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Abstract

This paper brings together two important but hitherto largely unrelated areas
of the forecasting literature, density forecasting and forecast combination. It pro-
poses a simple data-driven approach to direct combination of density forecasts using
“optimal” weights.
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1 Introduction

Measures of uncertainty surrounding a “central tendency” (the point forecast) can enhance
its usefulness; e.g. see Garratt et al. (2003). So called “density” forecasts are being used
increasingly since they provide commentators with a full impression of the uncertainty
associated with a forecast; see Tay & Wallis (2000) for a review. More formally, density
forecasts of inflation, say, provide an estimate of the probability distribution of its possible
future values.

It is well established that combining competing individual point forecasts of the same
event can deliver more accurate forecasts, in the sense of a lower root mean squared error
(RMSE); e.g. see Stock & Watson (2004). The success of combination follows from the
fact that individual forecasts may be based on misspecified models, poor estimation or
non-stationarities; e.g. see Hendry & Clements (2004).

This paper takes the natural next step of considering density forecast combination,
to-date a relatively unexplored area. This brings together two important but hitherto
largely unrelated areas of the forecasting literature in economics, density forecasting and
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forecast combination.1 We propose a simple data-driven approach to combine density
forecasts directly using “optimal” weights.

How we measure the accuracy of forecasts is central to how we choose to combine
them “optimally”. Point forecasts are traditionally evaluated on the basis of their RMSE
relative to the outturn. Then point forecasts can be optimally combined to achieve the
most “accurate” combined forecast, in the sense of minimum RMSE; this amounts to
choosing the optimal weights via OLS estimation of the outturn on the competing point
forecasts. Our methodology for optimally combining density forecasts extends this logic
and is motivated by the desire to obtain the most “accurate” density forecast, in a statis-
tical sense. It can be contrasted with economic approaches to evaluation, that evaluate
forecasts in terms of their implied economic value; see Granger & Pesaran (2000) and
Clements (2004).

The plan of this paper is as follows. Section 2 discusses some characteristics of com-
bined density forecasts, and Section 3 proposes a simple approach to optimally choose
the combining weights. Section 4 then provides an application to UK inflation. One-year
ahead density forecasts of UK inflation are now published each quarter both by the Bank
of England in its “fan” chart and the National Institute of Economic and Social Research
(NIESR) in its quarterly forecast, and have been for the last ten years. The fan chart
is central to the setting of monetary policy by the Monetary Policy Committee at the
Bank of England. We examine whether in practice improved density forecasts for infla-
tion might have been obtained if one had optimally combined these competing forecasts.
Section 5 concludes.

2 Combination of Density Forecasts

Consider N forecasts made by forecaster i (i = 1, ..., N) of a variable yt at time t (t =
1, ..., T ), assumed to be real-valued. These N forecasts, denoted git, are density forecasts,
assumed continuous. While the benefits of combining information about point forecasts
are well appreciated in economics, less attention has been paid to the aggregation of
probability distributions. However, this has received considerable attention within many
management science and risk analysis journals; for reviews see Genest & Zidek (1986)
and Clemen & Winkler (1999). One popular approach is to aggregate these N density
forecasts directly: the “linear opinion pool” takes a weighted linear combination of the
forecasters’ probabilities. Then the combined density is defined as the finite mixture:

pt(yt) =
N∑

i=1

wigit(yt), (1)

1Related work has considered the combination of event, interval and quantile forecasts; see Clements
(2002) and Granger et al. (1989). These inevitably involve a loss of information compared with con-
sideration of the ‘whole’ density; e.g. only as the number of quantiles examined reaches infinity is no
information about the density lost. Garratt et al. (2003) consider the combination of probability forecasts
based on Bayesian model averaging.
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where wi are a set of non-negative weights that sum to unity. This combined density
satisfies certain properties such as the “unanimity” property (if all forecasters agree on a
probability then the combined probability agrees also); for further discussion see Genest
& Zidek (1986) and Clemen & Winkler (1999). Further descriptive properties of mixture
distributions are summarised in Everitt & Hand (1981).

