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Abstract 

 
This paper examines the causal linkages which may exist between the G-7 national interest rates. Its 

aim is to exploit some new techniques in cointegration analysis to see to what extent conclusions can 

be drawn purely from the data without imposing any arbitrary identification conditions. Causality is 

intimately linked with our structural view of the economy, and it has not been practical in a traditional 

setting to go very much beyond the standard Granger causality testing procedures. This paper 

examines linkages between I(1) series as structural relations, using a method put forward by Davidson 

(1998a) that involves the introduction of the new concept of an irreducible cointegrating vector. In 

order to distinguish between structural and solved irreducible cointegrating relations, we extend this 

methodology introducing the ranking of irreducible cointegrating vectors according to a minimum 

variance criterion. The results suggest that over our sample period the US has been the dominant 

player in setting world interest rates; they also allow us to reject the hypothesis of a German 

leadership in Europe in favour of a US world-wide leadership. 
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Introduction 

The uncovered interest parity condition (or the open arbitrage condition) suggests that 

in general international interest rate differentials should equal the (expected) change 

in exchange rates. Almost all empirical studies have found that the G-7 exchange 

rates are at most I(1) series. If we then make the reasonable assumption that any risk 

premium, which may exist, in the relationship is stationary, the implication of these 

theories is that interest rates should be cointegrated on a bilateral basis. In itself 

therefore cointegration between interest rates is neither surprising nor particularly 

informative. However, if these interest rates are cointegrated then there must exist a 

causal structure, which gives rise to cointegration and is of great policy interest. The 

purpose of this paper is to see how far we can get in determining what this causal 

structure is without imposing an arbitrary set of identification conditions on the data 

that might invalidate the inference we draw. 

Much of the empirical evidence on interest rate linkages is based on causality test 

statistics, even though interest rates are typically I(1) and hence the tests do not 

follow standard distributions. So the inference is often invalid (see Caporale and 

Pittis, 1999). Recent work using an appropriate testing procedure put forward by Toda 

and Yamamoto (1995) shows that in fact, at least in the case of long rates, interest rate 

movements are determined mainly by domestic policy objectives (see Caporale and 

Williams, 2002, 1998c). International linkages in short-term rates appear to be much 

stronger, although the direction of causality is not always consistent with common 

priors about the functioning of the international financial system and of the ERM (see 

Caporale and Williams, 1998b, 1998c).  

This paper examines interest rate linkages in the G-7 as structural relations, using a 

method put forward by Davidson (1998a) that involves the introduction of the new 

concept of an irreducible cointegrating vector. The interesting feature of this method 

is that, under certain circumstances, it allows us to learn about the structural 

relationship that links cointegrated series from the data only, without imposing any 

arbitrary identifying conditions. In this paper we borrow Davidson's main idea and 

extend it to analyse the structural relationships between the G-7's short-term interest 

rates as well as the underlying causal structure that links them. It is plausible to 

assume that larger financial units exert stronger influence on smaller ones, which 

would explain why the US has been dominant in international financial markets. 
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However, the adoption of a single European currency, which covers a very large 

single economic area, might mean that financial conditions in Europe now have more 

powerful effects on interest rates worldwide; if the Euro gradually becomes an 

international currency, this influence could be accentuated. Similarly, linkages within 

Europe might have been affected by institutional changes in the ERM, and further 

changes are likely to have been associated with the inception of EMU. Our analysis 

therefore might also shed some light on the likely impact of the creation of an 

integrated capital market in Europe. By suppressing exchange rate risk within the area 

and by fostering harmonisation measures, EMU will have an impact on asset prices 

and monetary and fiscal policy, which in turn will affect investment, real activity, 

capital flows and hence global interest rate linkages (see Portes and Rey, 1998). 

