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ABSTRACT

This paper assesses a new technique for producing high frequency data from lower frequency
measurements subject to the full set of identities within the data all holding. The technique is
assessed through a set of monte carlo experiments. The example used here is gross domestic
product (GDP) which is observed at quarterly intervals in the United States and it is a flow
economic variable rather than a stock. The problem of constructing an unobserved monthly
GDP variable can be handled using state space modelling.  The solution of the problem lies in
finding a suitable state space representation. A Monte Carlo experiment is conducted to
illustrate this concept and to identify which variant of the model gives the best monthly
estimates. The results demonstrate that the more simple models do almost as well as more
complex ones and hence there may be little gain in return for the extra work of using a
complex model
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1.1 Introduction

The motivation of this study lies in the usefulness of high frequency data. The advantage of

monthly GDP for example is apparent as it helps the government to examine the present state

of the economy so as to respond more quickly to economic events. This has important impacts

at the national level mainly because more timely and accurate policy can be decided and

formulated according to the current economic circumstance. It also extends the government

ability to assess the present economic environment and to conduct economy policy more

efficiently.

Constructing high frequency data from lower frequency has many practical uses. A real world

example is that GDP in Eastern Europe is only observed on an annual basis. It is much more

sensible and useful for them to be constructed at a higher frequency, say, quarterly. Ideally

this should be done not just for GDP but also for the complete national accounts. The benefit

of having such national accounts immediately becomes apparent both for policy purposes and

for making comparison with other nations.1 The usefulness can also be extended into solving

the problem of using mixed-frequency data. Efficient use of mixed-frequency data is a

common problem in both financial and economic time series. It is clearly a loss of

information to work only at the lowest common frequency.

Problems of using mixed-frequency data can be solved more effectively if the low frequency

variable is constructed at the same interval as the high frequency variable. The state space

formulation, proposed here, is a flexible way of handling complications involved in using

mixed-frequency data and dealing with the issue of temporal aggregation of data. It allows

unobserved components to be incorporated into a modelling process, and the Kalman filter

and smoothing algorithms provide the means of estimating them.

The balancing method advocated by Stone and his colleague in the 1940s laid an important

foundation in national account ing.2 But this technique does not allow the construction of

higher frequency data. The most widely used approach for deriving high frequency data is the

conventional regression approach (see, for example, Chow and Lin (1971) (1976) and, more

recently, Salazar, Smith and Weale (1997)), but this leaves the high frequency data

unbalanced. The technique proposed here achieves both of these aims simultaneously by

                                                
1 It is similar to the construction of the UN System of National Accounts (SNA) and a clear and concise
description on the design and structure of the system of SNA 1993 can be found in Carson (1996).
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means of Kalman filter and smoothing algorithms. It is also able to ensure that the high

frequency data aggregates up to exactly match the low frequency data and uses any available

information at the high frequency in constructing the new series.

This study begins with the introduction of state space modelling in the context of deriving

unobserved high frequency estimates. Two different types of approaches are discussed in this

study. A univariate approach is firstly considered and two different forms of the state space

models are developed to estimate monthly GDP. A multivariate approach with the emphasis

on linking available monthly data with quarterly GDP to derive monthly estimates of GDP is

also discussed. The next section sets out the Monte Carlo experiment in this study as it is used

to identify which form of the state space models gives the best monthly GDP estimates.

Results of Monte Carlo experiments of the univariate and multivariate models are shown in

the next section and conclusions are presented in the last.

1.2 The State Space Approach

The full state space form and Kalman filter prediction and updating equations are presented in

appendix 1. The state space approach have been applied to economic data by many authors,

including Conrad and Corrado (1979), Howrey (1984), de Jong (1987), Scadding (1988),

Zadrozny (1990), Coomes (1992) and Patterson (1995). They have focused on the issue of

data revisions and the existence of measurement errors in the provisional economic estimates

and finding a better tool to improve the efficiency in handling provisional economic time

series as well as to deriving optimal forecast for the initial estimates. These studies have used

Kalman filters successfully to attack the analogous problem at the national level. The idea of

using the state space framework to construct an optimal estimate of economic indicators has

been adopted by Stock and Watson (1989), Stock and Watson (1991) and Garratt and Hall

(1996).

