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ABSTRACT
The purpose of this paper is to present a selective introduction of the traditional and most recent developments of
econometrics of panel data. We consider first the case of stationary variables. Thus we discuss the static models,
introducing the crucial distinction between fixed and random effects, and comparing estimation in levels with the
within-groups estimator. Then we present the dynamic models, introducing the Anderson and Hsiao (1981)
estimators, and the more efficient generalised method of moments (GMM) recently proposed by Arellano and Bond
(1991). We also present a useful transformation (orthogonal deviations) and some specification tests. Further, we
explore the basic consequences of non-stationarity for panel data and in particular consider the main results in
Pesaran and Smith (1995) and we examine a counter example to the Pesaran and Smith case due to Hall and Urga
(1999) which provides a new condition for valid aggregation. We finally consider the recent literature on panel data
unit roots tests and cointegration, and we provide some guidelines for empirical research.
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1. Introduction

Aggregate time series econometrics has been revolutionised by the introduction of
non-stationary time series analysis and cointegration since the mid-1980s. But this revolution
has left panel data estimation techniques largely unaffected. This is surprising since, by
definition, a panel data set consists of a standard time series data on a (possibly large)
number of economic agents, firms, households, etc. So all the problems which exist in
aggregate estimation with non-stationary variables must be equally present for a complete
panel. We would suggest that the only reason that little attention has been paid to these
issues is that panel data estimation is generally a complex and difficult task simply because
of the size of the data set which must be manipulated and researchers have been reluctant to
face these complex conceptual issues at the same time as dealing with this data complexity.
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This is, of course, not a defensible position. Recently a small number of papers (Robertson
and Symons (1992), Pesaran and Smith (1995) and Hall and Urga (1996)) have been appearing
which are beginning to face up to these problems and as a result we have begun to learn that
non-stationarity is at least as serious a problem for panel data sets as it is for aggregate data.
Indeed we are learning that if anything the implications are even more important.

The purpose of this paper is to present a selective introduction of the econometrics
of panel data and then to discuss some of the recent papers which have considered the
implications of non-Stationarity. The main aim is to provide an accessible guide to the most
widely used methods in practice; therefore, we consider only methods for the single equation
linear regression model, covering in detail only standard techniques for static models and
some recently developed GMM estimators for dynamic models with limited serial correlation2.

The growing interest in panel data modelling, especially over the '80s, reflects the
increasing availability of such data and advances in computing technology (powerful and
easy to use). It also reflects the growing interest in estimating models of individual behaviour
over time without having to use aggregate time series data.

Panel data provide repeated observations on the cross-section of individuals 3.
Econometric estimates therefore utilise both time series and cross-section variation in the
data.

The typical panel data set consists of a large number of cross-section units observed
at a few points in time. In general, for a variable y it we have i=1,...,N individuals observed for
t=1,..,T time periods. In a micropanel of households, firms or banks, T can be as small as 3 or
4 whilst N may refer to hundreds or thousands of individual units. It is natural to assume in
this case that the series follow stationary processes. In the case when N and T are both large,
the stationarity hypothesis needs to be tested and then the problem of aggregation over
micro units needs to be addressed. Even in the case in which T is large it may often be
informative to use panel data estimation, but it is import to test the homogeneity restrictions
across the coefficients of the N time series. If they are accepted by the data, this gives rise
to more efficient estimates (Zellner, 1969).

It is always the case that panel data analysis allows one to identify effects of economic
interest that would not be identified in a single cross-section, an obvious example of this is
the dynamics of an economic relationship. However these effects can be seriously biased by
the use of some panel data estimators, for example Robertson and Symons (1992) examine the
consequences of imposing equality restrictions on parameters in the presence of dynamics
and non-stationarity and find the possibility of very serious biases. Pesaran and Smith (1995)
and Hall and Urga (1996) follow up and extend this analysis.

The chapter is organised as follows. The case of stationary variables is introduced in
the first 4 sections. In section 2 we discuss briefly static models, introducing the distinction
between fixed and random effects, and comparing estimation in levels with the within-groups
estimator. In section 3 we present dynamic models, starting from the bias of the within-groups
estimator in this case, and then introducing the Anderson and Hsiao (1981 and 1982)
estimators and the more efficient generalised method of moments estimator (GMM) recently
proposed by Holtz-Eakin, Newey and Rosen (1988) and Arellano and Bond (1991).
Furthermore, we report the computationally useful orthogonal deviations transformation
proposed by Arellano (1988) and Arellano and Bover (1990). In section 4 we present some
specification tests. In section 5 we explore the basic consequences of non-Stationarity for
Panel data and in particular consider the main results of Pesaran and Smith (1995) (Section 5.1)
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and in Section 5.2 we examine a counter example to the Pesaran and Smith case due to Hall
and Urga (1996) which provides a new condition for valid aggregation and finally examine
some new procedures in testing common stochastic trends . In section 6 we consider the
recent literature on panel data unit root tests. Finally in section 7 we draw some conclusions
and provide some guidelines for empirical research.

2. Static models4

Let us consider the simple linear model

T  ..., 1,  =  t    N  ..., 1,  =  i     v  +    +    x  =  y ititiit ηβ'
,   (1)

where xit is a (kx1) vector of time-varying regressors assumed to be strictly exogenous (i.e.
uncorrelated with past, present and future realisation of vit), and ηi is fixed or random
individual effects. v it is the error term independently and identically distributed over I and t
with zero mean and varianceσν

2 . We omit time dummies for simplicity although they may

capture unobserved aggregate effects.
In the case where observations on y it and xit for I=1,....,N and t=1,....,T are available, an

aggregate time series regression would treat ηi as part of the constant and thus unidentified,
whilst a cross-section regression will yield a biased estimator of β if ηi is correlated with xit

across I.
In the case of the presence of fixed effects (see below), β and ηi can be estimated

consistently and efficiently by the following estimators which can be obtained by OLS after
the data are transformed by subtracting group means from each observation (see Hsiao, 1985
and 1986)

















ΣΣΣΣ )y  -  y(  )x  -  x(         x  -  x(  )x  -  x(       =  iitiit

T

1=t

N

1=i
iitiit

T

1=t

N

1=i

-1

wg
')β̂ (2)

where T)  /x(    =  x it

T

1=t
i Σ and T)  / y(    =  y it

T

1=t
i Σ 5

Because ηi is treated as a fixed constant, the estimator of β is called least squares
dummy variables. This estimator is known also as the "within-groups estimator" (WG),

N  ...,   ,1  =  i     x    -  y  =  iwgii βη ˆˆ

or “covariance estimator” (CV), because it can be obtained using an appropriate
transformation in the form of the orthogonal projection