An important issue is the ability of national authorities to conduct an independent 

monetary policy with respect to long-run interest rates even in the presence of 

increasingly integrated international financial markets (see Caporale and Williams, 

1998c). If the fundamental determinants of (long-term) interest rates are national 

rather than international, then the interest rate is not given even for a small open 

economy, and interest rate policy still lies mainly in the hands of domestic policy 

makers. It appears that even in a system like the ERM which aims to produce policy 

co-ordination it has been possible for monetary authorities to disengage their long-

term interest rate policy from developments elsewhere and pursue an independent 

policy agenda over long periods. Such an option should remain available for non-

participating countries, like the UK, after the establishment of the Euro. Therefore the 

UK authorities will not necessarily find their freedom of action greatly constrained by 

what is happening in the Euro zone. Within the Euro zone the policies of the 

European Central Bank (ECB) will not necessarily be as stable or credible as those 

adopted so far by the German authorities, since smaller countries will also have an 

influence on monetary policy (see Begg et al, 1998). If in fact Germany has not been 

able to impose its interest rate policy on the other ERM countries, and if this becomes 

true of fiscal policy as well (notwithstanding the Growth and Stability Pact), long-

term rates might rise (rather than decline) in the EU after 1999. 
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1. Analysing Interest Rate Linkages 

In broad terms one can identify two views on how interest rates may be linked. If they 

are treated as analogous to other asset prices, then their movements are naturally 

interpreted as being determined by financial flows in fluid, profit-seeking capital 

markets. Alternatively, they can be viewed as policy instruments, so that their time 

paths may be determined by a policy objective such as an exchange rate parity or an 

inflation target. Interest rate linkages have therefore often been analysed in the 

context of a specific policy framework such as the Exchange Rate Mechanism 

(ERM). For instance, numerous studies have attempted to test the so called “German 

Leadership Hypothesis” (GLH), according to which Germany acts as the dominant 

player within the system, and monetary authorities in other ERM countries are unable 

to deviate from the course set by the Bundesbank (see, e.g., Fratianni and Von Hagen, 

1990).  

Taking this view, co-movement in interest rates arises because of policy convergence. 

Early studies had concluded that there is no cointegration between German rates and 

other EMS rates (see Karfakis and Moschos, 1990), and that there is stronger 

evidence of cointegration between US rates and EMS rates (see Katsimbris and 

Miller, 1993). Subsequent papers reported convergence in European rates after 1986 

(see Caporale et al, 1996). Similar conclusions were reached by Hall et al (1992) 

using time-varying techniques. In a global context, Caporale and Williams (1998b) 

found a marked difference between linkages in long-term rates (10-year bond yields) 

and in short-term rates (3-month Treasury bills) in the G-7 economies. Whilst there is 

little evidence that the former have been linked to one another over the last two 

decades, for the latter the evidence of co-movement is more compelling. Furthermore, 

the causality structure is not consistent with the standard characterisation of the ERM 

as an asymmetric system in which Germany was the dominant player - it suggests 

instead that there was German accommodation of French monetary policy within the 

ERM. This result could be interpreted in the context of the “size effects” identified in 

recent theoretical research, according to which larger, more stable countries can 

achieve policy objectives more successfully via accommodation than by compulsion 

(see Martin, 1997). The system was actually more flexible than normally recognised, 

as there were various “escape clauses” built into it (for instance, the options of 

exchange rate realignments, wider fluctuation bands, and capital controls). In this 
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study our objective is to identify the fundamental relationships linking interest rates 

among the G-7, and to analyse their causal structure in order to test for hypotheses 

such as the GLH.  

Our analysis is based on Davidson (1998a), who introduces the concept of an 

irreducible cointegrating (IC) relation, one from which no variable can be omitted 

without loss of the cointegration property. The focus is on the identification of long-

run structural relations, where the word structure is used to refer to relations that are 

consistent with theory-based restrictions and therefore have a clear economic 

interpretation. This is in contrast to other definitions of structure as requiring 

invariance to regime shifts (see Hendry, 1995). Whilst the issue of identification is 

usually addressed in the context of a vector error correction model (VECM – see, e.g., 

Pesaran and Shin, 1994, Johansen, 1995), Davidson (1998a) provides a structural 

interpretation of single cointegrating regressions a la Engle and Granger (1987). The 

advantage of the procedure he suggests is that, under certain circumstances, when the 

model is overidentified, it enables the researcher to obtain information about the 

underlying structure directly from the data. 

