

the linear VAR.

Table 3:MLE of shock variances
Model/Regime Y P R M

VFC/Cor 0.709 0.065 0.582 0.210

VFC/Ceil 0.552 0.037 0.088 0.205

VFC/Floor 1.038 0.105 1.230 0.437

VFC-homo 0.716 0.064 0.550 0.245

VAR 0.749 0.067 0.572 0.290

The MLEs of the thresholds associated with these estimates are rc = 0:732; rF =

¡0:479: At these values there are 85 observation in the corridor regime, 57 observations
in the ceiling regime and 30 observations in the °oor regime. The point estimates of

error variances in the equations for R vary greatly across regimes. Given that the VFC is

not a structural model, it is risky to give the error variances a structural interpretation.

Keeping this warning in mind, note that interest rate shocks seem to be much bigger in

magnitude in the °oor regime than in the other two regimes. Interest rate shocks in the

ceiling regime seem very small. A similar pattern is found in the money equation, where

monetary shocks seem much bigger in the °oor regime than in the others. One possible

explanation is that the °oor regime is picking up the behavior of interest rates in the
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1979-1982 period. However, this does not explain the very low variance of interest rates

in the ceiling regime.

3.2 A Comparison of Bayesian and Classical Results

With some exceptions the Bayesian and classical analyses yield similar results. That

is, MLE's and standard errors are, in most cases, quite similar to posterior means and

standard deviations evaluated at the mle estimates of the thresholds. The classical test

procedures yield results which point in the same direction as posterior model probabilities.

The level of computational di±culty of Bayesian and classical procedures are roughly

comparable. There are a few things which the Bayesian approach can do that the classical

one cannot (e.g. provide a framework for averaging across many models, yield exact

¯nite sample results for a case where asymptotic approximations are likely to be poor,

compare many models simultaneously,9 etc.), but so far the di®erences between sensible

Bayesian and classical analyses seem small. However, there are some issues that are worth

elaborating on. In order to do this, we must take a detour and present a discussion of

Bayesian priors and hypothesis testing procedures.

Our Bayesian methods, including prior elicitation, are described in detail in Appendix

B. Here we will provide a heuristic discussion of these methods. Bayesian methods provide

the researcher with an intuitively simple measure of model performance: the posterior

model probability.10 As the name suggests, this is just the probability that the model

under consideration generated the data. However, one possible drawback in calculating

posterior model probabilities is that informative priors are required if the models un-

der consideration are nested ones.11 Some intuition for why this occurs is provided by

9This Bayesian advantage is especially important in nonlinear time series models since there are so

many model features to be tested (e.g. lag length, nonlinearity in mean, nonlinearity in error variance,

etc.). Sequences of classical pairwise hypothesis tests will rapidly run into serious pre-test problems.
10The Bayes factor is the ratio of posterior model probabilities for two models under the assumption

that, a priori, each of them is equally likely.
11The fact that the use of noninformative priors can yield degenerate Bayes factors is often referred to
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consideration of the AR(1) model:

yt = ½yt¡1 + vt;

where vt is IIDN(0,1) and y0 is known. Suppose interest centers on comparing the unre-

stricted model, M1; to the white noise model, M2 with ½ = 0. A Bayesian model involves

a prior for all unknown parameters. For M1 we will assume a Normal prior for ½ (i.e.

½jM1 » N (0; c)). Imagine creating a computer program which arti¯cially generates data

from each model. Note that, for M1 this would involve drawing a value for ½ from the

Normal prior, then generating data from the appropriate AR(1) model. Next assume

that you have some observed data that is generated from a \true" AR(1) DGP with

½ = :5. Consider comparing this observed data with arti¯cial data generated from M2,

the white noise model and M1, the unrestricted model. The observed data will likely be

quite di®erent from the data generated from M2, the white noise model. In contrast, if

the prior for M1 has c = 0:52, then some of the arti¯cial data generated from M1 will

likely look quite similar to the observed data (i.e. it will be fairly common for prior draws

of ½ to be in the region of :5). Bayesian methods, loosely speaking, will say \It is fairly

common for M1 to generate arti¯cial data sets similar to the observed data, whereas M2

always generates white noise arti¯cial data which looks quite di®erent from the observed

data. Hence, M1 is supported." However, if the prior in M1 becomes \noninformative"

(i.e. c gets large) then the program generating arti¯cial data from this model will start

generating more and more \bizarre" data sets (e.g. if c = 16, then data sets from explo-

sive AR(1)s with ½ > 1 will be common) and fewer and fewer \reasonable" data sets (i.e.

where ½ is near :5). In this noninformative case Bayesian methods, loosely speaking, will

say \In virtually every case, M1 is generating bizarre data sets which are vastly di®erent

from the observed data. M2; with its white noise data sets, is not that great, but at least

the data sets it is arti¯cially generating are much closer to the observed data than the

as Bartlett's paradox and is described in detail in Poirier (1995), pages 389-392.
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bizarre data sets generated by M1. Hence, M2 is preferred." In the limit, as c!1, the
restricted model will always be preferred to the unrestricted one, regardless of what the

observed data looks like and the size of the sample. This type of intuition also motivates

why Bayes factors have such a strong reward for parsimony. Adding irrelevant variables

to a model will cause it to generate more and more bizarre data sets.