PIQ NT −= (3)

where

[ ]i  i  T    I   =  P _
TT

-1
N −  (4)

with I as the identity matrix and i a column vector of ones, ⊗ denotes the Kronecker product.
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If we re-write (1) in the form

v  +    +    X  =y  ηβ  (5)

where y, X, η and v denote the (TNx1), (TNxk), (TNx1) and (TNx1) matrices respectively, we
can pre-multiply (5) by Q yielding

Qv  +  QX  =Qy  β (6)

since Qη = 0. Given that xit is uncorrelated with vis for each s,t, then in the transformed
specification QX and Qv are uncorrelated and thus we can apply OLS giving rise to the
estimator 6

y Q  X  ) X Q  X(  =  -1
wg

''β̂ (7)

which coincides with (2) above. This can be re-written as

y_  x  )x_  x(  =  -1
wg

~~~~β̂ (8)

where x  -  x   =  x iitit
~ and likewise for the other variables. The observations for individual i

are transformed to deviations from their mean value over time.
It is worth noting that we can estimate β̂wg

without calculating η̂. This procedure is

particularly useful when the number of individuals is large. With respect to the statistical
properties, β̂wg

 is consistent for T →∞ and its consistency does not depend on ηi . β̂wg
is

consistent for T fixed and N →∞ if and only if 0  =  ) v  x(  E itit
~~ , which occurs only if E(xit vis)

=0 for each t,s=1,..,T.
In the random effects case ηi is assumed to be a random variable such that

v  +    =  u itiit η (9)

where we suppose that E(η I)=E(vit)=0 and E(xit ηi )=E(xit vis )=0. Under these conditions the
OLS regression of y it on xit (in levels) gives a consistent estimate of β.

However, the specification (9) generates autocorrelation and heteroskedasticity in u it

even if it is absent in v it. Note that with E(vit vis)=0 we have E(uit ui, t-s)=Var(ηi) for all ts ≠ .
This suggests that we seek a more efficient estimator than OLS. The appropriate GLS
estimator of β, under these assumptions turns out to be a weighted average of the above
within-groups estimator and the so-called "between-groups" estimator

Py  X  ) PX  X(  =  -1_
bg

'β̂ (10)

that is

βββ ˆˆˆ
wgkbgGLS

  D)  -  I(  +    D  =  (11)

where V   ,V  )V  +  V(  =  D bgwg
-1

wgbg andV wg are the covariance matrices of β̂bg
and β̂wg

respectively, and where the estimator β̂bg
can be obtained by applying OLS to the

transformed model (see Maddala, 1971)
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Pu.  +   P  +   PX  =  PY ηβ (12)

This GLS estimator is often known in the literature as the Balestra and Nerlove (1966)
estimator,

BNβ̂  (with GLSBN ββ ˆˆ =  )7.

Hausman and Taylor (1981) show that if )  (0,  iid  2
i ση η~ and )    ,(0  iid  v 2

vit σ~ a GLS

transformation of (1) is given by

[ ] [ ]v  )- (1  -  v  +    +  x  )-(1  -  x    =  y  ) - (1  -  y iitiiitiit ϑηϑϑβϑ (13)

where [ ] y  ,]  T  +    [  /      =  i
22

v
2
v

2/1
σσσϑ η  and xi  are once again the time means of the

variables. Estimates of σ2
v and σ η

2 can be obtained as follows (see Hausman and Taylor,

1981)

[ ]x  -  y         
1)-N(T

1
  =  itwgit

2T

1=t

N

1=i

2
v

~ˆ~
ˆ βσ ΣΣ (14)

and

[ ] σβση ˆˆˆ 2
v

1-
iwgi

2N

1=i

1-2   T  -   x    -  y      N  =  Σ (15)

The feasible GLS estimator can then be obtained by applying OLS to (13), having (14)
and (15), to construct an estimate of ϑ .

It is worth clarifying the following point. When ηi is treated as a fixed constant, the
model is referred to as a fixed effects model, whilst when ηi is treated as a random variable, it
is called a random effects model. More generally, we can unify these two formulations, and
we may assume from the outset that the effects are always random. What is crucial, however,
is to investigate if ηi is correlated or not with the observed variables xit. If ηi is correlated with
xit, the fixed effects model is viewed as one where investigators make inferences conditional
on the effects that are in the sample. Whilst if ηi is not correlated with xit the random effects
model is viewed as one where investigators make unconditional or marginal inferences with
respect to the population of all effects. "It is up to the investigator to decide whether he
wants to make inference with respect to the population characteristics or only with respect
to the effects that are in the sample" (Hsiao, 1985, p. 131).

Therefore, in applied work the first step is to compare the estimates in levels and
deviations. Significant differences between the two indicate that correlated individual effects
are omitted from the regression in levels. It is worth noting that this is equivalent to testing
whether the effects are correlated or not with xit.

To perform this experiment, we can use the traditional Hausman test8 (1978) based on
the comparison between the within-groups estimator and the Balestra and

[ ] [ ] [ ].  -  )(  var  -  )(  var   -    =  h
wgGLSGLSwg

-1

wgGLS ββββββ ˆˆˆˆˆˆ ' (16)
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Nerlove estimator under the null that the effects are not correlated with the regressors, the

plim 0  =  )  -  ( wgGLS ββ ˆˆ  and h is distributed as 2
)(kχ  with k degrees of freedom9.

This procedure is valid in the case in which β̂GLS
is efficient relative to β̂ under the

null. In the presence of heteroskedasticity and autocorrelation, this condition is not satisfied.
Alternatively, Arellano and Bover (1989) and Arellano (1992) propose to form a system

by combining the equations in levels and in deviations. For instance10, for T=2 we have
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β and α can be estimated using OLS and robust estimates of their variances may be obtained.

A Wald statistic or an equivalent t-test of the null H0 : α=0, (or an χ2
k )(  or F-test depending

on whether α is a scalar or a vector), tests the null hypothesis of no correlation.
This test is robust to heteroskedasticy and serial correlation. For further details about

the various versions of this Hausman type test are in Arellano (1993) and Arellano and Bover
(1995). Finally, Baltagi (1996) presents this test plus other specific forms of misspecification
tests for the error component models.

3. Dynamic models

Dynamic specifications are of particular interest in modelling panel data, part of the
richness of a panel data set is precisely due to the fact that we can analyse the process of
dynamic adjustment which is impossible in a cross section data set. The simplest model is a
first-order autoregression of the form

v  +    +  y    =  y iti-1ti,it ηα (17)

i=1,...,N, t=1,....,T and y i0 observed. Note that  y 1-ti, and ηi are necessarily correlated.

What are the methods of eliminating the permanent effects ηi? First, we can use the
within-groups estimator,α̂wg , that is OLS on the transformed equation

)v  -  v(  +  )y  -  y(    =  )y  -  y( iiti(-1)-1ti,iit α (18)

where y    T  =  y    ,y     T  =  y it

-1)(T

0t=

-1
(-1)i,it

T

1t=

-1
i ΣΣ

and .v    T  =  v it

T

1t=

-1
i Σ

Because( )y  -  y (-1)   ,i1-  t i,  and )v  -   v( iit are correlated through their mean components,



NEW DEVELOPMENTS IN THE ANALYSIS OF PANEL DATA SET 7

then α̂wg will be seriously biased even for large N when T is small. Nickell (1981) provides the

asymptotic bias















∞→ )  -  (1  1)-(T

T)  ,(  h 2
  -1       

1  -  T

T)  (  h  )  +  (1
   -  =  )  -  (  

-1

wg

N α
αααααα̂plim (19)

where .
  -  1

)  -  (1
  T  -  1  =  T)  ,(  h

T
-1

α
αα

Under the hypotheses that ηi is a fixed constant, the model is stationary and vit is
white noise. Nickell shows that the bias goes to zero when T→ ∞, whilst for positive values
of α the bias is negative and does not tend to zero for α → 0, nor when var (ηi) → 0.