Inspection of (1) reveals that taking a weighted linear combination of the forecasters’
densities can generate a combined density with characteristics quite distinct from those
of the forecasters. For example, if all the forecasters’ densities are normal, but with
different means and variances, then the combined density will be mixture normal. Mixture
normal distributions can have heavier tails than normal distributions, and can therefore
potentially accommodate skewness and kurtosis. If the true (population) density is non-
normal we can begin to appreciate why combining individual density forecasts, that are
normal, may mitigate misspecification of the individual densities. Equally, if the true
distribution is normal combining using (1) will, in general, get the distribution wrong; for
further discussion see Hall & Mitchell (2004).

The key practical issue is how to determine wi. Granger & Jeon (2004) suggest a thick-
modelling approach, based on trimming to eliminate the k% worst performing forecasts
and then taking a simple average of the remaining forecasts. Bayesian model averaging
has been suggested also; e.g. see Garratt et al. (2003). This provides a means of weighting
alternative model based density forecasts according to their respective posterior proba-
bilities. These probabilities are often proxied by some measure of the relative statistical
in-sample fit of the model. Most simply, equal weights, wi = 1/N , have been advocated;
e.g. see Hendry & Clements (2004).

In contrast to Bayesian model averaging, the simple data-driven approach to density
combination suggested in this paper, which is designed to seek out the “optimal” values
of wi, is not predicated on estimation of a statistical model; it is operational both with
model-based and subjective (e.g. survey based) density forecasts.

3 “Optimal” combination of density forecasts: a sug-

gestion

While point forecasts are traditionally evaluated on the basis of RMSE, density forecasts
can be evaluated statistically ex post using the probability integral transform; see Diebold
et al. (1998). They popularised the idea of evaluating a sample of density forecasts based
on the idea that a density forecast can be considered “optimal” if the model for the density
is correctly specified.

A sequence of estimated density forecasts, {pt(yt)}T
t=1, for the realisations of the process

{yt}T
t=1, coincides with the true densities {ft(yt)}T

t=1 when the sequence of probability
integral transforms, zt, is independently and identically distributed (i.i.d.) with a uniform

distribution, U(0,1), where: zt =

∫ yt

−∞
pt(u)du, (t = 1, ..., T ).

Density forecasts are optimal and capture all aspects of the distribution of yt only
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when the {zt} are both i.i.d. and U(0,1). Various statistical tests have been employed to
evaluate density forecasts.2 Let s(zt) denote a generic test statistic for H0: optimality.
For s and a given choice of size, say 5%, the statistic must have an associated critical
region {s(zt) > c} , where PH0 [s(zt) > c] ≤ 5%. We reject H0 when s(zt) > c.

Then define the “optimal” combination weight vector, ŵ, where w = (w1, .., wN), as
that w that minimizes the test statistic s(zt):

ŵ = arg min
w

s(zt). (2)

Minimizing the test statistic over w delivers a test statistic with size less than or equal
to that associated with w 6=ŵ which in turn is less than or equal to the nominal size; for
related discussion in terms of testing for common features see Engle & Kozicki (1993).

Unfortunately there is no clear consensus to-date about the most appropriate test for
i.i.d. uniformity. Various tests have been used in empirical studies; generally, these have
included separate tests for the distribution (tests for uniformity or, via a transformation,
normality - see Berkowitz (2001)) and dependence. Testing is complicated by the fact
that the impact of dependence on the tests for uniformity/normality is unknown, as is
the impact of non-uniformity/normality on tests for dependence.

In the application below we focus on the Anderson and Darling (AD) goodness-of-fit
test. This tests if a sample of data come from a population with a uniform distribution.
Noceti et al. (2003) found the AD test to have more power to detect misspecification in
the mean, variance, skewness and/or kurtosis of the forecasts than related distributional
tests. The AD test is not designed to be robust to dependence. While we could use some
joint test for i.i.d. uniformity, it is nevertheless instructive to find those weights that are
optimal distributionally.3 This is particularly so in this application where we might expect
serial dependence in {zt} since the forecast horizon is longer than the periodicity of the
data. In such a case it is not obvious that we wish to eradicate dependence completely.
Comparisons of ŵ across different statistical tests could be informative in drawing out
different aspects of ‘optimality’.