The previous intuition is partly meant to motivate Bartlett's paradox and why in-

formative priors are crucial for Bayesian model comparison. However, it also illustrates

the type of solution that we have used in previous univariate nonlinear time series work

(e.g. Koop and Potter 1999a,b). In these papers, we used Normal priors which roughly

re°ected our subjective prior information about the parameters in the model. Consider,

for instance, working with an AR(1) model for real GDP growth. This is highly unlikely

to be nonstationary, so choosing c to be 0:252 will imply a prior which allocates most of

its weight to the "reasonable" stationary region. In a two regime threshold autoregressive

model, we might place such a prior on the AR(1) coe±cient in each regime. However, in

multivariate cases, models are much more parameter-rich and such an approach does not

work well. To be more concrete, in the VFC model, testing for nonlinearity in the mean

involves £1 and £2 and, hence, informative priors are required for these parameters. In

the univariate °oor and ceiling model, £1 and £2 are scalars and using, say, a N(0; I2)

prior seems to work quite well with macroeconomic data. However, in the present case,

£1 and £2 each contain 16 parameters, many of which probably are essentially zero.

Using, say, a N(0; I32) prior for £1 and £2 implies that VFC model can generate plenty

of \bizarre" data sets: only 0:6832 = 4:4£ 10¡6 of the prior weight is within the unit cir-
cle. In practice, we have found that the combination of including irrelevant explanatory

variables and allocating signi¯cant prior weight to \bizarre" areas of the parameter space

causes the Bayes factors to indicate little support for the VFC model except in cases

where the °oor and ceiling e®ects are enormous. The posterior probabilities in Table 2

associated with Prior 1 are indicative of these results. Prior 1 is described in detail in
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Appendix B. However, for the present discussion, it su±ces to stress that it includes a

N(0; I32) prior for £1 and £2

In other words, in many cases it is acceptable to use weakly informative priors of

convenience, to re°ect ideas like \autoregressive coe±cients are probably going to be

smaller than one". The present case does not allow for this. In general, we have found

that with parameter-rich multivariate nonlinear time series models, care needs to be

taken in choosing priors if model comparison is being done. Prior 2 incorporates these

considerations and Appendix B describes it in detail. One key aspect builds on an

idea discussed in George and McCulloch (1993). Loosely speaking, we combine our prior

information that \£1 and £2 measure deviations from the VAR coe±cients in the corridor

regime, and such deviations are likely quite small" with additional prior information "£1

and £2 include 32 parameters in total, many of which are likely zero, however we are not

sure a priori which ones are likely to be zero." That is, we use a prior which is a mixture

of two mean-zero Normals for each individual element, one with a very small variance

(i.e. prior variance is 0.0052, saying \this coe±cient is e®ectively zero"), one with a more

reasonable variable (i.e. prior variance is 0.12). We assume prior independence of the

individual coe±cients. We allocate a 75% probability to the ¯rst component (i.e. we

expect 24 of the coe±cients in £1 and £2 to be essentially zero, although we do not know

which 24) and 25% to the second (i.e. we expect 8 coe±cients may be important).

To return to our comparison of Bayesian and classical methods, note that the necessity

of careful prior selection adds a burden to Bayesian methods. Many Bayesians would

argue that this burden is worth the cost, since adding information, whether data or

non-data based, will improve the accuracy of any empirical exercise. Furthermore, by

investigating the sensitivity of posterior model probabilities to changes in the prior, we

can gain substantial insight into the particular direction nonlinearities are or are not

entering. In addition, if the model is to be used for forecasting purposes it is well known

that prior information can lead to big out of sample improvements.
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The di®erence in Bayesian and classical model comparison results arises largely due

to the fact that di®erent alternative models are being compared. The Bayesian model

includes a prior, and this prior can be used to make the alternative model more reasonable.

That is, nonlinear multivariate time series models will often have many more parameters

than a VAR and only a few of these extra parameters will likely be important.12 Hence,

the completely unrestricted nonlinear model will often be unreasonable. The classical test

and Bayes factors using a crude prior of convenience (e.g. a Normal prior) will re°ect this

and indicate little evidence of nonlinearity in the conditional mean. However, a nonlinear

model which re°ects the common sense idea that only a few of the extra parameters are

important receives much more support. The prior used in this paper, based on George

and McCulloch (1993), allows us to develop such reasonable nonlinear models. Similar

priors, we feel, should be of great use in many areas of nonlinear multivariate time series

modelling.

4 Impulse Response Analysis

Model comparison results and estimates can provide some evidence about the dynamic

properties of the VFC model. However, impulse response analysis o®ers a deeper insight

into such dynamics. Our approach will be Bayesian, in that we present impulse response

functions that average over both parameter and model uncertainty.

