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Abstract

It is important for financial institutions to develop methods to predict their
exposure and keep their risk under control. Portfolio managers can insure
themselves against the value (of a diversified stock portfolio) dropping below
a certain level, by holding in conjunction with the stock portfolio, an index op-
tion derivative security. The work reported in this paper is concerned with the
study of non-parametric methods for estimating the pricing formula of option
derivative securities. Two non-parametric approaches, the Projection pursuit
method (PPR) and the Local polynomial approach (LOESS), are studied and
compared to a benchmark parametric Black-Scholes (B-S) approach.

The practical relevance of these approaches is tested, when applied to pric-
ing and hedging of real-world LIFFE FTSE 100 index options from April 97 to
November 97. We compare the two methods by means of constructing a riskless
portfolio of stocks, bonds and option derivatives securities. The portfolio is then
delta-hedged on a daily basis using a dynamic trading strategy in stocks and
bonds during the lifetime of the option instrument. The tests carried out show
that both methods generate similar responses, although each method can out-
perform the others depending on market conditions, such as, time to maturity
of the option instrument.
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1. Introduction

Derivative instruments are securities whose value is obtained from the value
of an underlying security or basket of securities. The most common derivative
instruments are options, forwards and futures. Much of the success of the market
for options (and other derivative) securities may be traced back to the seminal
work done by F. Black and M. Scholes [BLA73] and R. Merton [MERT73], in
which closed-form options pricing formulas were obtained through a dynamic
hedging argument and a no-arbitrage condition. These formulas have since been
generalised and applied to a vast range of securities and contexts. The deriva-
tion of these pricing formulas, either analytically or numerically, depends on the
particular parametric form of the underlying asset’s price dynamics.

In this paper non-parametric models for pricing and hedging derivative securi-
ties, in which the data, e.g., asset price, strike price and time to maturity, is
allowed to determine both the dynamics of the asset’s price, and its relation
to the prices of derivative securities with minimal assumptions on the asset’s
price and the derivative pricing model (See, e.g., [BAR97], [BARI1], [HAR95],
[HAR90], [MULSS]|, and [FAN96]). Non-parametric models would estimate a
conditional expected value Ely|x¢] without imposing any functional form upon
this relation,

ye = m(xy) + (1)

where m(x¢) is some unknown function of x;, and uy is assumed to be noise. In
this paper y; is regarded as the price of a call option derivative security.

The price of a call option can be derived using parametric approaches. For
example, the Black-Scholes (B-S) formula, links the price of the derivative as-
set, S, the strike or exercise price, X, the instantaneous standard deviation (or
volatility), o, the risk-free interest rate, r, and the maturity (or time to expi-
ration), T, of the derivative security. Unfortunately, the B-S formula is known
to break down for out-of-the money (when the discount exercise price is greater
that the asset price) and short-maturity options, where the degree of nonlinear-
ity is high. Moreover, implicit volatility, computed from options prices, change
over time and seems to be a function of the ratio between the price of a deriva-
tive asset, S, and the strike price X [PAGY6].

The basic idea behind non-parametric estimation of m(xz) is to combining a set
of basis functions ;(x), and to then estimate the correspondong set of parame-
ters G, leading to m (x;) = Ejl\il ijj (x). Hutchinson et. al. [HUT94] studied
the options model above using neural networks. Kearns [KEA93] simulated data
from an option pricing model with stochastic volatility and non-parametrically
estimated the non-linear function implied by a particular pricing model using
the flexible Fourier form of Gallant [GALS81]. Both of these methods have ap-
proximated the unknown function globally and then predicted what value it



would have at given points x;= x.