He crucially shows that an IC vector is unique (up to the choice of normalisation), and 

that if and only if a structural cointegrating relation is identified by the rank condition, 

it is irreducible (see Davidson, 1994). This means that, for the purpose of identifying 

the structure, cointegrating vectors with redundant variables are not useful. Not all the 

IC vectors, though, are structural. Some of them are solved vectors, namely linear 

combinations of structural vectors. Therefore one should first perform cointegration 

tests in order to eliminate all non-cointegrated sets and cointegrated supersets, and 

then concentrate on the cointegrated sets, which yield IC relations. Davidson (1998a) 

develops such an elimination procedure based on a GAUSS algorithm (MINIMAL).1 

Essentially, one is analysing all possible cointegrated relations and testing exclusion 

restrictions by means of suitably constructed Wald tests, which can be shown to 

follow standard distributions (see Davidson, 1998b). Furthermore, one can rank the 

cointegrating vectors according to the value of the Wald statistic for the vector itself, 

so as to establish which IC relations are most supported by the data. 

                                                           
1 Note that only in the case of maximum over-identification, i.e. when there is no overlap of the 
cointegrated subsets, it is possible to identify the structure in its entirety. 
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In this paper we extend Davidson's (1998a) method introducing the ranking of the 

irreducible cointegrating vectors according to the criterion of lowest variance. The 

argument put forward here is that (asymptotically) if we have N variables and R 

structural IC vectors where R is at most N-1, then there may also exist up to K 

irreducible vectors which are simply combinations of the R structural ones where K is 

at most ((R-1)2+(R-1))/2. So there are a total of R+K possible IC vectors. Then the R 

structural ones will be grouped amongst the lower group of vectors when we order 

them by the lowest variance of the long-run residuals of the cointegrating relationship 

as discussed later. We will apply these ideas to the G-7 short-term interest rates.  

To summarise our procedure, we first perform cointegration tests on the complete G-7 

group of series to obtain its cointegrating rank. After this the next logical step is to 

identify the structural relationships. It is standard practice to orthonormalise the 

matrix of long-run coefficients first, and then test for identification of its columns. 

The problem with this approach is that it involves dealing with the presence of 

potentially redundant variables that interact with the other cointegrated series, which 

drive the cointegrating regression coefficients towards some other element of the 

cointegrating space. To eliminate the redundant or non-cointegrated series, we 

perform cointegration tests on each pair of series, so that we obtain a certain number 

of cointegrating vectors, which, as we shall see, are by definition irreducible. Our 

next task is distinguishing structural irreducible cointegrating relations from solved 

ones. This is achieved by calculating the descriptive statistics of each of the 

irreducible cointegrating relations, and ranking these vectors on the basis of the 

magnitude of their standard deviation. Our idea is that the cointegrating relationships 

that display the lower variability should be the structural ones, the ones that have a 

high standard deviation being just solved cointegrating relations. This point is 

illustrated in greater detail in the following section, which also includes a more 

extensive discussion of Davidson's (1998a) methodology. 

 

 

2. The methodology  

Consider a cointegrated VAR (p), as analysed by Johansen (1988): 

(2.1) A(L)xt = αβ'xt + A* (L)∆xt = εt  (px1), 
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where xt ~ I(1),  L is the lag operator, A(L)= αβ' + A* (L)(1−L) such that A(1) = αβ', 

and α and β are p x k matrices, the loading weights matrix and the matrix of 

cointegrating vectors respectively. 2 When k<p it can be shown that the system 

incorporates a set of long run relationships of the form β'xt = st , where 

(2.2) st = (α'α)-1 α' (εt - A* (L)∆xt) ~ I(0). 