Alternatively, the unobservable effects ηi can be eliminated by taking the first
differences, e.g.

).v  -  v(  +  )y  -  y(    =  )y  -  y( -1ti,ti,2-ti,-1ti,-1ti,it α (20)

The OLS estimator of (20),α̂∆  is also biased, but the bias does not vanish as T→ ∞
(Arellano and Bover, 1989)

.
2

  +  1
  -  =  )  -  (  

N

ααα̂plim ∆
∞→

(21)

This coincides with the bias of the WG estimator when T=2; however, GLS in the first
difference equation will yield α̂wg . Finally, the asymptotic bias of OLS in the levels,α̂1 , take

the form

)  +  (1  +  )  -  (1  
  =  )  -  (  

1-1-1

N ααλ
λαα̂plim

∞→

(22)

where σσλ η
2
v

2   /    =  

with ηση
2
i

N

 1= i

1-

N

2     N      =  Σ
∞→

lim   and  )  ,(0 iid v 2
vit σ~ .

Note that the biases ofα̂wg and α̂∆ do not depend on the ηi 's and are negative. On the

contrary, the bias of α̂1 depends onσ η
2 and is positive for a>0.

Anderson and Hsiao (1981) proposed a consistent estimator of α which is an
instrumental variables estimator for the first differenced equations. For T=3, and supposing
that hereafter y i0 is not observed, we can have

)v  -  v(  +  )y  -  y(    =  )y  -  y( i2i3i1i2i2i3 α   (23)

where y i1 is the instrument for (y i2 - yi1). yi1, in fact, is correlated with )y  -  y( i2i3  but is not

correlated with (v i3 - vi2) provided v it is serially uncorrelated. The same applies for T>3, giving
the estimator
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.  

)y  -  y(    y        

)y  -  y(  y        
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AH

1ΣΣ

ΣΣ
α̂ (24)

An alternative estimator proposed by Anderson and Hsiao is to use ,y  2-ti,∆  rather

than ,y 2-ti,  as instrument, and consequently the summation over time periods goes from 4

to T in (24).

α̂ AH  is consistent for T fixed and N → ∞, for T → ∞ and N fixed, and when both T and N tend

to ∞.

Special to the case when T is small

Arellano and Bond (1991) (AB hereafter) provide a more efficient estimator when T is
small and N is large. From the following table it is clear that y i1 is the only

Table A.

Equation Valid Instruments

∆ yi3 = α ∆ yi2 + ∆ vi3 yi1

∆ yi4 = α ∆ yi3 + ∆ vi4 yi1, yi2

∆yi,T = α ∆ yi(T -1) + ∆ vi,T yi1, yi2 ..., y i(T-2)

valid instrument available in the equation for the first differences for period 3. For the second,
we have two instruments, and so on, until the last equation when we have (T-2) instruments.

If we define

1]    x  2)  -  [(T  a as )v  ...,   ,v(  =  v iTi3i ∆∆  vector11 (25)

and
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then the moment restrictions can be
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expressed by 0  =)  v  (Z  E ii −' .

If the errors vit are independently distributed with constant variance ,2σ  we have

H,    =  )v  v(  E 2_
ii σ  where H is a symmetric matrix (T-2) x (T-2) which has twos in the main

diagonal, minus ones in the first sub-diagonal and zeros otherwise. Then AB show that the

variance matrix of vz ii
' is

)Hz(z  E    =  )z  v  v (z  E ii
2

iiii
'' σ (26)

and the estimator of α is the following

y  z    )z  H  z  (  z  y  

y  z    )z  H  z  (  z  y  
  =  

i(-1)ii
-1

iiiiii

iii
-1

iiiiii
AB1

'''

'''

)1(
ˆ

ΣΣΣ

ΣΣΣ −
α (27)

where )y  ...,  ,y  (  =  y iTi3i
'∆∆ and . y ..., ,y   =  y -1Ti,i2i(-1)

')( ∆∆

This estimator has been proposed by AB for dynamic models from panel data12. It is
called the generalised method of moments (GMM), and it minimises the discrepancy between
the sample moments N  /  v  z  iii

'Σ and their values in probability (Hansen, 1982).

 ABα̂ 1  represents the one-step estimator which is consistent provided vit is serially

uncorrelated. For the case where the v is are heteroskedastic, however, we can obtain a more
efficient two-step estimator  ,ABα̂ 2  if, instead of  ,Hz  z  iii

'Σ in (27) we use a more general

estimate of the variance of  ,v  z ii
' that is zvvz  iiiii ˆˆ'Σ where iv̂ are the residuals from the

preliminary consistent estimatorα̂ 1AB .

Finally, Arellano and Bover (1990) present a class of valid transformations alternative
to the first differences in the context of models with predetermined variables. Among these
is the computationally convenient orthogonal deviations transformation (see below for more
detail). In addition, the authors show the invariance of the optimal estimators to the choice
of transformation.

Ahn and Schmidt (1995) show that by exploiting some additional moments restrictions
with non-linear GMM estimator leads to substantial improvements in the efficiency of
estimation, in particular when the model contains exogenous variables in addition to the
lagged dependent variable, as introduced in the next section.13

Models with exogenous regressors

Let us now consider a model which includes independent explanatory variables

.  v  +    +  x    +  y    =  y itiit-1t  ,iit ηβα (28)

The previous method of assigning different instruments to different equations always
applies. Building on this, we must now make some hypothesis concerning the correlation
between xit  and vit .
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With T>3, for instance, we can consider an equation in first differences which
eliminate the permanent effects

)v  -  v(  +  )x  -  x(    +  )y  -  y(    =  y  -  y i2i3i2i3i1i2i2i3 βα (29)

Again, in this case, an OLS or a GLS (e.g. WG) regression does not consistently
estimate α and β because ∆yi2 and ∆vi3 are negatively correlated (through the correlation of y i2

and v i2). However, the model can be consistently estimated by IV methods using (xi1, xi2 and
xi3) as instruments for (∆yi2 ∆xyi3 ) if xit is strictly exogenous, i.e. uncorrelated with all transitory
errors.

If this is the case, it makes no difference to the validity of the instruments (and
therefore to the consistency of α and β) whether the vit are serially correlated or not. If,
moreover, xit is uncorrelated with the ηi 's, we can use the same instruments for the equations
in levels 14.

More generally, and following AB, let us suppose that the xit is correlated with ηi, and
no external instruments are available. If v it is not serially correlated, and xit is predetermined
(e.g. E(xitvis ) =0 if and only if s>t), the GMM estimator of α and β is similar to the
autoregressive specification. The valid instruments for period t for the equation in first
differences or orthogonal deviations are given by

;  )x  x  ,y  ,   ,y [  =  z 1-t  ,ii12-t  ,ii1it KKKKKK

that is the optimal zi matrix is

zi =

yi1  xi1 xi2 0 0 0.....................0..............0  0.....................0

0  0  0 yi1 yi2 xi1 xi2 xi3  0..............0  0.....................0

........................................................................................................

0  0  0..................................... y i1..............y i,T-2 xi1 ..................xi,T-1

If, instead, xit is correlated with ηi and is strictly exogenous (E(xit vis)=0 for all t and s)
then all x's are valid instruments for all equations in first differences. In this case the valid
instruments are

]x  ...,    ,x   ,y  ....,    ,y[  diag  =  z iTi1isi1i     for 2  -  T  ...,    ,1  =  s

where diag[] represents a block diagonal matrix, of the type presented above.
Moreover, AB discuss other cases such as that in which xit can be partitioned into (x1it

x2it) where x1it only is uncorrelated with ηi. This implies additional moment restrictions that can
be exploited by stacking equations in levels and equations in first differences (Arellano and
Bover, 1995). Moreover, other instruments have been suggested by Keane and Runkle (1992)