Corrado and Greene (1988) demonstrated the applicability of Kalman filtering to improve the

predicative accuracy of a quarterly model. Corrado and Haltmaier (1988) described an

overview of the underlying structure of the model linkage project at the Federal Reserve

Board. The state space approach was utilised to make analogous interpolations so as to

incorporate high frequency information on US economic activity into monthly GNP forecast.

                                                                                                                                                        
2 Stone, Champernowne and Meade (1942) “The precision of national income estimates”.
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Jones (1980), Kohn and Ansley (1983), Harvey and Pierse (1984), Ansley and Kohn (1985),

Kohn and Ansley (1986), and G∴mez and Maravall (1994) look at the issues of how the

Kalman filter can be applied to deal with missing observations in economic time series.

2 State Space Forms for Generating High Frequency Data

This section discusses two different means of generating high frequency data - the univariate

approach and the multivariate approach. Various state space forms associated with each

approach are formulated.

2.1 Univariate Model

Quarterly GDP is an observable series and the unobservable monthly GDP variable can be

filtered out giving the observable quarterly GDP. The concept for building a univariate model

is to derive the estimate of unobservable high-frequency, monthly, estimates of GDP using its

own low-frequency, quarterly, GDP.

2.1.1 Univariate Model I

This is the most straightforward of those considered. The construction of this model is based

on the notion that observable quarterly GDP is the average of unobservable monthly GDP.3

The measured variable is defined to be a monthly series of quarterly GDP figures such that Yt

is constant for each monthly of the quarter. St is the unobserved monthly GDP figure that

varies continuously. This is constructed by having the design matrix, M, set to three so as to

convert the monthly series into the given quarter. The problem with this construction is that

monthly estimates do not add up to quarterly observations (the next model deals with this

problem). The following state space form will then estimate St.

The measurement equation is constructed as follows:

Yt = 3 St + εε  t 1.

The state equation is constructed as follows:

                                                
3 Salazar et al. (1995) assumed that there exists a (time-invariant) constraint linking the quarterly GDP and
monthly GDP given by

∑
=

=
K

t
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1

where the weights, M, are known a priori and are typically 1 if the low-frequency data (quarterly) are simply
aggregates of the high-frequency data (monthly) or 1/k if the low-frequency data are the average of the high-
frequency data.
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St = 1 St-1 + µt 2.

The state equation has become a random walk process and this is mainly because GDP is a

non-stationary series. Once the model has been cast into the standard state space form the

prediction and updating formulas can be applied.

2.1.2 Univariate Model II

The construction of this model is based on the idea that quarterly GDP is the aggregate of

three individual unobserved monthly GDP series as this is typical the case for a flow variable.

This construction extends the previous model by forcing quarterly GDP to be the sum of the

monthly series. This can be achieved using the following measurement equation and imposing

restrictions on its errors. The idea of constructing the measurement equation in this way will

be extended into the multivariate models. The measurement equation is constructed as

follows:

Yt = M1 S1t + M2 S2t + M3 S3t + εt 3.

The state equation is constructed as follows:

S1t = T1 S1t-1 + uSt 4.

S2t = T2 S1t-1
S3t = T3 S2t-1

The objective of making monthly estimates add up to the quarterly series is also achieved by

having error terms in the measurement equation exhibit the following property;

εt ~ NID(0, Ht) 5.

where Ht = (1 1 0, 1 1 0, ... ) 6.

The characteristic of the flow series is reflected in the error terms of the measurement

equation. It follows the pattern of having estimation errors for the first month and second

month. Whereas, there is no error for the third month as it adds to its quarter. This pattern can

be viewed as imposing restrictions on the estimated monthly GDP, which the aggregation of

three monthly GDP equals the observable quarterly GDP. Having first and second months

fixed to unity is simply adopting the idea of the concentrated log likelihood function

discussed in the apendix and is not a restriction on the model.