Impulse responses measure the e®ect of a shock on a dynamic system. In nonlinear

time series models, impulse response functions are not unique in that the e®ect of shocks

can vary over the business cycle. In multivariate models which are not structural, the

problems of de¯ning impulse responses are complicated by the fact that the errors in the

di®erent equations are potentially correlated with one another. In particular, the common

12The VFC model is fairly tightly parameterized. Problems of over-parameterization which arise in it

will be magni¯ed hugely in models such as vector TARs.
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approach of de¯ning structural shocks by a Wold causal ordering applied to a reduced

form estimate does not translate easily to the nonlinear case. Firstly, the estimates of the

error variance covariance matrix vary across regimes and the same Wold causal ordering

might have di®erent e®ects across regimes. Secondly, the usual experiment is to set all

shocks but one equal to zero. In the nonlinear case setting shocks to zero is dangerous

since the model can become falsely stuck in a regime. Koop, Pesaran and Potter (1996)

discuss these issues in detail and recommend several types of generalized impulse response

functions. Here we examine the properties of the following generalized impulse response

function:

GIn = E[Yt+njY3t; Y4t;Yt¡1;OHt¡1;CDRt¡1]¡ E[Yt+njYt¡1;OHt¡1;CDRt¡1]:

That is, we calculate the di®erence between two n-period forecasts. The ¯rst forecast

assumes knowledge all variables last period and the values of interest rates and money

today.13 The second forecast assumes only knowledge of all variables last period. Note

that GIn is a 4£ 1 vector which measures the e®ects of monetary shocks on each of the
four RMPY variables. This generalized impulse response function measures the e®ect of

unexpected changes in the variables most likely to re°ect monetary policy, Y3t; Y4t. We

stress that, since we use Bayesian methods to calculate generalized impulse responses (see

Koop 1996), the expectations operators in the generalized impulse response are taken over

Vt+i for i = 0; ::; n
14 as well as the entire parameter space. Since Vt is IIDN(0,I4) and the

MCMC algorithm discussed in Appendix B provides random draws from the posterior,

the expectations above can be calculated using simulation methods (see Appendix D for

details).

In linear time series applications, one would usually consider the e®ects of monetary

policy shocks by making some identi¯cation assumptions on the contemporaneous rela-

13Note that we have imposed the p=1 ¯nding from the estimation.
14In the case of the ¯rst expectation, V3t and V4t are known and are not treated as random variables.
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tionships between the variables and perhaps some long run restrictions. Our objectives

are less ambitious. To motivate the types of shocks our generalized impulse responses

are based on, consider the case where the interest rate unexpectedly increases and the

money supply unexpectedly decreases,GIn(v3t > 0; v4t < 0):

E[Y3tjY3t; Y4t;Yt¡1;OHt¡1;CDRt¡1]¡E[Y3tjYt¡1;OHt¡1;CDRt¡1] < 0;

E[Y4tjY3t; Y4t;Yt¡1;OHt¡1;CDRt¡1]¡E[Y4tjYt¡1;OHt¡1;CDRt¡1] > 0:

One could think of this as an contractionary money supply shock, except we have not

restricted the contemporaneous behavior of output or prices. Thus, it is possible the

monetary policy is contractionary because of knowledge of some negative shock to output

or prices. Further, since our interest rate is the 3 month T-Bill rate and our money stock

measure is M2, they will be a®ected by developments in the ¯nancial system outside

the control of the Federal Reserve. Our objective is to examine whether the system we

have estimated contains any evidence of asymmetric response to negative and positive

monetary shocks. There is a debate in the money shock literature concerning this issue

(see Rhee and Rich 1996 and Weise 1999).

In order to calculate impulse responses, we must specify the conditions which prevail

when the shock hits (i.e.Yt¡1;OHt¡1;CDRt¡1) as well as the shock (i.e. Y3t; Y4t). Instead

of constructing particular counterfactual choices, we use the observed data to provide

histories and shocks. In order to examine the asymmetry issue and gauge the amount of

dynamic nonlinearity in the system, we consider the following comparisons of the GI:Z 1

0

Z 0

¡1
GIn(v3t; v4t; Ft¡1 = 1)f(v3t; v4t)dv3tdv4t

+

Z 0

¡1

Z ¡1

0

GIn(v3t; v4t; Ft¡1 = 1)f(v3t; v4t)dv3tdv4t;

which equals zero if positive and negative shocks have the same average e®ect within a

regime. That is, the ¯rst term in this sum averages over all the responses to expansionary
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money supply shocks (v3t < 0; v4t > 0) which hit in the °oor regime. The second term

does the same using all contractionary money supply shocks. If positive and negative

shocks have the same e®ect in the °oor regime, then the two terms should sum to zero.

Non-zero values for this sum indicate asymmetric responses to positive and negative

shocks in the °oor regime. A similar calculation can be carried out for the ceiling and

corridor regimes.

By construction, for n = 0 the measure is zero and for the VAR-hetero it is zero for

all n: Thus, this is a measure of the nonlinearity in the conditional mean. Remember

that, since our methods are Bayesian, we are integrating out all model parameters using

their posteriors and, thus, incorporate parameter uncertainty. Furthermore, the GIs we

calculate are averaged over all models which receive non-zero posterior model probability

in Table 2 using prior 2. That is, lines labelled "Nonlinear" are actually an average of

results for the VFC (with weight of 0.2) and the VAR-hetero (with weight of 0.8).

Alternatively, we can consider asymmetry across regimes:Z 1

0

Z 0

¡1
GIn(v3t; v4t; Ft¡1 = 1)f(v3t; v4t)dv3tdv4t

¡
Z 1

0

Z 0

¡1
GIn(v3t; v4t; Ct¡1 = 1)f(v3t; v4t)dv3tdv4t;

For the sake of brevity, we only consider asymmetry across regimes with respect to ex-

pansionary monetary shocks (v3t < 0; v4t > 0). Note that the ¯rst term in this expression

measures the average e®ect of positive monetary shocks in the °oor regime and the sec-

ond term does the same for the ceiling regime. Symmetry across regimes implies these

two terms are the same and, hence, the measure above is zero.Note that here we have

three possibilities of comparison across regime. This time the measure can be non-zero

for n = 0 and for the VAR-hetero model it can be di®erent from zero. In this case we

present the results only for the VFC model.