In this model there are k linearly independent cointegrating vectors, the columns of β. 

Note that without restrictions on β we can always scale the matrix of the cointegrating 

relations by post-multiplying it by any non-singular k x k matrix C, to get Cβ'xt = Cst 

that is observationally equivalent to β'xt = st with loading matrix αC -1. The 

identification problem within the Johansen procedure is tackled by estimating a 

collection of orthonormalised vectors spanning the same space as β that are identified 

by the usual rank condition. Here we propose to follow a method that allows the 

researcher to identify the structural relations in the case of over-identified systems 

extending it to the case of just-identified ones. Our methodology is an extension of a 

method put forward by Davidson (1998a) of which we need to recall the main points 

that are formalised in five theorems. 

Theorem 1 (Davidson, 1994). If a column of β (say β1) is identified by the rank 

condition, the OLS regression which includes just the variables having unrestricted 

non-zero coefficients in β1 is consistent for β1.  

The issue raised by this theorem is that within a non-stationary world if another 

variable is added to a cointegrating regression, its coefficient might not necessarily 

converge to zero as we would expect in the case of an irrelevant variable within 

regression involving stationary variables. In the case of cointegration the regression 

coefficients would generally converge to some other element of the cointegrating 

space. The main result of this is that, if a collection of I(1) variables is found to be 

cointegrated, it does not necessary follow that the estimated vectors can be interpreted 

as structural. In this framework it is useful to recall the definition of irreducible 

cointegrating vector introduced by Davidson’s (1998a), that is,   

                                                           
2 We have assumed for simplicity the absence of any deterministic terms in this representation of the 
system under analysis. The modifications necessary to relax these assumptions are straightforward and 
would not alter the substance of the results obtained using a simpler model. 
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Definition I. A set of I(1) variables will be called irreducibly cointegrated (IC) if they 

are cointegrated, but dropping any of the variables leaves a set that is not 

cointegrated. 

Having formally defined the features of an IC it is worth mentioning the following 

important property of these vectors. 

Theorem 2. An IC vector is unique, up to the choice of normalisation. 

This theorem is proved using the following argument. Let us assume that there exists 

for the IC variables a set of cointegrating vectors of rank at least two. We have 

already seen that any linear combination of these vectors would lie in an 

observationally equivalent cointegrating space. If this is true, we can always generate 

a combination having a zero element by choosing the weights appropriately. This 

would allow us to drop the variable in question without losing cointegration, but this 

contradicts the definition of IC itself. 

Theorem 3 (Davidson, 1994). If and only if a structural cointegrating relation is 

identified by the rank condition, it is irreducible.  

This tells us that at least some IC vectors are structural. When the cointegrating rank 

of the system is k, an IC relation can contain at most p - k + 1 variables. There are 

between k and ( p - k + 1 ) of these vectors in total, the actual number depending on 

the degrees of over-identification of the relations of the system. This is to say that in 

addition to up to k identified structural relations, which, by theorem 3, are among the 

IC vectors, there might also be a number of solved vectors that can be defined as 

follows: 

Definition 2. A solved vector is a linear combination of structural vectors from which 

one or more common variables are eliminated by choice of offsetting weights such 

that the included variables are not a superset of any of the component relations. 

A solved vectors lies in the cointegrating space by construction. It may also be 

irreducible provided that it is a function of identified structural vectors. It is worth 

highlighting that solved IC relations are comparable to the reduced form equations of 

the conventional simultaneous equation models as they are solved from the structure3. 

                                                           
3 Note that in standard systems of simultaneous equations the reduced forms are defined with respect to 
a particular normalisation which is based on the distinction between endogenous and exogenous 
variables, which is not relevant in the cointegrating framework. 
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At this point a reasonable question would be, why does one need to test for 

irreducible cointegrating relations? And, how does one distinguish between structural 

and solved cointegrating vectors? 