2.2 Multivariate Model
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In this section we outline a model which allows us to exploit any high frequency data which

may contain information about the unobserved high frequency variable we are modelling.

This is an important real world extension as often many of the components of GDP are

available at higher frequencies than the total index. For example we often have monthly

industrial production but only quarterly GDP, but as industrial production is a major sector of

GDP it obviously contains important information about the way GDP may move..

In this case we need to extend the standard state equations to include exogenous variables.

The prediction formula given in the appendix is then altered in an obvious way. The state

equations then become;

√t |t-1 = T √t-1 + αit λt 7.

λt represents the changes of all monthly variables being considered in the model and αit is the

corresponding coefficients.

The state equation of the multivariate model is formulated in two different ways – one with a

trend growth term and the other one without it. The former construction enables the model to

pick up the upward trend if λt fails to capture the growth rate of monthly estimates of GDP.

3.1 Monte Carlo Experiment

The main purposes for conducting a Monte Carlo experiment is to investigate the relative

performance of the four methods. It is also used to test whether the estimations of monthly

GDP can be improved with more monthly economic variables being considered in the

multivariate case. Quarterly GDP is constructed from three monthly series so as to mimic the

economic environment of the real world. The three series used for DGP are designed to be

similar to industrial production (IP), total business sales (RS) and employment for non-farm

industries (EM) to represent production (supply side), consumption (demand side) and

employment (labour side) markets of the economy.

3.2 Deriving the Data Generation Process

The data generation process (DGP) plays a pivotal part in the experiment. It is important that

the experimentation tries to ensure the sample to be representative and to design an artificial

world which is similar to the real world. Each monthly series (MS) has a general AR(n)

representation as shown below:
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εt ~ IID(0, 1)
where k is the order of the AR process. These models are estimated on real world data both to

choose k and to select the parameters. CMS is the constant term. Standard normal pseudo-

random numbers generation are simulated to generate random errors, ε t, and then multiplied

by the standard error, RMS, from the regression analysis of each monthly series. Error terms

are generated using standard normal pseudo-random numbers generation and a GAUSS

program is written to carry out the experiment. One thousand replications are conducted in

this study.

Having set out the DGP, monthly GDP and consequently quarterly GDP can be derived

accordingly. Filtering and smoothing techniques in the state space modelling can then be

applied to the quarterly series to derive the monthly estimates. Four different forms of the

state space model will be tested.

3.3 Estimation of Monthly Models

Table 3.1, 3.2 and 3.3 give the estimation results and diagnostics for the three AR models.

Table 3.1: Estimation Results for IP, RS and EM

Variables Coeff T-Ratio Variables Coeff T-Ratio Variables Coeff T-Ratio
Const 0.80 0.426 Const 100.48 0.824 Const 35.780 0.596
IP (-1) 1.309 23.325 RS (-1) 0.621 11.375 EM (-1) 1.267 22.818
IP (-2) -0.166 -1.792 RS (-2) 0.114 1.756 EM (-2) 0.044 0.480
IP (-3) -0.143 -2.539 RS (-3) 0.273 4.959 EM (-3)

EM (-4)
-0.112
-0.199

-1.233
-3.565
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Table 3.2: Autocorrelation Function, Box Pierce and Ljung Box Statistic for IP, RS & EM

Lag 1 2 3
IP
4 5 6 7 8

Coeff -0.0128 -0.0270 0.0934 0.0079 -0.0298 -0.0157 -0.0531 0.0543
Box P. 0.05 0.28 3.03 3.05 3.33 3.40 4.29 5.22

Ljung B. 0.05 0.28 3.08 3.10 3.38 3.46 4.37 5.33
Lag 9 10 11 12 13 14 15 16
Coeff 0.0226 0.0300 0.1082 -0.0282 -0.0456 -0.0668 -0.0647 -0.0384