The results are contained in Figures 1 to 4, with each ¯gure showing the response for
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a RMPY di®erent variable. Each ¯gure contains four graphs. Asymmetry across regimes

is presented in the lower right graph and the other graphs show asymmetry within the

three regimes. Asymmetry within regime appears to be negligible (i.e. expansionary and

contractionary shocks have the same e®ect in absolute value).15 There is more evidence

of asymmetry across regimes. For example, in Figure 1 we can see that the response

of output growth to a positive monetary shock is much greater in the °oor regime than

the corridor regime. This accords with the idea that expansionary monetary policy is

most e®ective in recessions. From Figure 2 we can see that a positive monetary shock

has a bigger e®ect on in°ation in the ceiling regime than the °oor regime. This accords

with the idea that expansionary monetary policy just increases in°ation if the economy

is already over-heating. Similarly sensible stories can be told for other variables.

5 Conclusions

In this paper we have introduced a parsimonious nonlinear extension of the VAR model

called the Vector Floor and Ceiling model. It is based on the idea that nonlinear °uctua-

tions can arise due to re°ective barriers. Classical and Bayesian econometric methods are

developed for estimation and testing. An empirical application involving US RMPY data

indicates the computational feasibility and usefulness of the VFC model. Our empirical

¯ndings indicate that most of the nonlinearity is in the contemporaneous relationship

between the variables but there is also some additional, albeit mild, nonlinearity in the

conditional mean dynamics.

15Note that we are integrating over the parameter and shock spaces and thus, our generalized impulse

responses are non-random and thus are merely points and no measures of uncertainty (e.g. highest posterior

density intervals) are associated with them. If we were not to do this integration, our impulse responses

would be random variables.
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Appendix A: Sample Information

We start by organizing the vector °oor and ceiling model into more convenient form.

De¯ne a 1£ (K(p + 2) +K) vector Xt(°) by£
1 Y

0
t¡1 ¢ ¢ ¢ Y0

t¡p CDR
0
t¡1 OH

0
t¡1

¤
;

and the (K(p+ 2) +K)£K matrix A by266666664

®
0

©
0
1
...

©
0
p

£
0
1

£
0
2

377777775
This gives

Y
0
t = Xt(°)A+V

0
tH

0
t¡1(°);

where Ht¡1(°) = H0CORt¡1 +H1Ft¡1 +H2Ct¡1. If we stack the observations we have:

Y = X(°)A +U;

where

E
h
vec(U

0
) vec(U

0
)
0
i
=

26664
§¤1 04 ¢ ¢ ¢ 04

04 §¤2
. . .

...
...

. . .
. . . 04

04 ¢ ¢ ¢ 04 §¤T

37775 = - (°);
and §¤t = §01(CORt¡1 = 1) + §11(Ft¡1 = 1) + §21(Ct¡1 = 1):

The ordinary least squares estimator of A for ° is direct as:

AOLS(°) =
h
X

0
(°)X(°)

i¡1
X

0
(°)Y:

The generalized least squares estimator requires more work. We have:

Yt = (IK -Xt(°)) vec(A) +Ht¡1(°)Vt;
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and once again stacking observations we have

y = x(°) vec(A) + vec(U
0
);

where y is a (T £K)£ 1 vector and x is a (T £K)£ (K2(p+ 2) +K) matrix. Thus the

GLS estimator of A for ° is:

vec(AGLS(°)) = aGLS(°) =
£
x0(°)- ¡1(°)x(°)

¤¡1
x0(°)- ¡1(°)y:

The estimator is implemented by constructing x0(°)- ¡1(°) from (IK -Xt(°))
0§¤¡1t (this

utilizes the block diagonality of - ¡1(°))and the relevant Bayesian or classical estimator

of the 3 possible variance covariance matrices).

De¯ne the 2K2 £ (K2(p + 2) +K) selection matrix ¨ such that

¨vec(A) = vec

µ
£

0
1

£
0
2

¶
:

To represent the sample information in the multiple time series we will use the symbol

Y:

Appendix B: Bayesian Analysis of the VFC Model

Geweke (1999) provides a survey of simulation-based Bayesian methods and the reader is

referred there for a description of the theory underlying the methods used in this paper.

The VFC model is given in equation (5). Note that the parameter vector ° = (rF ; rC)
0

enters CDRt¡1, OHt¡1, CORt¡1, Ft¡1 and Ct¡1. The heteroskedasticity and nonlinearity

of this model mean that analytical posterior results are not available. However, a Markov

Chain Monte Carlo (MCMC) algorithm can be developed which provides pseudo-random

draws from the posterior. Given such draws from the posterior, items such as posterior

means and standard deviations of all parameters or features of interest (e.g. impulse

response functions) can be calculated. To motivate our MCMC algorithm, note that,
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conditional on °, the sample information can be summarized by least squares type esti-

mators and known forms for the conditional posteriors exist under conjugate forms for

the prior distributions. The posterior for °, conditional on all the other parameters, is

of non-standard form but, since ° contains only two elements, draws can be provided

using a simple Metropolis-Hastings algorithm (see Chib and Greenberg, 1995). To cal-

culate Bayes factors comparing nonlinear to linear and homoskedastic to heteroskedastic

models, we use the Savage-Dickey density ratio (see Verdinelli and Wasserman, 1995).