The answers are contained in the following argument. It is common practice to build a 

presumed cointegrating regression in the light of some economic theory, the theory 

being considered to receive support if the hypothesis of non-cointegration is rejected. 

However, economic theory might suggest including some variable which is in fact not 

really involved in that cointegrating relation but which, interacting with the other 

variables, might display a coefficient which does not converge to zero. This could 

well provide us with a stationary relation that could indeed be a wrong one, for that, 

as gathered from theorem 3, a cointegrating relation that contains redundant elements 

is not interest. The theory could be wrong, in which case this is just an arbitrary 

element of the cointegrating space. If the theory is correct, the relation is revealed to 

be underidentified. The estimate is inconsistent and it represents a hybrid of different 

structural equations.  

Irreducibility is an important diagnostic property of a cointegrating regression, and 

testing for it allows us to determine what are the redundant variables in the system 

removing any unwanted effects. Once an IC relation is found, interest focuses on the 

problem of distinguishing between structural and solved forms. Of course, the 

theoretical model might answer this question for us, but this would then simply be 

using the theory to identify the model, and so in the absence of overidentifying 

restrictions we could learn nothing about the validity of the theory itself. Davidson 

(1998a) argues that important clues may also be provided by the data alone and we 

extend the argument later. To show this he uses the example discussed below. Prior to 

this, it is necessary to mention some more of his results, which will also be useful to 

understand our extension. These are formalised in a lemma and two more theorems. 

Lemma I. Provided β is restricted only by zero and normalisation restrictions, a 

solved IC relation contains at least as many variables as each of the identified 

structural relations from which it derives. 

In general, therefore, the fewer variables an IC relation contains, and the fewer it 

shares with other IC relations, the better the chance that it is structural and not a 

solved form. In the extreme cases, we can actually draw definite conclusions, as the 

following pair of results show. 
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Theorem 4. If an IC relation contains strictly fewer variables than all those others 

having variables in common with it then, subject to the condition of Lemma l, it is an 

overidentified structural relation. 

Theorem 5. If an IC relation contains a variable, which appears in no other IC 

relation, it is structural. 

Thus, it is possible, in the context of simultaneous cointegrating relations, to discover 

structural economic relationships directly from a data analysis, without the use of any 

theory. To understand this assume a system that consists of four I(1) variables, x, y, z 

and w. Suppose we had tested for cointegrating rank and had found a rank of two. The 

second step would involve testing for cointegration on pairs of the variables. If the 

pairs (x, y) and (z, w) are found to be cointegrated (but not the pairs (x, z) or (y, w)), 

these two cointegrating relations, necessarily irreducible of course, are also 

necessarily structural. Neither can have arisen as a result of solving out some more 

fundamental relationships. This is a case of maximal over-identification and is the 

framework within which Davidson's (1998a) methodology performs at its best. This 

result is achieved by Davidson using an algorithm implemented in Gauss called 

MINIMAL. 

The essence of it can be summarised as: start with a pair of variables, test these for 

cointegration, and then add to the set one variable at a time until a cointegrated subset 

is found. This procedure is then repeated in every possible way. When the routine has 

terminated, every subset of the variables has been tested for cointegration unless a 

subset of it has been previously found cointegrated. At the end of the procedure we 

should obtain a list of cointegrated subsets which do not have any cointegrated 

subsets. All the testing can be performed indifferently using the Engle-Granger OLS 

method or the Likelihood-based technique due to Johansen (1988).  

To introduce our extension of Davidson's procedure, we will analyse the case of 

bivariate cointegration as this gives rise to the largest number of IC vectors and 

solved cointegrating relationships for any number of variables. In addition, this is also 

the most relevant case for our later application of the methodology to the G7 interest 

rates.  