An alternative non-parametric approach is to estimate o = m(xy) by using only
those observations whose value is close to the target value x. An appropriate
estimate can be found (if m(x) is assumed constant) by choosing « to minimise
Zthl (vt - a)?K((x¢- x) / h), where K(.) is a kernel or weighting function that
gives low weight to observations for which x; is far from x. The window-width
parameter, h, determines exactly how far away the observation can be in order
to be included in the computation. The principal disadvantages of such local
analysis are that there are well known biases in the estimator of m(x) and,
when the dim(x;) is large, it is likely that very few observations will be used
to determine each point. In recent years an attempt has been made to com-
bine the two approaches by assuming that the function can be parametrically
approximated around the point x by, e.g., a linear polynomial, so that the op-
timisation problem becomes one of choosing v and § such that Z;r:l(yt - Q-
B(x4-x))?K((x¢ - x)/h) is minimised. In [FAN96], it is shown that these locally
parametric methods can produce big improvements in the properties of the local
estimator. Recently, Bossaerts and Hillion [BOS97] have proposed using other
functions rather than polynomial functions to price options.

The underlying aim of the work reported in this paper is to extend the Hutchin-
son et. al. non-parametric estimation tests by including the multivariate local
polynomial regression approach (LOESS) and contrasting it with the projection
pursuit approach (PPR). The set of data used is obtained from LIFFE FTSE-
100 Index options from April -97 to November 97.

Even though, some theoretical advantages of non-parametric models over the
parametric models have been presented in [HUT94], such approaches would not
be appropriate for rarely traded derivatives or newly created derivatives. Fur-
thermore, if the fundamental asset’s price dynamics is well understood and an
analytical expression for the derivative’s price is available under these dynamics,
then the parametric formula will almost always dominate the non-parametric
approach in pricing and hedging accuracy.

Section 2 gives a concise background review of non-parametric approaches. Sec-
tion 3 investigates and evaluates the range of applicability of non-parametric
approaches. The Projection pursuit method (PPR) and the Local polynomial
approach (LOESS) are studied and compared to a benchmark parametric Black-
Scholes (B-S) approach. The comparison is done in terms of an out-of-sample
delta-hedging strategy using real-world data obtained from London Interna-
tional Financial Future Exchange (LIFFE). The paper concludes in Section 4.

2. Non-parametric Regression methods

The well known B-S model [BLA90 and HUL97] and its extension assume that
the probability distribution of the stock price at any given time is lognormal. If



this assumption is incorrect, there are liable to be biases in the prices produced
by the model. To this effect, the flexibility of non-parametric approaches is
extremely helpful in a preliminary and exploratory statistical analysis of a data
set [HAR90]. For example, if no a priori model information about the regression
curve is available, the non-parametric analysis could help in suggesting simple
parametric formulations of the regression relationship.

Linear regression is one of the most widely used non-parametric techniques.
For data in which the graphical evidence clearly indicates a linear relationship
between the predictors and the response, a linear model provides a simple and
easy description of the data. While this approach has been widely used, it suffers
from a few drawbacks [FAN96]. Another intuitive estimator for the conditional
mean function m(x) is the running local average or its improved version, the lo-
cally weighted average [FAN96]. Since bias increases and variance decreases with
increasing bandwidth h (which is a non-negative number controlling the size of
the local neighbourhood of the region around x), selection of h is a compromise
between bias and variance in order to achieve small mean squared error [FAN9G].

2.1. Local polynomial regression and derivative estimation

From the function approximation point of view, some well used estimators (e.g.
the Nadaraya-Watson estimator) uses a locally constant approximation. This
approximation may suffers from large bias, particularly in regions where m’(x) is
large. The bias of the Nadaraya-Watson estimator is also large at the boundary
of the sample points. One way to repair these drawbacks is to use a higher-
order approximation [HAR95]. Suppose that the regression function m(x) can
be approximated locally to x, using a Taylor’s expansion, by a polynomial of
order p,
~ 5P mP(x) j — NP j

m(X;) ~ 3l —r - (Xi-x) =350, G(Xi x) (2)
for x in a neighbourhood of xy. This suggests fitting a local polynomial regres-
sion,

min 30, { Y- X0, G(Xix)'} Kn(Xi - x) (3)

where K(.) denotes a kernel function, and h is a bandwidth. Note that when p =
0, the above estimator is the Nadaraya-Watson approach. An in depth treatment
of the optimal bandwidth, hyp¢, and the values of the bias and variance of this
regression method can be found in [FAN96].