4 An application to UK inflation

We focus on quarterly forecasts of one-year ahead RPIX inflation (RPI excluding mortgage
payments), the principal monetary policy target over the sample period. The year ahead
forecasts correspond to a five quarter ahead horizon.

As discussed by Hendry & Clements (2004), in any application the reasons for success
or failure of combination can be multi-faceted. This application is intended to illustrate

2Graphical means of exploratory data analysis are often used too; see Diebold et al. (1998).
3Hong (2002) has proposed a joint test. This is theoretically attractive as being a joint test one

can control the size of the test, something that cannot easily be done using separate tests for unifor-
mity/normality and independence. Thompson (2002) suggests a portmanteau test of unformity and
independence.
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the use of the proposed method of combination, rather than explain why combination
may, or may not, help.

The Bank of England has published one-year ahead inflation density forecasts each
quarter from 1993q1. Up until 1995q4 the density forecast is (implicitly) assumed nor-
mal. From 1996q1 the Bank has published the so-called “fan” chart, that allows for
skewness. The fan chart is based analytically on the two-piece normal distribution; see
Wallis (2004).4

NIESR density forecasts are published each quarter in the National Institute Economic
Review. Since 1992q3 NIESR has, in a sense implicitly, published probability forecasts
for inflation, in that the Review contained a table indicating the historical accuracy of
their forecasts based on the mean absolute error.5 Since 1996q1 NIESR has explicitly
published probability forecasts for inflation. Normality is assumed, because earlier work
that analysed the historical errors could not reject it. The variance of the density forecast
is then set equal to the variance of the historical forecast error.6 The Review focuses on
forecasting inflation in the fourth quarter of the current year and the fourth quarter of
the next year; therefore only the q4 publication offers a one-year head forecast. While
we can extract from back-issues of the Review one-year ahead point forecasts for the
other quarters, published uncertainty estimates are only available for q4. Therefore, we
make an assumption in order to infer uncertainty estimates for the other quarters. We
simply assume the density forecast is normal with standard deviation equal across the four
quarters in a year. This assumption is sensible if we believe NIESR only re-calibrated
their forecast variances once a year.

As is increasingly common in forecasting ‘competitions’, and following Clements (2004)
in his evaluation of Bank density forecasts, we also consider a benchmark density forecast.
It is assumed Gaussian with mean equal to actual inflation five quarters previously (so
that it is known in real-time) and variance equal to that estimated from the available
sample for actual inflation. Using actual inflation data up to 2004q2, we therefore have a
sample of 42 density forecasts to compare with the subsequent outturn for RPIX inflation
from 1994q1-2004q2.

4.1 In-sample and recursive out-of-sample results

We compare the performance of Bank of England, NIESR, benchmark and combined
density forecasts, see (1), both in-sample and using recursive out-of-sample experiments.
In-sample we compute the optimal combining weights on the three forecasts using all
of the 42 time-series observations. Let w1 denote the weight on the Bank of England
density and w2 the weight on the NIESR density, implying a weight of (1− w1 − w2) on

4The density forecasts from 1993q1-1997q2 are available at:
http://www.bankofengland.co.uk/inflationreport/historicalforecastdata.xls. From 1997q3 they are available
at http://www.bankofengland.co.uk/inflationreport/rpixinternet.xls.

5Assuming normality, a 58% confidence interval around the point forecasts corresponds to the point
estimate plus/minus the mean absolute error.

6Past forecast errors are commonly used as a practical way of forecasting future errors; e.g. see Wallis
(1989), pp. 55-56.
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the benchmark density. We restrict attention to positive values of wi, and search for the
optimal weights by considering all combinations of the weights in intervals of 0.01 in [0, 1].