and Schmidt, Ahn and Wyhoski (1992); they receive an excellent treatment in Baltagi (1995).

AB, finally, report some Monte Carlo experiments which show "negligible finite sample
biases in the GMM estimators and substantially smaller variances than those associated with
simpler IV estimators of the kind introduced by Anderson and Hsiao (1981)". They "also find
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that the distributions of the serial-correlation tests (see below) are well-approximated by their
asymptotic counterpart". Kiviet (1995) finally presents interesting findings regarding bias,
inconsistency and efficiency of alternative estimators utilised in dynamic models of panel
data.

Special to the case when T is large

In the case in which the data set presents large T, the application of the "covariance"
or "within-groups" estimator is straightforward (see Urga, 1991, for instance).

Following Hsiao (1985, 1986) and on the basis of Nickell's (1981) results, let us
consider the following lagged-dependent variable model with exogenous regressors (omitting
the time effects for simplicity):

v  +    +  x    +  y    =  y itit  ,i1-t  ,iit ηβα '  (30)

If ηi is treated as a fixed constant, the covariance estimator for α and β is biased if T is fixed.
The bias occurs because of the particular way we have eliminated the unknown individual
effects ηi from each observation. This creates the correlation of order 1/T

between )y  -  y(
i.,-11-t i, and the residuals in the transformed model

)v  -  v(  +  )x  -  x(  +  )y  -  y(    =  )y  -  y( i.t  ,ii.t  ,ii,-1-1t  ,iit  ,i
'

.
βα (31)

where y    1/T  =  y t  ,i

T

1=t
i. Σ and likewise for the other dotted variables.

When T is very large the right-hand side variables become asymptotically
uncorrelated and the CV or WG estimator is consistent. For small T, instead, the bias for α is
negative and the bias for β is positive if α >0 (Anderson-Hsiao, 1981, Nickell, 1981, and
Nerlove,1971). When ηi is treated as random, the error terms u i,t = ηi + vit are serially correlated
and correlated with yi,t-1. Hence the OLS estimator is biased. Thus, the within-groups
transformation has this significant disadvantage. If the explanatory variables are correlated
with the past shocks, but not with the present and the future ones, one normally has available
lags of these variables as instruments. However, this is not possible after one performs the
within-groups transformation, because these lags will now be correlated with the transformed
error term. The orthogonal deviations (OD) transformation, proposed by Arellano (1988)15,
gives an equivalent within-groups estimator, whereby we remove the individual effects by
subtracting the mean of all future values of the variable, i.e.

[ ]
2/1







1  -  t  -  T
t  -  T     t  -  T  /  )x  +  ......  +  x(  -  x  =  X T  ,i1t+  ,it  ,it  ,i (32)

for t = 1, ..., T - 1.
It is clear that the purpose of using the orthogonal deviations transformation instead

of the within-groups transformation is that the alternative transformation of the model
eliminates the individual effects while preserving the orthogonality among the transformed
errors16. That is if the original random errors are independently and identically distributed
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(iid), then the transformed errors are also i.i.d. From this we can obtain optimal generalised
method of moments (GMM) or standard instrumental variables (IV) estimators of the kind
proposed by Anderson and Hsiao for models with predetermined variables17.

4. Specification tests18

The consistency of the estimators discussed so far relies on the assumption of the
lack of serial correlation of vit. AB provide tests based on the standardised residual
autocovariances which are asymptotically N(O,1) variables under the null of no
autocorrelation. More specifically, AB report tests for the lack of the first-order (m1) and
second-order (m2) serial correlation in the residuals. If v it are serially uncorrelated, then the
first differences transformation induces first-order serial correlation, but not second-order.

On the other hand, the orthogonal transformation preserves the orthogonality among
the transformed errors if the original error are i.i.d., but the serial correlation in the transformed
errors can be induced either by serial correlation in the original errors or by heteroskedasticity
across time19.

To discriminate between these two hypotheses, we can set up a test for serial
correlation using constructed first-difference residuals from the orthogonal deviations
estimates. If the residuals have been transformed to first-differences, first-order serial
correlation is to be expected20 but not second-order (AB, 1991, p.281)21.

The generalised m2 test22 statistic for second-order serial correlation has the following
form. Let us consider first the GMM estimator

yZZAX)XZZAX(  =  N
-1

N '''δ̂ (33)

where y    ,X denote the transformation used in calculating the estimator (first differences or

orthogonal deviations), whilst 1

1

'' )ˆˆ1
( −

=
∑=
N

i
iiiiN zvvz

N
A . From this we form the first difference

residuals

X     -y    =  v ∆∆ δ̂ˆ ' (34)

Thus the generalised m2 test can be expressed as

  1) (0,  N    
v

v  v
  =  m

2-
2 ~

ˆ

ˆˆ
2/1

*
'

 under the assumption that 0  =  )v  v(  E 2-t  ,iit
23 (35)

where

N
-1

N2-i(-2)iii(-2)

N

1=i

ZAX )XZZAX( )Xv( 2 -  v  v  v  v    =  v ''ˆˆˆˆˆˆ *
''

**
' ∆Σ

Here v 2-ˆ is the vector of first differenced residuals lagged twice, v*ˆ  is a vector of trimmed v̂

to match v 2-ˆ  and similarly for ∆X* ; NA has already been defined and iv̂ is a vector (T- 2)x1

of the two-step GMM residuals, and avar ( ) represents the asymptotic covariance matrix.
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( ) ( ).v  X    )(  raav  X  v  +  v  v vZ  2-**2-i(-2)iii

N

1=i

ˆˆˆˆˆˆ '''
*

' ∆∆







Σ δ (36)

Finally it is useful to report the Sargan test of over-identifying restrictions24 (Sargan,
1958 and 1988; Hansen,1982): if AN is optimal then under the null of validity of the
instruments in z the test statistic is

χ2
r

*
ii

N

1=i
Ni

*
i

N

1=i

   )v  z  (  A  )z  v  (  =  s ~ˆˆ '' ΣΣ (37)

Where r represents the difference between the number of columns in z and the number
of columns in X25.

5. Consequences of Non-Stationarity for Panel Data

So far we have considered the conventional case of a typical panel which is implicitly
assumed to consist of stationary variables. In this section we extend the analysis to consider
the consequences of non-stationarity. The following section can, in practice only be relevent
when we have a sufficiently large number of time series observations to begin to exploit the
non-stationarity. This will not be true of all panels of data as in some cases we may be
dealling with T as small as 4 or 5.

This section also deals with the conditions for valid aggregation of a set of micro
economic relationships to provide a valid macro relationship. A series of papers by Pesaran
and associates (Pesaran Pierse and Kumar(1989)), Lee, Pesaran and Pierse(1990)) for instance
concludes that econometrics should proceed at as micro a level as possible, but not using
“panel data” estimators. They argue that if micro relationships are dealing with non-stationary
data then, even if these relationships cointegrated, the properties of a derived aggregate
model or pooled models will be even worse than we previously thought. Robertson and
Symons, (1992) and, more recently, Pesaran and Smith (1995) have shown that, with a data set