Let Bo(x), ... , Bp(x) be the minimiser of equation (3). The local polynomial

regression estimator of the regression function is m(xo) = Bo(xo). The whole
curve 1(.) is obtained by running the above local polynomial regression with
Xo varying in an appropriate domain of interest. Furthermore, local polynomial
fitting can easily be applied to derivative estimations. Suppose that we fit the
local polynomial of order p, then we can obtain an estimator for m®)by



mW(x) = v! B,(x) (4)

Usually, the order of the polynomial p is taken to be p = v+1 or occasionally p
= v+3, based on the consideration of the efficiency of the estimator and cost
of computation.

2.2. Multivariate regression approaches

In multivariate regression problems, one of the tasks is to study the structural
relationship between the response variable Y and the vector of covariates X =
(Xy, Xa, ... , Xq)T viam(x) = E(Y | X = x), where x = (x1, ... , xq)T and m(x)
= m(xq, ... , Xq). The most flexible models do not make any assumption about
the form of the d-variate function m(x). Although generalisation of most of the
univariate smoothing techniques to a multivariate surface is feasible, surface
smoothing is characterised by a serious problem known as the curse of dimen-
sionality. This problem refers to the fact that a local neighbourhood in higher
dimensions is no longer local, that is, a neighbourhood with a fixed percentage
of data points can be very big and far from what is understood by the term local.

An additive model extends the notion of a linear model by allowing some or all
linear functions of the predictors to be replaced by arbitrary smooth function
of the predictors (See. e.g. [BRES85], [FAN96]). In aditive models, a significant
limitation on the type of surfaces considered is that the effects enter the model
additively, without interactions. A model with component wise additive main
terms, and pair wise interactions term is presented in [FAN96]. However, the
number of parameters in the model could be high, and therefore, the curse of
dimensionality is still present.

The two approaches reported in this paper overcome most of the limitations
of previously mentioned models. The multivariate local polynomial regression
estimator (LOESS) is a local linear regression estimator procedure proposed by
Cleveland and Devlin [CLES88]. In this approach the smoothing is done along
the coordinate axes of the covariate, and the amount of smoothing is the same
in each direction (See also Appendix A.1). In the other approach, the projection
pursuit regression (PPR), the basic idea is to take advantage of the fact that a
regression surface may be of a simple additive struture. Further more, instead of
using constant functions of projections along the coordinate axes, the regression
surface is approximated by a sum of empirically determined univariate functions
of a particular projection (See also Appendix A.2).

3. Results and Comments

In this section we investigate the range of applicability of two non-parametric
approaches when used to price and hedge call options securities. The projec-
tion pursuit method (PPR) and the local polynomial approach (LOESS), are
compared to a parametric Black-Scholes (B-S) approach. The techniques are



compared in terms of an out-of-sample delta-hedging strategy using real-world
data obtained from London International Financial Future Exchange (LIFFE).
Although recent theoretical development suggest that there are significant con-
nections between many of the non-parametric methods (see e.g., references in
[HUT94]), a rigorous comparison of these methods is not our primary goal.

To study the different approaches we use the same simplification as in [HUT94].
Hutchinson’s presentation of results relies on Merton’s proposition that assumes
that the statistical distribution of the underlying asset’s return is independent
of the level of the stock price S, and therefore, the option pricing formula is
homogeneous of degree one in both S and X. Hence, Y = ¢/X and X; = S/X
Xy = T-t; where c is the price of a call option derivative security, S is the price of
the derivative asset, X is the strike or exercise price, and T-t is the maturity (or
time to expiration). If this is the case, we need only to estimate m(S/X, 1, T-t).