Precise details of all our Bayesian computational methods are given in the remainder of

this appendix.

5.1 The Prior

A well-known issue in Bayesian statistics is that the use of non-informative priors is

typically acceptable for estimation purposes, but that informative priors are required

for the purpose of calculating Bayes factors (see Koop and Potter, 1999a, for a detailed

discussion of this issue). Given the reluctance of some researchers to accept results

obtained using subjectively elicited priors, in this paper we use priors based on the

idea of a training sample (see Berger and Pericchi, 1996 for more detailed development

of such ideas). The general idea is to begin with a noninformative prior, then divide

the sample period into t = 1; ::; trs; trs + 1; :::; T . The data from period t = 1; ::; trs

is called a training sample. It is combined with the noninformative prior to yield a

\posterior". This \posterior" is then used as \training sample prior" for the data from

t = trs+1; :::; T . Note that strategy yields a posterior which is identical to one based on

combining a noninformative prior with the full sample in the classical linear regression

model. However, in our case because of the nonlinearity this would not be precisely

the case. Typically, trs is chosen to be the smallest value which yields a proper training

sample prior and in non-time series applications one can consider averaging over di®erent

training samples to obtain an \intrinsic" Bayes factor. Here we set trs = 31, a value
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which yields a proper prior for values of p up to 6 in the present data set and allows us

to start our estimation with a typical post-1954/Korean war dataset. In practice we will

¯nd evidence in favor of a lag length of 1; thus the ratio of parameters to observations is

approximately 1 : 4:

Formally, in this paper we construct the prior °;A and §¡1j for j = 0; 1; 2 in three main

steps. First, we use a °at prior, independent of all other parameters, for the elements

of °. In particular, we allow p(rf ) to be uniform over the interval [¡0:492;¡0:0025] and
p(rc) to be uniform over the interval [0:599; 1:284]: These values are chosen to ensure

comparability with the maximum likelihood results and ensure that an adequate number

of observations lie in each regime (see the section containing empirical results for more

detail).

Second, for the elements of A shared in common with the linear model we use a train-

ing sample . We also use a training sample for the precision matrices. This is implemented

by ¯nding the posterior distributions of a linear VAR using a standard noninformative

prior plus the training sample. This formally leads to a Normal-Wishart "posterior"

for the parameters. In a conventional training sample approach, this "training sample

posterior" is used as a prior which is then combined with the remaining observations to

produce a posterior using all the data. Rather than using this "training sample poste-

rior" directly, we use the conditional Normality of the VAR coe±cients to imply a Normal

prior for the elements of A shared in common with the linear model. We then take the

implied Wishart form for the VAR error precision matrix and use it as a prior for §¡1j for

j = 0; 1; 2. This su±ces to fully specify a prior for all model parameters except £1;£2.

The third step in our prior elicitation procedure is to use a mixture prior for the

nonlinear part of the conditional mean, £1;£2, as suggested by George and McCulloch

(1993). We have informally motivated this prior in Section 3 of the paper, here we

provide precise details. We assume that the individual elements of £1;£2 are a priori

independent and identically distributed. Thus without loss of generality consider the
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prior for the generic element, µ:

f(µ) =

1p
2¼¿
exp[¡0:5( µ

¿
)2] if » = 1

1p
2¼&
exp[¡0:5( µ

&
)2] if » = 0

;

where & ¼ 0. Stacking the individual Bernoulli random variables »; corresponding to each
element of £1;£2 into the vector » we have:

vec

µ
£

0
1

£
0
2

¶
» N(0;G»);

where G» = ¿»Ik2 + &(ek2 ¡ »)Ik2 :
Combining the two elements of prior for A and §¡1j for j = 0; 1; 2 we have

p(A;§¡10 ;§
¡1
1 ;§

¡1
2 j») = p(vec(A)j»)p(§¡10 )p(§¡11 )p(§¡12 ); (A.3)

where

p(vec(A)j») / f (K2(p+2)+K)
N (a0; C

¡1
» ) (A.4)

and

p(§¡1j ) = f
K
W (º0; D

¡1
0 ); (A.5)

for j = 0; 1; 2. In equations (A.4) and (A.5), fMN (b;B) is the M-variate Normal p.d.f.

with mean b and covariance matrix B, and fKW (b; B) is the K-dimensional Wishart p.d.f.

with b degrees of freedom and mean bB. Furthermore, º0; D
¡1
0 are obtained from the

training sample prior and a0; C
¡1
» are training sample prior results augmented to include

the prior for £1;£2 (e.g. C» includes G»).