of this type, inference often proceeds by imposing equality restrictions on parameters across
individuals or through time (i.e. panel data estimators). As we have already shown, this may
produce serious problems in a stationary world (especially in the presence of lagged
dependent variable). They go on to show that in the presence of non stationarity but
cointegrated micro relationships aggregation can completely invalidate the macro relationship
(and/or the panel estimator).

It should be clarified here that the principal interest in this section has to be achieving
a good estimate of the average or aggregate effect of an economic relationship. If we are
interested in understanding the individual components of a panel then individual time series
regressions is really the only way to proceed. However an important question remains
unresolved as to the best way to achieve this average estimate. Pooling is often assumed to
give the best estimate of the average effect across the panel, but we are beginning to
understand that this may often not be the case.

Pesaran and Smith (1995) in particular state that the common practice of aggregating
and pooling by assuming homogeneity in dynamic models is "far from being innocuous";
instead they suggest estimating the individual micro equations and then taking the means of
the estimated micro-parameters and relative standard errors. We think that the results from
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these authors are very important in practice, thus we will briefly summarise them as follows.

5.1 The Pesaran and Smith (1995) case

Pesaran and Smith (1995) address the problem of estimating the average long run
relationship between a set of variables when the micro relationships are made up of I(1)
variables which cointegrate but with different cointegrating vectors. They conclude that the
micro single equation approach gives consistent estimates of the long-run parameters, whilst
the conventional view (Zellner(1969), Malinvaud(1956)) that the pooled and aggregate time-
series estimators will also provide consistent estimators of the mean effects, is no longer
valid.

In order to demonstrate this we can make use of a very simple example. Let us suppose
that xit are I(1) and there is a single cointegrating relationship between yit and xit for each
group, with the parameters varying randomly across groups, i.e. suppose that

T  ,.....  ,1  =  t  N ......,  ,1 = i    +  x    =  y ititiit ∈β (38)

where ∈it is a stationary process which is integrated of degree 0, I(0), which implies that each

of the relationships cointegrate, and that

j    i        ji ≠≠ ββ (39)

Now suppose that we aggregate, then the variables will be

x    =  x     ,y    =  y i

n

1=i
i

n

1 = i
ΣΣ (40)

Pesaran and Smith (1995) argue that the aggregated relationship does not cointegrate as exact
aggregation of (38) over n gives

εεββ N1nn11n1   +  ...  +    +  x    +  ...  +  x    =  y  +  ...  +  y (41)

which gives

i

n

1 = i
ii1

n

2 = i
1     +  x  )  -  (    x    =  y εβββ ΣΣ− (42)

given that x  is I(1) we would only therefore expect to find cointegration between y  and x

when ββ j1   =   all j. So if we perform the standard aggregate regression with dynamic terms

we will be dealing with non stationary aggregates which do not cointegrate and we would
expect the parameter value of the aggregate long run relationship to tend to zero even though
all the micro relationships do in fact cointegrate. This is the result pointed out by Robertson
and Symons(1992).

The implications of this are profound for the choice of panel data estimation
technique. The aggregate regression is obviously invalid as it does not represent a
cointegrating relationship.

The pooled estimator is also invalid as the assumption of a common parameter across
all the individuals produces non stationary individual relationships which implies serial
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correlation in the residuals. If lagged variables are included to deal with this serial correlation
then the coefficient on the lagged dependent variable tends to one and the long run
relationship disappears. Just as in the case of aggregate time series models under non-
cointegration.

The cross section regression( aggregating over time) may perform fairly well as a
model of the long run relationship as, by suppressing the dynamics it becomes broadly
equivalent to the time series notion of a static regression and the non-cointegration of the
individual groups actually tends to average out. However there is no way to detect whether
there are actually underlying cointegrating relationships in this framework.

Pesaran and Smith therefore always recommend performing the full set of individual
time series regressions as a starting point to a panel data exercise. They then test each
member for cointegration and see if the cointegrating parameters may be similar. Then perform
the pooled and cross section regressions and compare the implied long run relationships. If
all approaches give compatible results then the results are likely to be robust. Otherwise an
understanding of the sources of bias may help to determine the reliable estimator in specific
cases.

5.2 A Special Case of Valid Aggregation (Hall and Urga, 1996)

In this section we present the argument of Hall and Urga (1996) that, while the basic
point made above is quite correct, there is a special case which does allow valid estimation
even when the parameters of the micro relationships are heterogeneous. And, moreover we
believe that this special case is valid for many real world situations. The basic argument put
forward here is that if the exogenous variables in the micro relationships are driven by a
common stochastic trend then the simple aggregate relationship can be shown to cointegrate.
Moreover in many real world examples we might expect the nonstationary component to be
common across a set of micro data, for example wages in different sectors may all be non-
stationary but relative wages across sectors might well be stationary. For completeness we
will consider a full multivariate case of p regressors xj t ,j=1...p for each of the individual
components of the panel(I). This argument may be seen formally quite simply, suppose that
the exogenous variables are all driven by the following common trend model

ξ

µα

jtjt

ijtjtijijt

  =  x  

  +  x    =  x

∆
(43)

where µijt are ξ jt stationary ARMA error processes, that is they are integrated of degree 0,

I(0). Then xj t becomes the common stochastic trend which drives all the individual xij 's.
We can then express the aggregate relationship as

µβεαβ
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ijtij
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(44)

and in terms of the aggregates this becomes
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so that the aggregate equation cointegrates (the error term consists of a linear combination
of weighted stationary ARMA components, which is of course stationary) and moreover the
aggregate coefficients are a weighted average of the coefficients in the micro relationships.

The key to this special case is, of course, the validity of the common factor linking the
x  variables. We can speculate that in many cases the non stationary part of a group of
related micro series might well be common, panels of wage data, consumption, prices,
etc...might well have this property. Indeed it would be surprising if relative wages or prices
between sectors were non-stationary and so we might expect that the common factor