Since we need to construct a delta-hedging strategy, the first derivatives of
c need to be evaluated. Delta can be estimated using the LOESS approach (by
means of expression (4)). For PPR, however, the use of a smoother for esti-
mating the non-linear function Y, forces a numerical approximation of Delta.
The numerical approximation of Delta is accomplished in two steps: (i) a first-
order finite difference (DIFF) for the range of the stock price S, (ii) and then
applying PPR to the datum point obtained from DIFF. Note that (ii) can also
be estimated using LOESS and hence we have also included these results. The
non-parametric model complexity was chosen following the findings reported in
[HUT94].

Examples of the estimates and errors for the different procedures studied are
presented in the sequence of Figures 1 to Figure 5. Figure 1.a shows a typical
out-of-sample data set, and Figure 1.b shows the Delta estimates using the first
order finite difference (DIFF) approach. Figure 2 shows the two non-parametric

regressions here studied (LOESS and PPR) on Y = % (call option price/strike
price) of the out-of-sample data set, and their corresponding residual error plots.
Recall that X; = S/X (stock price/strike price) and Xo = T-t (time to expira-
tion).

The results presented in the sequence of Figure 3 to Figure 5 are examples
of the following procedures to estimate the Delta of the call option.

LOESS + LOESS: This procedure obtains the Y = % and the value of Delta
using the LOESS approach (expression (4)). The option Delta estimation,and
the residual errors of this procedure are shown in Figure 3.

DIFF + LOESS: This procedure estimated first the Y = % surface using a first
order finite difference method (DIFF). To estimate (interpolate) a specific value
of Delta uses the LOESS approach (expression (4)).The option Delta estimation
and the residual errors of this procedure are shown in Figure 4.



DIFF + PPR: This procedure estimated the Y = % surface using a first order
finite difference method (DIFF). To estimate (interpolate) a specific value of
Delta uses the PPR approach. The option Delta estimation,and the residual
errors of this procedure are shown in Figure 5.

3.1. Performance measures

We use the same measures provided in [HUT94]hence, just the main points
are repeated here. A measure of performance for a given option pricing formula
is the difference between the terminal value of the call and the terminal com-
bined value of the stock and bond positions. More formally, denote V(t) as the
monetary value of the replicate portfolio at date t and let,

V(t) = Vs(t) + Vs(t) + Vel(t) (5)

where Vg(t) is the monetary value of stocks, Vg(t) is the monetary value of
bonds, and V¢ (t) is the monetary value of call options held in the portfolio at
date t. The initial comparison of this portfolio at date 0 is assumed to be,

Vs(0) = S(0)Ap,, (0), Ap,, (0) = 2@ (6)
Ve(0) = - Frirre(0) (7)
Vg(0) = - (Vs(0) + Vc(0)) (8)

where Frippr(.) is the actual value of the call option and Fp,(.) is its non-
parametric approximation. Since the stock purchase is wholly financed by the
combination of riskless borrowing and proceeds from the sale of the call option,
the initial value of the replicating portfolio is zero (i.e. V(0) = 0).

Prior to expiration, and at discrete and regular intervals of length 7 (which
we take to be approximately one day in our tests), the stock and bond posi-
tions in the replicating portfolio will be rebalanced so as to satisfy the following
relations:

Vs(t) = S(0)Ar,, (t), Ap,, (t) = 3F5;S>(t) )

np

Vi(t) = e Vg(t - 7) - S(0)(Ar,, (t)-Ar,, (t - 7)) (10)

where t = k7 <T for some integer k. The tracking error of the replicating
portfolio is then defined to be the value of the replicating portfolio V(T) at ex-
piration date T. In [HUT94] the following “tracking error” performance measure
is suggested,

§=e"E[| V(T) |] (11)



The quantity £ is simply the present value of the expected absolute tracking
error of the replicating portfolio.

Another measure of performance may be defined by combining the informa-
tion contained in the expected tracking error with the variance of the tracking
error. In [HUT94] the “prediction error” 7 is defined as:

n =T\ JE[V(T)] + Var[V(T) (12)

which is the present value of the square root of the sum of the squared expected
tracking error and its variance. Note that the expected tracking error of a delta-
hedging strategy might be zero, but the strategy is a poor one if the variance
of the tracking error were large.