MCMC Algorithm

The MCMC algorithm used in this paper involves sequentially drawing from the posterior

conditional distributions described below.
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The joint posterior for A conditional on °; » and the error covariances involves only

the Normal distribution. Combining the prior with the likelihood function, we ¯nd the

posterior for vec(A) conditional on §¡10 ;§
¡1
1 ;§

¡1
2 ; °; » is multivariate normal with mean

ea = eC¡1[C»a0 +
£
x0(°)- ¡1(°)x(°)

¤
aGLS(°)];

and variance covariance matrix:

eC¡1 =
©
C» +

£
x0(°)- ¡1(°)x(°)

¤ª¡1
:

In the case of the restricted model VFC-homo the conditional posterior is multivariate

normal form with mean

ea = eC¡1[C»a0 +
£
x0(°)(§¡1-IT )x(°)

¤
aOLS(°)];

and variance covariance matrix

eC = ©C» + £x0(°)(§¡1-IT )x(°)¤ª¡1 :
The posteriors for §¡10 ;§

¡1
1 ;§

¡1
2 , conditional on vec(A);°; », are Wishart distributions

with degrees of freedom eº = Tj(°) + º0; and scale matrices eD = Sj +D0; where

T0(°) =

TX
t=trs+1

1(CORt¡1 = 1); T1(°) =
TX

t=trs+1

1(Ct¡1 = 1); T2(°) =
TX

t=trs+1

1(Ft¡1 = 1);

and

S0 =

TX
t=trs+1

1(CORt¡1 = 1)(Y
0
t ¡Xt(°)A)

0
(Y

0
t ¡Xt(°)A);

S1 =

TX
t=trs+1

1(Ct¡1 = 1)(Y
0
t ¡Xt(°)A)

0
(Y

0
t ¡Xt(°)A);

S2 =

TX
t=trs+1

1(Ft¡1 = 1)(Y
0
t ¡Xt(°)A)

0
(Y

0
t ¡Xt(°)A):
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We use a Gibbs sampling algorithm conditional on °; » to simulate from these two

sets of conditional posterior distributions.

So far, the discussion has proceeded conditionally on °; ». Following George and

McCulloch we assume a priori that each element of » is equal to 1 with independent and

identical probability q0: The posterior of a speci¯c element of » conditional on the draw

of respective element of A is given by:

P [» = 1jµ] = ¿¡0:5 exp[¡0:5( µ
¿
)2]q0

¿¡0:5 exp[¡0:5( µ
¿
)2]q0 + &¡0:5 exp[¡0:5( µ& )2](1¡ q0)

:

To complete the MCMC algorithm, we need to draw from p(°jY;A;§¡10 ;§¡11 ;§¡12 ; »)
which does not have a standard form. Hence, we use an independence chain Metropolis-

Hastings algorithm for drawing from p(°jY;A;§¡10 ;§¡11 ;§¡12 ; »). This involves taking
random draws from a candidate generating density, which we choose to be a density con-

structed from the maximum likelihood concentrated likelihood functions for the thresh-

olds (see Appendix C). Candidate draws are either accepted or rejected. If they are

rejected, the MCMC chain retains the previous draw for °. Since the candidate density

is constructed from the concentrated likelihood function then the acceptance probability

has a simple form. We found this method to be quite e±cient with 16% of the draws

being accepted.

Selection of Prior Hyperparameters

It remains to specify the prior hyperparameters: q0,&; ¿ . We start by assuming that about

two of the nonlinear variables will be signi¯cant in each equation. This leads to q0 = 0:25.

Next we need to consider what it means for the nonlinear coe±cients to be di®erent from

zero. This issue is discussed in the main text and is implemented with the assumption

that ¿ = 0:12 and & = 0:0052: This is prior 2 in the main text. We also include a more

traditional prior where the elements of £1;£2 are IIDN (0; 1). This latter prior is labelled
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"Prior 1" in the text. Prior 2 leads to a posterior where 20% of the elements of » were

non-zero on average.

Bayes Factor Calculation Using Savage-Dickey Density Ratio

As discussed in the main text we have four possible models to consider. We use marginal

likelihoods to assess the relative support from the observed sample for each type of model.

Instead of calculating the marginal likelihoods directly we use the fact that the models

are nested to calculate Bayes factors by averaging a conditional form of Savage-Dickey

density ratio.. There are two main Bayes factors to ¯nd:

1. VAR-hetero vs VFC.

2. VAR vs. VAR-hetero

Bayes Factor for Testing Linearity in Mean

The Bayes factor for testing £1 = £2 = 0 is straightforward to calculate by drawing on

the Normality of the prior and conditional posterior. That is, the Savage-Dickey density

ratio implies:

BV AR¡hetero;V FC =
p(¨vec(A) = 0jY)
p(¨vec(A) = 0)

; (A.10)

where the selection matrix, ¨ is de¯ned in Appendix A. The height of the prior density

at zero is given by: £
¿¡0:5 exp[0]q0 + &¡0:5 exp[0](1¡ q0)

¤2K2

:

The numerator cannot be directly calculated. Instead at each iteration of the MCMC

one calculates the logarithm of:

det(¨eC¡1¨
0
)¡0:5 exp

³
¡0:5ea0¨0[¨eC¡1¨

0
]¡1¨ea´
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and subtracts from it the logarithm of the prior density evaluated at zero. The anti-

logarithm is then taken and the collection of values are averaged across the MCMC draws.

Calculating Bayes factors involving any of the coe±cients in the conditional mean can be

done by changing the selection matrix in the above formulae. Such a strategy is used to

determine lag order selection (in this case the prior density is also normal).

Figure B.1 shows the recursive mean of the Bayes factor for the VAR-hetero vs. VFC

calculated in this manner for a run of 80,000 draws from the posterior. It is clear that

there is substantial variation in the estimate. The large upward movements were caused

by the draw of » producing a zero vector. Convergence was checked by a number of long

independent runs which con¯rmed a Bayes factor of 4.

Bayes Factor for Testing Homoskedasticity

The calculation of Bayes factors for testing for §¡10 = §¡11 = §¡12 is more complicated.