representation would often be a good one in terms of the main non-stationary component in
most data series. We would also suggest that if this is a common property of many data sets
then it is a formal explanation of why aggregate econometric estimation work as well as it
does, despite the standard conditions for aggregation which are highly implausible.

Formally this suggests that an important stage in analysing a panel of data should be
an investigation of the existence of common stochastic trends amongst the individual
components of the panel. This can be done in the autoregressive representation by testing
for the presence of (n-1) cointegrating vectors amongst a set of n series (thus implying one
common stochastic trend) or it can be accomplished in the moving average representation by
testing for the presence of a single common factor amongst the series following Geweke
(1977).

5.3 Hall , Lazarova and Urga (1999)

In this paper the author propose a new approach to test for the number of common
stochastic trends driving the nonstationary series in a panel data set based around principal
component techniques. The procedure enables one to carry out the testing even if we have
a mixture of I(0) and I(1) series in the sample.

With a set of Monte Carlo experiments they assess the empirical relevance of the
testing procedure. The test is shown to have reasonable size and power when the sample size
T  is larger than the number of series N . The test performs best when there are relatively few
stochastic trends underlying the data. The size of the test improves with increasing numbers
of stationary series present in the sample while the power deteriorates.

The principal components approach allows one to carry out the test even when N
is equal or greater than T . However, from the first simple experiments reported in the paper,
the power of the test deteriorates. Further, the estimation of the number of common stochastic
trends is done in order to validate the aggregate relationship.

6. Unit Roots and Cointegration in Panel Data

The main studies in testing for unit roots in panel data are Breitung and Meyer (1994),
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Quah (1994), Levin and Lin (1992, 1993), Im,Pesaran and Shin (1997), Maddala and Wu (1998)
and Hall, Lazarova and Urga (1999). Breitung and Meyer (1994) derived the asymptotic
normality of the Dickey and Fuller test statistic for panel data with a large cross-section
dimension and a small time-series dimension. Quah (1994) studied a unit root test for panel
data that have simultaneous extensive cross-section and time-series variation. He showed
that the asymptotic distribution for the proposed test is a mixture of the standard normal and
Dickey-Fuller asymptotics. Levin and Lin (1993) derived the asymptotic distributions for unit
roots on panel data and showed that the power of these tests increases dramatically as the
cross-section dimension increases. Im, Pesaran and Shin (1997) criticised the Levin and Lin
panel unit root statistics and proposed alternative procedures. Maddala and Wu (1998)
provides a comparison of the Levin-Lin and Im-Pesaran-Shin tests. They also suggests a new
test based on the Fisher test. However, to date, little is known about cointegration tests and
estimation with regression models in panel data. Exceptions are Kao (1997), Kao and Chiang
(1997), McCoskey and Kao (1998a,1998b), Pedroni (1996, 1997), Philipps and Moon (1997) and
Hall, Lazarova and Urga (1999). In the first half of Kao (1997), the author studies a spurious
regression in panel data. Asymptotic properties of the ordinary least squares (OLS) estimator
and other conventional statistics were examined. Kao (1997) showed that the OLS estimator
is consistent for its true value, but the t-statistic diverges so that inferences about the
regression coefficient are wrong with a probability that goes to one. Furthermore, Kao (1997)
examined the Dickey-Fuller and the augmented Dickey-Fuller tests to test the null hypothesis
of no cointegration in panel data. Kao and Chiang (1997) studied the asymptotic results for
a least-squares dummy variable (LSDV) estimator, a fully modified estimator and a dynamic
least-squares estimator in a cointegrated regression in panel data. McCoskey and Kao (1998a)
proposed further tests for the null hypothesis of cointegration in panel data. McCoskey and
Kao (1998) surveyed various tests for cointegration in panel data providing Monte Carlo
comparisons. Pedroni (1997) derived asymptotic distributions for residual-based tests of
cointegration for both homogenous and heterogeneous panels. Pedroni (1996) proposed a
fully modified estimator for heterogeneous panels. Phillips and Moon (1997) developed a
sequential limit theory for non-stationary panel data. As mentioned in the previous section,
Hall, Lazarova and Urga (1999) propose a new approach to test for the number of common
stochastic trends driving the nonstationary series in a panel data set. In the remainder of this
section we briefly summarise the IPS and MW tests concerning unit roots testing procedure
in panel data. We finally conclude with a brief summary of the three main recent works on
cointegration in panel data.

6.1 Panel Data Unit Root Tests: Im-Pesaran and Shin (1997) vs Maddala and Wu(1998)

We begin by describing the two main testing procedures for unit roots in
heterogeneous panel data. The first papers which proposed unit roots test in panel are the
ones by Quah (1992,1994-Q henceforth) and Levin and Lin (1993-LL henceforth). Both of them
do not consider the case of heterogeneous panels even though the LL test allows for some
individual specific effects as well as for some heterogeneity across groups. The LL test also
requires that N/T tend to zero. Because of all those limitations, the two tests are not
considered further in this survey.
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We therefore only give detailed descriptions of the two more suitable tests for a unit
root. The first test is the one proposed by Im-Pesaran and Shin (1997, IPS henceforth) and the
second is the one introduced by Maddala and Wu (1998, MW henceforth).

In terms of the Q and LL tests, the procedure test for a unit root by setting up the
following model.

ititiit eyy += −1ρ

The null of a unit root is then given by imposing the hypothesis that
ρρρρ ==== N......21  and then test for 1=ρ  against the alternative that 1<ρ . IPS and

MW relax the assumption that ρρρρ ==== N......21 . In fact the null hypothesis become

1== ρρi  for all i  and 1:1 <iH ρ  for at least one i. It is clear that the hypothesis that all

components have a unit root against the alternative that all components do not have one is
too restrictive. MW present some experiments in which the power of their test is evaluated
under the alternative hypothesis that some i 1:1 =iH ρ  while for other i is 1:1 <iH ρ .

Having said this, the main disadvantage of the MW test remains in the way in which the test
is constructed. The test is computationally intensive. The p-values of the test statistics have
to be derived by Monte Carlo simulations, so a large volume of values must be simulated and
stored for every combination of number of lags and deterministic regressors.

Im-Pesaran and Shin (1997)

Let us consider now the IPS procedure. This test explicitly accommodates
heterogeneity across groups and for different patterns of serial correlation. The test is based
on averaging individual unit root test statistics for panels. In particular they propose a test
based on the average of the individual t-test (t-bar test) that in a second version of the paper