3.2. Testing non-parametric approaches

The implementation of the non-parametric models and the computation of the
graphics presented in this section were carried out using the software package
S-Plus [VEN94] an extension of the statistical language S [BEC88]. The Delta
hedging test scenario was implemented using Microsoft Excel spreadsheet and
the test paths were constructed using [HUL97]. Despite the fact that the B-
S model is generally not used in its original form in practice, we used it here
because it is still a widely used benchmark model, and because it serves as an
example of a parametric model whose assumptions are questionable in the con-
text of LIFFE’s real-world data. The LIFFE contract months are March, June,
September, December plus the three nearby months. The last trading day is
the third Friday of the expiry month (or the last trading business day preceding
the third Friday). The data of our empirical analysis are daily closing prices of
FTSE 100 LIFFE options for the period from January-1997 to November-1997.
We divide the LIFFE data into five non-overlapping three-month periods. For
the LIFFE data, the number of future call options per subperiod ranged from
1680 to 2868, with an average of 2163. This data set differs from a synthetic
data due to the presence of noise in the real-world option prices and the irregular
trading activity of the options, especially for near-term out-of-money options.
To limit the effects of non-stationarities we test the regressions only on the data
from the immediately following month.

The B-S parameters r (risk free rate) and volatility, o, were estimated using
a window of the most recent data. Specifically, we estimate the B-S volatility,
o, for a given future contract using the immediately preceding subperiod data,
and a weighted average of the type suggested by Latane [CHI78]. We estimate
the risk free rate, r, for each option as the yield of the 7 days interbank loan
average of the preceding month to the initial activity of the option. The ap-
proximation to the cumulative normal distribution function to evaluate the B-S
model to up to six decimal points suggested by [HUL97] and [BLA90] is used
in the test paths.



3.3. Out-of-sample pricing and hedging

To see how the performance varies, we divide the input space into two regimes:
short and medium term regimes for the time-to-expiration input. For the short
term regime we mean less than one month, and medium term refers to up to 3
months. The other regimes are in-, near- and out-of-the money for the stock-
price/strike-price (S/X) input, that is, S/X = {0.97, 1.00, 1.03}. In each one of
the tests presented here, the performance of the non-parametric Delta-hedging
strategies are compared to the performance of a Delta-hedging strategy using
the B-S formula. The values of the following tables is the aggregate result of
averages on the paths tests.

3.3.1. Relative tracking error comparison

The results here presented use the ratio between the non-parametric approach
to the benchmark B-S solution, that is, el = &np/ Ep-s. Our results are sum-
marized in Table 1 for the short term regime, and in Table 2 for the medium
term regime. The results show that some of the non-parametric approaches
exhibit less tracking error than B-S in the in-the-money and near-the-money
regimes but not in the out-the-money regimes.

€Rel. = Enp/ Ens | BL-SC | LOESS+LOESS | DIFF+LOESS | DIFF+PPR
In_money 1.00 1.28 0.94 0.85
out_money 1.00 3.42 3.86 4.25
near_money 1.00 0.76 0.95 1.10

Table 1: Relative tracking error &rel.= &np/ {B-s comparison for short term regime.

€Re.= &np/ Ep.s | BL-SC | LOESS+LOESS | DIFF+LOESS | DIFF+PPR
In_money 1.00 0.99 0.73 0.36
out_money 1.00 1.12 1.27 1.60
near_money 1.00 0.88 0.99 1.19

Table 2: Relative tracking error {gel.= &np/ &B-s comparison for medium term regime.

3.3.2. Relative predictor error comparison

The prediction error combines the expectation and variance of the absolute
tracking error, hence the estimated prediction error is calculated with the sam-

ple mean and sample variance of |V(T)| taken over the set of test paths.