To ease the derivations we work with the following transformation of the precisions:

R0 = §
¡1
0 ; R1 = §

¡1
1 ¡§¡10 and R2 = §¡12 ¡§¡10 .16 Homoskedasticity occurs if R1 = R2 = 0.

Using the Savage-Dickey density ratio, the Bayes factor comparing homoskedasticity to

heteroskedasticity is thus:

BHom;Het =
p(R1=0,R2=0jY)
p(R1=0,R2=0)

: (A.12)

Once again we calculate the numerator by averaging posterior draws from the MCMC.

The generic problem of calculating p(R1=0; R2=0jY,A;°) and p(R1 = 0; R2 = 0) is

essentially the same. It reduces to the following:

Let §¡1i be independent WK(Di,ºi) for i=0,1,2 where WK(.,.) denotes the M-dimensional

Wishart distribution (see Poirier, 1995, page 136). Consider the transformation: R0 = §
¡1
0 ,

16There are many transformations that could be used here. For instance, we could use the fact that

P0P
¡1
1 =P0P

¡1
2 =I implies P0=P1=P2 in order to derive a Bayes factor for testing homoskedasticity. The

choice made in this paper was largely made for simplicity. The Bayes factor (like the Wald test statistic)

will depend the exact transformation used.
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R1 = §
¡1
1 ¡ §¡10 and R2= §

¡1
2 ¡ §¡10 . What is p(R1 = 0, R2 = 0)?

To solve this problem, we begin by deriving p(R0, R1, R2). This can be done using

the change-of variable theorem. Noting that the Jacobean of the transformation is the

identity matrix and using the formula for the Wishart density (see Poirier, 1995, page

136), an expression for p(R0, R1, R2) can be derived. If we then note that p(R0, R1 = 0,

R2 = 0) simpli¯es to a form involving a Wishart kernel and use the properties of the

Wishart to integrate out R0; we can obtain:

p(R1=0; R2 = 0) =
ec

c0c1c2jD0j
º0
2 jD1j

º1
2 jD2j

º2
2 jeDj eº2 ;

where ci for i=0,1,2 are the integrating constants for the original Wishart distributions

given on page 136 of Poirier (1995),

eA = eD¡1
0 +

eD¡1
1 +

eD¡1
2

and ec is the integrating constant from the WM(eD¡1,eº) with eº = eº0 + eº1 + eº2 ¡ 2K ¡ 2:
This result can be used to calculate both the numerator and denominator of the Bayes

factor.

This strategy can be used to calculate the Bayes factor comparing the homoskedastic

VFC model (VFC-homo) to the heteroskedastic VFC model and comparing the tradi-

tional VAR to the heteroskedastic VAR model (VAR-hetero).

Appendix C: Classical Analysis of the VFC Model

In this Appendix, classical estimation and testing of the VFC model given in Equation 5

is presented. Some basic results and notation drawn upon here are given in Appendix A.

Estimation

For ¯xed values of ° = (rF ; rC)
0 estimation could proceed by Ordinary Least Squares,

equation by equation. This suggests a strategy where a grid of possible values for rF ; rC
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is chosen by considering the discontinuities in the sum of squares function produced by

the discreteness of the observed data. Unlike standard threshold models the VFC models

does not have a °at sum of squares function between grid points but we ignore this

extra complication. At each grid point, the sum of squared errors from each equation is

calculated:

s2(°) = trace

Ã
TX
t=1

(Y
0
t ¡Xt(°)AOLS(°))

0
(Y

0
t ¡Xt(°)AOLS(°))

!

One then chooses as estimates of rF ; rC , the values which minimize s
2(°):

Although the ordinary least squares estimator so de¯ned will be consistent for the

conditional mean parameters and thresholds, it will be more useful for our purposes to

consider maximum likelihood estimation. There are three reasons for this. First, as dis-

cussed below, it allows the construction of a test for nonlinearity along the lines developed

in Pesaran and Potter (1997). Second, it will become apparent that there is substantial

variation across threshold values in the matrices §0;§1;§2 and that these can have im-

portant e®ects of the dynamics of the model. Thus, the estimation of these matrices is

important. Finally, in implementing the simulation methodology of Hansen (1996), the

use of GLS type estimators greatly simpli¯es the construction of the test statistics since

it incorporates possible conditional heteroskedascity present in the residuals.

For the VFC model maximum likelihood estimates can be found by iterated feasible

generalized least squares techniques. Further, while the grid search is proceeding one can

calculate various test statistics and \bootstrap" distributions for them. The procedure

is as follows:

1. Generate and store v which is aKT£J matrix of standard Normal random variates
which ith column vi:

2. For a grid point ° estimate the VFC model by OLS.
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3. Construct estimates of §0;§1;§2 from the estimated innovations:

b§0 =

TX
t=1

1(CORt¡1 = 1)(Y
0
t ¡Xt(°)AOLS(°))

0
(Y

0
t ¡Xt(°)AOLS(°));

b§1 =

TX
t=1

1(Ct¡1 = 1)(Y
0
t ¡Xt(°)AOLS(°))

0
(Y

0
t ¡Xt(°)AOLS(°));

b§2 =

TX
t=1

1(Ft¡1 = 1)(Y
0
t ¡Xt(°)AOLS(°))

0
(Y

0
t ¡Xt(°)AOLS(°)):

4. Use these estimates to calculate the GLS estimate, AGLS(°):

5. Keep iterating between steps 2 and 3 (replacing AOLS(°) with the latest AGLS(°)

in step 2), until the parameters converges.