The out-of-sample analysis is designed to simulate whether in practice, in real-time,
one could have pooled the Bank of England, NIESR and benchmark density forecasts to
obtain ‘better’ forecasts. Accordingly, from 1997q3 recursively we re-estimate the optimal
combining weights using data available up to period (t − 5). This acknowledges the fact
that one has to wait five quarters to evaluate the performance of a given (year-ahead)
forecast. These recursively computed optimal weights are then used to produce a series of
combined density forecasts from 1997q4 to 2004q2. Our out-of-sample period corresponds
to the period post Bank of England operational independence.

Figure 1 illustrates the in-sample performance of the combined density forecast, as
judged by the value of the AD test statistic, for different combinations of weights on the
three rival forecasts.
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Figure 1: In-sample performance of the combined density forecast for various weights

Figure 1 shows that the optimal weights in-sample, those weights that minimize the
AD test statistic at a value of 0.715, are w1 = 0.27, w2 = 0.00, implying a weight of 0.73
on the benchmark forecast. This is a clear improvement with respect to both focusing
on one forecast exclusively and simply using equal weights across the three competing
forecasts. Using one forecast alone we see that the AD statistic equals 1.722 for w1 = 1,
3.350 for w2 = 1 and 2.549 for w1 = 0, w2 = 0. So of the three individual density forecasts
only those of the Bank of England appear well calibrated; the 95% critical value of the
AD test is 2.5. Simply using equal weights across the three competing forecasts delivers
an AD test statistic of 2.175. Assuming equal weights between the Bank of England and
NIESR, and placing no weight on the benchmark density, yields an AD value of 3.813.
Looking at the main diagonal on Figure 1 we see that when placing a zero weight on
the benchmark density, the higher the weight on the Bank of England and the lower the
weight on NIESR, the better the performance of the combined density. This finding is

6



consistent with knowledge that NIESR over-estimated the degree of uncertainty.
With the advantage of hindsight we can see that by considering historical forecast

errors back until 1982, NIESR were basing their uncertainty forecasts on their track-record
across two different inflation ‘regimes’, the recent regime (post 1992/3) characterized by
lower volatility. From 2002 NIESR considered historical forecasting errors from 1993 only
and the variance of their density dropped. This serves as a timely reminder to forecasters
that just as with point forecasts, basing density forecasts on past experience can lead to
misleading forecasts, something in fact well known to NIESR themselves as evidenced by
the following quote from Poulizac et al. (1996) p. 62, “Both our inflation forecast and
the reliability of this forecast must depend on the seriousness with which the government
approaches inflation targetting. It is not clear that past experience is a good guide to
this... and, in turn, [this] probably implies that the error variances [based on historical
performance]... overstate the current uncertainty associated with the inflation rate”.7

Table 1 presents the out-of-sample results. It compares the value of the AD test
statistic using optimal weights, recursively computed, across the three rival models with
equal weights and weighting schemes that focus on the Bank of England, NIESR or
benchmark densities alone. Table 1 shows that using optimal weights also delivers gains
out-of-sample.

Table 1: Performance of the combined density forecast using various weighting schemes
in recursive out-of-sample experiments

weights AD test statistic
optimal 0.526
Bank: w1 = 1 0.675
NIESR: w2 = 1 4.181
benchmark: w1 = 0; w2 = 0 1.762
equal 1.425

5 Conclusion

This paper proposes a simple means of optimally combining information across competing
density forecasts. An application to UK inflation suggests that pooling information across
density forecasts can deliver empirical gains. This is consistent with previous findings
about point forecasts. Future work should consider alternative weighting schemes and
examine how one can statistically test the significance of a given density forecast relative
to a rival.

7NIESR, see Blake (1996), did consider how stochastic simulation could be used as an alternative to
historical errors to measure the uncertainty associated with the inflation rate. It is explained that this is
expected to deliver a better measure of uncertainty if a new policy regime (say a new target for inflation)
has been adopted. Using a coherent policy structure with interest rate setting determined by a monetary
policy rule, Blake found that stochastic simulation suggested a smaller inflation standard error.
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