NRel. = Tnp/ MB-s | BL-SC | LOESS+LOESS | DIFF+LOESS | DIFF+PPR
In_money 1.00 1.62 1.41 1.07
out_money 1.00 1.46 1.55 1.80
near_money 1.00 0.80 0.85 0.99




Table 3: Relative predictor error nge;.= 7np/MB-s comparison for short term regime.

NRel. = Mnp/ MB-s | BL-SC | LOESS+LOESS | DIFF+LOESS | DIFF+PPR
In_money 1.00 1.07 0.86 0.58
out_money 1.00 1.41 1.49 1.87
near_money 1.00 0.90 0.95 1.07

Table 4: Relative predictor error ngrel. = fnp/ne-s comparison for medium term regime.

These results show that some of the non-parametric approaches exhibit less
tracking error than B-S In and Near-the-money regimes for all maturities (LOESS
+LOESS and DIFF+PPR); but not in the out-the-money regime.

We can say that all approaches generate similar responses surfaces and that
large errors tend to occur at the kink-point for options at the money, at ex-
piration and also along the boundary of the sample points. Without being to
conclusive about these preliminary findings we can observe that B-S approach
was consistently better out-the-moeny for all regimes. This seems to suggest
that since it is known that the B-S formula break down for out-the-money
regimes; the non-parametric approaches are not being very useful in the set of
data here analysed. These findings are generally in contrast with the results of
[HUT94, p. 884] where all non-parametric approaches are better, except for the
near-term in-the-money options.

4. Final Remarks

The underlying aim of the work reported in this paper was to evaluate the
usefulness of two non-parametric approaches when used to price and hedge call
options securities. The Projection pursuit method (PPR) and the Local polyno-
mial approach (LOESS) formed the core non-parametric algorithms with which
the Black-Scholes parametric approach was compared. The comparison was
made in terms of an out-of-sample Delta-hedging dynamic trading strategy us-
ing real-world data obtained from LIFFE.

The tests reported here aim at investigating, the ability to replicate the op-
tion through a dynamic hedging strategy. The results reported in this paper
contrast Hutchinson’s et al findings. In Hutchinson et al [HUT94] the out-of-
sample tests show some evidence that non-parametric approaches outperform
the Black-Scholes model on real-world data. In our case, Black-Scholes out-
performs the non-parametric approaches when the options price is out-of-the
money and/or close to the boundaries of the sample data points. These results
can be partially explained by the fact that the non-parametric methods were
not “fine tuned” in relation to, e.g., optimal number of data points and size of
bandwidth. This highlight the high sensitivity of non-parametric techniques to
the “tuning” of their specifications. The choice of model specifications could
easily have been biased due to the easiness of manipulation and flexibility of the
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LOESS model.

In relation to the choice of local polynomial regression, if the global function is
likely to have a specific shape, then it would make sense to use a function which
properly represents that shape. For example in [BOS97], the Black-Scholes for-
mula, was used to obtain option prices. An alternative venue for research is to
attempt hybrid solutions. In [BOS95] a parametric-driven modelling approach,
but a non-parametric conditional volatility method is applied in the study of
currency exchange rates.

Another significant sources of error in financial analysis lies in the fact that the
small number of observations in a given data set make it difficult to discrim-
inate statistically between alternative hypotheses. Sampling errors also exist
when, e.g., data comes from a single set of observations and may therefore not
be very representative. Also, the lower the number of observations, the lesser
the dependability of the model. On the other hand, big samples have a deci-
sive impact on the accuracy of the estimation. These issues were not explicitly
addressed in this study and therefore, the relation between the sample size and
approximation error could have influenced our findings. As it has been pointed
out in e.g. [HUT94] and [CHO96] this is an important aspect that deserves
further investigation.