Box P. 5.38 5.66 9.35 9.61 10.26 11.66 12.98 13.45
Ljung B. 5.50 5.79 9.64 9.90 10.59 12.07 13.46 13.96

Lag 1 2 3
RS
4 5 6 7 8

Coeff 0.0023 -0.0305 -0.0323 -0.1218 0.0252 0.0095 0.0668 0.0543
Box P. 0.00 0.29 0.62 5.30 5.50 5.53 6.93 9.92

Ljung B. 0.00 0.30 0.63 5.40 5.60 5.63 7.07 10.16
Lag 9 10 11 12 13 14 15 16
Coeff 0.0287 0.0500 0.0040 -0.0130 -0.0602 0.0140 0.1812 -0.0486

Box P. 10.18 10.96 10.97 11.02 12.16 12.22 22.56 23.31
Ljung B. 10.43 11.24 11.25 11.31 12.51 12.57 23.50 24.28

Lag 1 2 3
EM
4 5 6 7 8

Coeff -0.0181 -0.0069 0.0087 0.0461 -0.0023 -0.0544 -0.0303 0.0384
Box P. 0.10 0.12 0.14 0.81 0.81 1.74 2.03 2.49

Ljung B. 0.10 0.128 0.14 0.82 0.83 1.78 2.07 2.55
Lag 9 10 11 12 13 14 15 16
Coeff 0.0663 -0.0074 0.0194 0.0200 -0.0253 -0.0306 -0.0529 -0.0147

Box P. 3.87 3.89 4.01 4.13 4.33 4.63 5.50 5.57
Ljung B. 3.98 4.00 4.12 4.26 4.47 4.77 5.70 5.77

Table 3.3: Lagrange Multiplier Test for IP, RS and EM

IP RS EM
LM (1)

F Form (1,309)
2.40520
2.38517

LM (1)
F Form (1,309)

0.0221588
0.0218075

LM (1)
F Form (1,307)

0.458591
0.450460

LM (2)
F Form (2,307)

2.67488
1.31880

LM (2)
F Form (2,307)

4.61844
2.29139

LM (2)
F Form (2,305)

0.739949
0.361345

LM (4)
F Form (4,303)

3.26165
0.794908

LM (4)
F Form (4,303)

5.54345
1.36111

LM (4)
F Form (4,301)

1.00658
0.244320

LM (8)
F Form (8,295)

6.73044
0.806928

LM (8)
F Form (8,295)

9.26225
1.11992

LM (8)
F Form (8,293)

4.49817
0.537092

4.1 Monte Carlo Experiment of Univariate Model I

It did not generally prove possible to choose the size of the measurement error through

estimation in this very simple model. We therefore propose a grid search of this parameter

and to select the best parameter through the Monte Carlo exercise itself. That is we can select

the measurement error which makes our constructed series as close as possible to the actual

series for monthly GDP.

After 1000 replications, the error value of 0.5 yields the minim root mean squared error

(RMSE) and it is, therefore, to be used to make comparison with other models. RMSEs with

10 different errors in the state equation for univariate model I are shown in Table 4.1.4

                                                
4 One thousand replications for this experiment is conducted separately to the one used in 4.3.
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Table 4.1: RMSEs with Different State Errors in the Univariate Model I

Errors in the State Equation RMSEs

0.1 877.65831
0.2 753.78142
0.3 716.17738
0.4 703.61205
0.5 701.78876
0.6 704.78832
0.7 709.70494
0.8 715.09908
0.9 720.29863
1.0 725.02750

4.2 Monte Carlo Experiment of Univariate Models and Multivariate Models

We now compare the 4 models. ML estimation is used for the univariate model II and for the

multivariate models as being the appropriate estimation technique to be applied. The

concentrated log likelihood function is adopted for the Monte Carlo experimentation.