is replaced by the average of the Lagrange Multiplier (LM) statistics computed for each
group/firm in the panel (LM-bar test).

Let
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The author show that the test only requires that N/T tends to k (a finite positive constant)

and not to 0 as in the LL case. Finally, the authors in addition to the LM  test also report Γ()

LM and Ψ( LM ). LM  is the statistics which tests for iρ =1, while the Γ( LM ) and Ψ( LM )

represent standardised version of the LM  statistics which are asymptotically distributed as

N(0,1). It is worth noticing that the Ψ( LM ) specifically allows for the different lag structure
of the single ADF test.

The are two main setbacks associated to this test. The first concerns the way the
evidence of several independent unit root test are combined. The second is that we are
evaluating unit roots at the panel data level in which the alternative hypothesis is quite
general (All have a unit root against some of them do not). The IPS paper does not
investigate the behaviour of the power of the test under different combinations of
stationary/non-stationary series present in the panel. Although we do have this information
from the experiments undertaken by MW, where it is shown that the IPS test is less powerful
than the MW test.

Maddala and Wu(1998)

The test proposed by Maddala and Wu seems to overcome some of those limitations.
As in IPS, the test is based on the significance of different independent tests. MW use the
Fisher test, which is a non-parametric procedure and is based on the p-values pi  with the

statistics calculated as

2~log2 χie pF Σ−=  (49)

with 2N degrees of freedom and N is the number of separated samples. The Fisher test is an
exact test and not an asymptotic test as the IPS. MW report some simulations which reveal
the power of the test as the number of stationary series in the sample increases.

6.2 Panel Data Cointegration

In this section we provide a brief survey on recent developments on various tests
proposed for cointegration in panels data (McCoskey and Kao (1998) and Banerjee (1999)
provide a further detailed presentation of the various tests).

We will mainly outline and compare three recent studies which present panel data test
for cointegration: Kao (1997), Pedroni (1997) and McCoskey and Kao (1998). It is important
to note that the first two papers present tests where the null hypothesis of no cointegration
is considered and use residual based tests constructed (derived) from Engle and Granger type
static regression. While the last paper introduce a test of the null of cointegration and the test
is also residual based with its analogue in the time series literature proposed by Harris and
Inder (1994) and Shin (1994).

6.2.1 Testing for cointegration in panels with the null hypothesis of no cointegration

The first set of residual based cointegration tests for panels are based on the null
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hypothesis of no cointegration just as in the time series counterpart (see McCoskey and
Kao(1998) for more details). There are two possible regressions whose residuals are analyzed
for stationarity. We have (a) the case of varying intercepts and common slopes and (b) of
varying intercepts and varying slopes. The first set of tests assumes a form of homogeneity
in the relationship of the variable allowing for heterogeneity only in the intercepts. We are
not reporting this case which is fully described by McCoskey and Kao (1998). Here we
concentrate on case (b) which is more relevant to the case of heterogeneous panels.

Kao (1997)

Kao proposed testing for cointegration using an ADF test for varying slopes and
varying intercepts. Suppose we have the following model

tiitiiti exy ,
'
,, ++= βα   with Ni ,....,2,1= , Tt ,.....,2,1= (50)

The peculiarity o f this model is that we test for cointegration for each cross-section
under the assumption that the cross sections are assumed independent of each other while
we allow for heteroskedasticity across the cross-sections.

The ADF test is constructed as
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The null hypothesis 0:0 =iH ρ  of no cointegration for each i is evaluated via the test
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To test for cointegration for the whole panel the t-statistic is
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which, using the result from Phillips and Ouliaris(1990) who show that the ADF converges

to a functional of Brownian motion, it is possible to prove that the ADFt  is asymptotically
distributed as

2,0()( ADFADFADF NtN σµ ⇒− ) (54)

Pedroni (1997)

Pedroni proposes a different test based on the average, across the cross-sections, of
the Phillips tZ  statistics, valid for the model for varying intercepts and slopes (see Phillips

and Ouliaris (1990) for details on how to calculate the Phillips tZ  statistics).

His first test considers averages of test for cointegration for each cross-section and Pedroni
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proposes the following variant of the tZ  statistics:
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where tie ,ˆ represents the residual from the cointegrating regression with iλ  correction

coefficient from variances and covariances for the single regression (see the original paper
for details).

Pedroni shows that

).98.35,0()05.9ˆ( 1ˆ NZTN ⇒+−α (56)

This second test groups the statistics such that the averaging is done in pieces so
that the limiting distributions are based on limits of piecewise numerator and denominator
terms (see the original paper plus McKoskey and Kao (1998) and Banerjee (1999) for more
details about the test)

6.2.2 Testing for cointegration in panels with the null hypothesis of cointegration

This test, fully discussed in McCoskey and Kao (1998), is a residual based test
adapted from the cointegration test of the null of cointegration in time series proposed by
Harris and Inder (1994) and Shin (1994). It is important to note that “for models s which
consider the case of cointegration vector to change across the cross-sectional observation,
the asymptotics depend merely on the time series results as each cross-section is estimated
independently. For models with common slopes, the estimation is done jointly and therefore
the asymptotic theory is based on the joint estimation of a cointegrated relationship in panel
data”.

The model with varying slopes and intercepts may be written as follows:

tiitiiti exy ,
'
,, ++= βα   with Ni ,....,2,1= , Tt ,.....,2,1= (57)

where tititi xx ,1,, ε+= −  , tititi ue ,,, += γ   and tititi u ,1,, θγγ += − .

There is cointegration if 0=θ  and the test proposed by McCoskey and Kao is
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The test is asymptotically distributed:
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where 1162.=νµ  and 0109.2 =νσ  fully defined in McKoskey and Kao (1998). Finally, the

authors show that the limiting distribution of the LM test is free of nuisance parameters and
robust to heteroskedasticity.

7. Conclusions

This chapter began by outlining the relatively simple traditional models used in panel
data estimation. It then illustrated the problems, which arise as dynamics are introduced into
a model which allows for the possibility of heterogeneous panel members. This complication
undermines a great deal of the standard panel data results. It then discussed some of the
techniques which have been proposed to deal with these problems. We then went on to
explore some recent work which has been developing on the importance of non-stationarity