Finally, the statistical properties of market dynamics are very different from
those assumed by derivatives pricing models, which are based on low-frequency
data. The classical approach of using low frequency financial data fails to reveal
that sampling time is not independent of the pricing process itself [CHO96]. For
example, transactions are more likely to occur when there is new information,
affecting the variance of the transaction price series, making the whole process
market behaviour dependent. In this context non-parametric approaches may
become a viable search for new option pricing strategies that could incorporate
the full complexity of market behaviour, which would allow us to study and
implement more sophisticated discrete hedging trading policies.
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Appendix A:
A.1. The multivariate local polynomial regression estimator: LOESS

The local linear fit is presented (i.e. p = 1). For simplicity of presentation
we focus only on estimation of the regression function m(x) (v = 0) [FAN96].
Lets assume that K is a multivariate probability density function, such that
JK(u)du = 1 and [uK(u)du = 0. Further we assume that the mean of the
density function K(.) is zero and the covariate matrix of K is uo(K) Iy, with I4
the d x d identity matrix. Define

Kp(u) = ﬁK(B’lu),

where B is a non-singular d x d matrix, the bandwidth matrix, and |B| denotes
its determinant. The observations are given by {(X{, Y;): i = 1, ... ,n}, with

Xi = (Xig, oo, Xiga )T Let xT= (x1, ... , Xq) be a point in RY. Then, the
multivariate version of (3) is given by the following minimisation problem
n d
S - Bo- 20io B(Xix3) P Ke (Xix), (13)
with respect to 8 = (B, ... , 34)*, where now
B = m(x) and B =255, i=1,...d (14)

A robust version of the above multivariate local linear regression estimation
procedure, called LOESS, was proposed by Cleveland and Devlin [CLE88]. In
LOESS, the bandwidth matrix B is taken to be of the form B = hly. This
means that smoothing is done along the coordinate axes of the covariates, and
that the amount of smoothing is the same in each direction. The multivariate
kernel function is taken to be of the form,

k() = k(uw, ., ug) = W { (35, ud)l/? } (15)

where W(.) is a univariate kernel function. Cleveland and Devlin take W(.) to
be the tricube kernel. Furthermore, in LOESS the following Euclidean distance
is used as a distance between points in the d-dimensional space R4

p(uyv) = { SL (uy-vy)? 1172 (16)

Finally LOESS use a nearest neighbour type of bandwidth, i.e., the neighbour-
hood of a particular observation Xy is determined by its associated bandwidth
hy which is the r-th smallest number among p(Xx,X;j), for j=1, ... ,n. Therefore,
when estimating m(.) at the observation Xy, a weight

K{t (X Xi)} = W [ £ { Tl (Xy- X)21/2) (17)

is assigned to each observation X;. The bias and variance of this approach can
be found in [FAN9G].
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A.2. Projection Pursuit Regression: PPR

The basic idea of additive models is to take advantage of the fact that a regres-
sion surface may be of a simple, additive structure. In the proposal of Friedman
and Stuetzle [FRI81], the idea is that instead of using constant functions of
projections along the coordinate axis, the regression surface is approximated by
a sum of empirically determined univariate ridge functions {g;} of projection

ﬁTX’
m(x) = 37, {6 %} (18)

In this class of exploratory projection technique, the idea is to describe “inter-
esting” projections by maximising an objective function or projection pursuit
index. The classical projection pursuit tries to find non normal projections of
the data, searching for information not revealed by the covariate structure.

Let (1, B2, ... , Bp denote p-dimensional unit vectors, as “directions” vectors,

the projection pursuit regression (PPR) algorithm [FRI81] finds My, direction

vectors 31, B2, ... , Bm, and non-linear transformations g;,g2, ... ,gm, such that
M

E[Y|X17 X2y e XP] = py + Zmilamgm{ﬁ;ﬁx} (19)

where p, = E(Y), and the g, have been standardised to have mean zero and
unity variance:

Egm{fnx} =0,Eg2 {fnx} =1 m=1,.. M

The observations Y, X; = (i1, Xi2, - , Xip) 1, i = 1, 2, ... , n, are assumed
to be independent and identically distributed random variables. The model
parameters am, gm, Om, m= 1, ..., My in equation (18) minimise the mean
squared error

E[y - /J'y - Zgilamgm{ﬁr’gx}]z (20)

over all possible ay,, gm, Bm-
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