6. Save the value of the log likelihood at this grid point:

¡0:5
½ PT

t=1 1(CORt¡1 = 1) ln (det [§0;MLE ]) + 1(Ct¡1 = 1) ln (det [§1;MLE ])

+1(Ft¡1 = 1) ln (det [§2;MLE ])

¾
7. Construct and store the quadratic form:

a
0
MLE¨

0[¨
0 £
x0(°)- ¡1(°)x(°)

¤¡1
¨]¡1¨aMLE

and construct and store J additional quadratic forms using the Normal random

variates generated in Step 1. That is, for i = 1; ::; J calculate:³£
x0(°)- ¡1(°)x(°)

¤¡1
x0(°)- ¡1(°)vi

´0
¨0[¨

0 £
x0(°)- ¡1(°)x(°)

¤¡1
¨]¡1³

¨
£
x0(°)- ¡1(°)x(°)

¤¡1
x0(°)- ¡1(°)vi

´
8. Repeat procedure from step 2 for all grid points and choose as the MLE estimate

of ° that maximizes the log likelihood function.

9. Calculate various information criteria at the MLE of °:
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The computational demands of this estimation procedure are quite high because a

reasonable number of grid points can easily be over 2,000. Figures C.1 and C.2 show the

concentrated log likelihood across the grid points for the VFC and VAR-hetero models.

This concentrated likelihood was also used in the posterior simulator for the thresholds

as discussed above.

Testing

Testing in nonlinear time series models such as the VFC model is complicated by Davies'

problem. In the present case, the nuisance parameters, rF and rC , are not identi¯ed under

the linear null hypothesis. Hansen (1996) outlines a simulation based method for calcu-

lating P-values for tests of the linear null which we follow here in step 7. The J quadratic

forms constructed at each grid point will be draws from a Chi-squared distribution with

2K2 degrees of freedom. Under the null hypothesis of £1 = £2 = 0 the quadratic form

constructed using the MLE of £1;£2 will have an asymptotic Chi-squared distribution

for a grid point chosen at random. However, test statistics constructed from the grid by

maximization and averaging will not have Chi-squared distributions. The distribution

of such statistics can be found by performing the same operation on the each of the J

simulated statistics individually to construct an approximation to the true distribution.

Following Andrews and Ploberger (1994), in this paper we not only consider the SUP

WALD test statistic, but also the average of the Wald statistics (AVE WALD) and the

exponential average of the Wald statistics (EXP WALD).

An alternative test procedure is outlined in Pesaran and Potter (1997). Davies' prob-

lem does not occur if we de¯ne the null hypothesis as one with a linear conditional mean,

but °oor and ceiling e®ects present in the error covariance (i.e. the VAR-hetero model

introduced in Section 2). Hence, a standard likelihood ratio test involving the VFC and

VAR-hetero models can be done in this case. It is worth stressing that the Hansen ap-

proach yields a test for any °oor and ceiling e®ects in the conditional mean but can be

38



a®ected by strong °oor and ceiling e®ects in the error variance-covariances whereas the

Pesaran-Potter approach yields a test for °oor and ceiling e®ects in the conditional mean

only.

The Pesaran-Potter test requires only the maximum values of the likelihood func-

tion for the VFC and VAR-hetero models. Thus, it requires a parallel grid search to

estimate the VAR-hetero model. The likelihood ratio test based on these two models

will, asymptotically, have a Chi-squared distribution with appropriate degrees of free-

dom. Constructing this test statistic is clearly computationally intensive, since it doubles

the time required for estimation. However, it allows one to investigate properties of the

two concentrated (with respect to °) likelihood surfaces that contain useful information.

In particular, given that the grid is chosen so that reasonable amounts of data must be

present in all 3 regimes, one can examine extremely conservative test statistics such as

a minimum likelihood ratio. Asymptotically, the minimum likelihood ratio will be ¯rst

order stochastically dominated by a Chi-squared distribution with appropriate degrees of

freedom. In the empirical section we consider the minimum likelihood ratio for VFC vs

the VAR and the VAR-hetero vs the VAR.

Appendix D: Further Details on Impulse Response Anal-

ysis

For the VFC model simulation of Vt+i for i = 0; ::; n is required (in addition to MCMC

simulation). Since these are IIDN this additional simulation is easy to carry out. For the

VAR and VAR-hetero models analytical results (partially sketched below) can be drawn

upon so that no simulation beyond the MCMC is required.

We use the posterior draws from the Bayesian analysis for each type of model to

construct the generalized impulse response function (see Koop, 1996). The Normality

assumption on the errors is crucial for ease of calculation of GI0. Partitioning the error
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covariance matrix as (where we suppress subscripts and superscripts in the partition):

§mt =

�
§11 §12
§21 §22

¸
;

we have

cGIm0 » N µ�§12§¡122 [v3; v4]0[v3; v4]
0

¸
;

�
§11 ¡ §12§¡122 §21 §12

§21 §22

¸¶
;

for each draw m from the posterior. This is then averaged across posterior draws. For

the linear-in-mean models the draw of the ¯rst order coe±cient matrix is used in the

recursion: cGImn = (©m)ncGImn¡1
to obtain the impulse response at other horizons, where © is the matrix of VAR(1)

coe±cients.
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