in panel data estimation. This elaboration again proves to have profound implications and it
is not established that it is important to investigate both the existence of non-stationarity in
a panel and the possibility of cointegration. Finally we outlined a range of tests which have
been developed recently to allow us to achieve this final objective.

In conclusion, we offer the following guidelines. When we are dealing with a panel of
stationary data then for an accurate dynamic panel data analysis first, in according with the
characteristics of the data set, one has to compare the estimates in levels and deviations or
first differences. Statistically significant differences between the two indicate that correlated
individual effects are omitted from the regression in levels. To detect this both the traditional
Hausman and the Arellano-Bover tests can be utilised.

The efficient estimator when T is small and N is large is a "generalised method of
moments", taking the first differences or orthogonal deviations to eliminate the fixed effects
(Arellano and Bover, 1995). When T is large, the "within-groups" estimator provides
consistent estimates. Alternatively, the equivalent orthogonal deviations transformation
allows one to obtain optimal generalised method of moments estimators for models with only
predetermined variables.

If the panel consists of non-stationary data then the correct treatment of the
nonstationarity becomes an over riding consideration. Recent work suggests that aggregate
relationships may perform very poorly if the micro relationships are cointegrated but with
different cointegrating vectors. This is not the case however when the exogenous variables
in the micro relationships are all driven by a single stochastic trend. We argue that this is an
empirically relevant special case by outlining a testing procedure for this condition and
showing that a well known panel data set conforms to this condition. In that case aggregate
estimation seems to perform well, as expected. Once we have detected non-stationarity in the
panel it is then important to asses the degree to which this is generated by a small number of
common stochastic trends. If this is the case the aggregate estimation may work well. If it is
not then aggregating over time and using a cross section regression is preferable. In either
case a useful way to proceed is to estimate a range of estimators and to compare the results
in the light of our improved understanding of the performance of these estimators under non-
stationarity.

Endnotes
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1. G.Urga wishes to acknowledge that this work was part of an ESRC research project
(Grant N. R022251032) entitled “An Analysis of the Importance of Common Stochastic
Trends and the Methods of Selecting Them” joint with Stepana Lazarova and Stephen
Hall.

2. Amongst the topics omitted are the maximum likelihood (Bhargava and Sargan 1983)
and Chamberlain’s (1982, 1984) π-matrix procedures to these models (see Sevestre and
Trognon 1990, and especially, Arellano and Bover 1989, for an overview), as well as
all simultaneous equation systems and non-linear models (see Hsiao 1986). See
Matyas and Sevestre (1996) for further details.

3. In many cases one does not have panel data but samples of surveys of independent
cross-sections, called “cohorts”. “A “cohort” is defined as a group with fixed
membership, individuals of which can be identified as they show up in the surveys”
(Deaton 1985, p. 109).

4. This section applies only to the large T case, or to static models with strictly
exogenous regressors for small T. Static models with predetermined regressors require
methods like those of Section 3 when T is small.

5. β̂ is consistent as N →∞ or T → ∞ or both, whilst η̂i is only consistent as T →∞
6. Noting that Q’ Q = Q2 = Q since Q is idempotent
7. See Hausman and Taylor (1981), Hsiao (1985, 1986) and Arellano and Bover (1989) for

a full discussion
8. See Hsiao (1986) and Holly (1982) for a full discussion on tests for mis-specification,

and on the relationship between Hausman’s specification test and conventional test
procedures.

9. Note that an equivalent but computationally simpler statistic than (16) can be based
on the within-groups and between groups estimators (see Hausman and Taylor 1981).

10. Arellano and Bover (1989, p. 14). This test requires xit to be strictly exogenous.
11. Note that the “bar” notation no longer indicates the mean as it did earlier in the paper.
12. Holtz-Eakin, Newey and Rosen (1988) use a similar estimator for vector autogressions
13. See Baltagi (1995), chapter 8, for a very comprehensive presentation of the estimator.
14. Bhargava and Sargan (1983), and Chamberlain (1982) developed this type of model

using the maximum likelihood estimator (MLE) and the minimum distance estimator
(MDE), respectively.

15. See also Arellano and Bover (1989).
16. It is worth noting that in a large T setting it is a matter of indifference whether one uses

the WG or the OD transformation to obtain the “withing-groups” estimator, since they
will be identical. The advantage of OD over WG arises, when doing IV, in the small T
setting, since OD (like first differencing) preserves orthogonality between the
transformed errors and lagged values of predetermined regressors, whilst WG does
not. It is this orthogonality that is important, not whether the transformed errors are
serially uncorrelated. If the original errors are serially uncorrelated but heteroscedastic
over time, the transformed errors after OD will be serially correlated, but remain
uncorrelated with lagged levels of predetermined regressors.

17. AB show that the framework so far presented can be easily extended to the case of
unbalanced panel data, i.e. when the number of time periods may vary from unit to unit
as well as the historical points to which the observations correspond (see also Hsiao
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1986, ch. 8).
18. At the end of Section 2 we reported the Hausman and Arellano and Bover tests to

detect the correlation between the unobservable individual effects and the right-hand
side variables for static models. Arellano (1993) extends the Hausman test to the case
of dynamic models, by proposing a Wald type test robust in the presence of
heteroscedasticity and autocorrelation.

19. These causes have very different implications. For example, serial correlation in the
original errors affects instruments validity.

20. E(vit vi,t-1) need not be zero.
21. Note that this is not equivalent to taking first differences of the OD residuals.
22. We thank Manuel Arellano for providing us in 1989 this still unpublished result.
23. Note that if yX , also denote first differences, then (35) reduces to the ordinary m2 test

given in AB, equation (8).
24. AB also report the Sargan difference tests to discriminate between nested hypotheses

which concern serial correlation in sequential way.
25. An increasing number of econometric packages can be utilised to undertake analysis

of panel data in economics. LIMDEP and TSP, for instance, produce standard
estimators (pooled, within groups and between groups, and random effects) for panel
data (balanced and unbalanced). The minimum distance estimator in LSQ and GMM
can be utilised to estimate linear, non linear, and dynamic models. Arellano and Bond
(1988), finally, have developed the DPD program written in Gauss to compute optimal
estimators and specification tests reported in this paper.
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