In the results we also investigate how much improvement can be achieved by drawing on

extra high frequency information. In our model true GDP is constructed from three series. We

then consider two variantes of the multivariate model. Model (a) is the model with only one,

IP, monthly variable in the state equation and multivariate models (b) is the model with two,

IP and EM, monthly variables in the state equation.

We do not allow the constant terms of the state equation to be stochastic. This is mainly

because GDP is a series that exhibits a constant upward trend over the years. However if the

underlying growth rate of the series did seem to vary systematically it would be an easy

extension of the model to make the constant a stochastic state variable.

4.3 Results for the Univariate and Multivariate Models

Results of the RMSEs for the univariate and multivariate models are presented in Table 4.2. It

can be identified that the multivariate model with a constant term has the smallest RMSEs and

it is, therefore, the best model among those being considered. As we would expect

multivariate models (b) is better than multivariate models (a) as it contains a wider

information set. However, the striking thing about the results is that the improvement is not

large and the simpler model works almost as well. Indeed the very simple univariate model II,
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by simply imposing aggregation of months to the quarterly figure seems to do remarkably

well.

Table 4.2: RMSEs Results for the Univariate and Multivariate Models

Models RMSEs
Univariate Model I 697.8913
Univariate Model II 690.5032

       Multivariate Model (a) 687.6932
       Multivariate Model (b) 686.7581

       Multivariate Model with constant term (a) 682.4036
       Multivariate Model with constant term (b) 682.3256

5.1 Conclusions

This paper has proposed a range of state space forms for simultaneously balancing and

generating high frequency data. Those models have been compared by means of a Monte

Carlo study. This has demonstrated the practical feasibility of the proposed technique and also

that although the more complex models always give more accurate answer the improvement

is fairly small. This suggests that for many purposes the more simple technique may be

preferable.
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Appendix 1 The State Space Form

Let
Yt  = M St + εε t (1)

be the measurement equation (observation equation), where Yt is a measured variable. St is

the state vector of unobserved variables. M is a design matrix. The state equation (transition

equation) is then given as:

St  = T St-1 + µt (2)

where T are parameters. The time subscripts of M and T are ignored here, as they both are

time-invariant in this study. Disturbances, ε t and µt, are assumed to be normally distributed

and they are mutually and serially uncorrelated with each other.

εt ~ NID(0, Ht),  µt ~ NID(0, Qt)

The Kalman Filter

The Kalman filter is a recursive procedure and it works in two parts, prediction and updating.

Prediction is simply the attempt to make a best guess at the state variables given the

knowledge of the system and estimates. The Kalman filter prediction equations are as follows;

√t |t-1 = T √t-1 (3)
and

Pt|t-1 = T Pt-1 T′ + Qt (4)

Updating is the process of combining the initial estimate of the state variable with the

information contained in the current observed variables. Once the current observation on Yt

becomes available, these estimates can be updated using the following equations:

√t = √t|t-1 + Pt|t-1 M′ (M Pt|t-1M′ + Ht)-1 (Yt - M √t|t-1) (5)
and

Pt = Pt|t-1 - Pt|t-1 M′ (M Pt|t-1M′ + Ht)-1 M Pt|t-1 (6)

Prediction Error Decomposition and Maximum Likelihood Estimation

The likelihood function can be written in terms of the one-step ahead prediction errors, vt , and

their variances, Ft. The one-step ahead prediction error (innovation) is defined as

vt = Yt - M √t|t-1 = M (St - √t|t-1) + εt (7)
and

Ft = M Pt|t  -1 M′ + Ht (8)

With the Gaussian condition, the Kalman filter provides the means of constructing the

likelihood function by the prediction error decomposition (see Harvey (1989) p.126) and the

log likelihood function can then be written as
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where N=T-k and k is the number of periods needed to derive estimates of the state vector.

The above expression is the prediction error decomposition form of the likelihood function.

The concentrated log likelihood function is having the error variance fixed, either in the

measurement equation, Ht, or in the state equation, Qt, and then estimates the other. This

function can be shown to be proportional to
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