Consider an N-dimensional cointegrating system as analysed by Johansen (1988, 

1991), 

(2.3) tttt uXLXXL =∆Π+=Π )(')( oαβ , 
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where L is the lag operator, )1)((')( LLL −Π+=Π oαβ , such that ')1( αβ=Π , where α 

and β are of dimension NxR and are respectively the loading matrix and the matrix of 

cointegrating vectors. When R<N, it can be shown that Xt~I(1) and the system 

incorporates a set of long run equilibrium relations of the form β’Xt=ut.  

In general, in the case of bivariate cointegration between each pair of variables in a 

set of N variables there will be R structural IC vectors where R is N-1, and there will 

exist K irreducible vectors, which are simply combinations of the R structural ones 

where K is ((R-1)2+(R-1))/2. Now, if we designate the first R cointegrating residuals 

as the structural ones, so that for )...,0(~... 2
1

2
1 RR NIuu σσ , then clearly the solved 

cointegrating residuals will be combinations of these4. Because for any IC vector the 

variance may vary with the normalisation, we need two starting assumptions for our 

ranking criterion to be operative.  

This first assumption involves the possibility of normalising the IC vectors using the 

normalisation which yields a minimum variance. Formally, given two cointegrated 

series x1t and x2t we choose to normalise their cointegrating relation as 

(2.4) ttt uxx 121 += δ , ),(~ 2
111 σµtu  

rather than as 

(2.5) ttt uxx 212 += ρ  ),(~ 2
222 σµtu ,  

if 2
2

2
1 σσ ≤ . 

A second assumption is that, the residuals from the structural cointegrating relations 

are normally independent distributed with full rank diagonal covariance matrix Σ5 

(Sims 1980 makes a similar assumption for the error terms of the unobservable 

structural VAR6; see also Hendry 1995 pp.784 and 807). Given these two starting 

assumptions, we make the following statement: 

                                                           
4 However, we will see that the set of K solved residuals need not all to display a variance that is 
strictly greater than that all of the R structural residuals. 
5 However, given that the solved vectors are linear combinations of the structural ones it is likely that 
their cointegrating errors will be correlated with one or both the residuals of the solving relations. 
6 Sims’ 1980 argument can be summarised as follows: The structural model is not directly observable, 
however a VAR can be estimated as the reduced form of the underlying structural model 
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where e denotes the VAR residual vector, normally independent distributed with full variance-
covariance matrix Ω. The relation between the residuals in e and the structural disturbances in u is, 
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The minimum variance normalised structural residuals will have a strictly lower 

variance than any solved residual coming from an IC vector containing the same 

variable. 

This proposition provides us with an immediate rule for distinguishing structural from 

solved irreducible vectors. We can prove it as follows. 

Let 

(2.6)  tt uX ='β , β (rxn) and Xt (nx1) 

be the structural cointegrating relations with β normalised such that ),0(~ ΣiNut . 

Here we assume that β has been normalised on the jth element of its columns such that 

the cointegrating relations have variances 2
.

2
. kiji σσ < , where 2

iσ are the elements on the 

main diagonal of Σ, and kj ≠ indicate different normalisations. Any solved vector 

will be given by a combination of the structural tt uX ='β of the form 

(2.7)  tt AuXA ='β , 

where A is (1xr) normalised on the corresponding element j.  

It follows that )',0(~ AANAut Σ and more explicitly ∑=Σ
i

iiaAA 22' σ . Now recall 

that as at least one of the terms of this summation is given by 22
jja σ , and also 1=ja . 

Therefore, we can see that 

(2.8)  ∑ >=Σ
i

jiiiaAA 2
.

22' σσ .   QED. 

As an illustration, consider the case when N=4, such that Xt={x1, x2, x3, x4}. Assume 

that, in testing for irreducibility, we have found that cointegration holds between all 

the possible pairs of series. In this case the system has a rank of (N-1)=3 and we have 

a collection of 6 irreducible cointegrating relations, of which 3 are structural and 3 are 
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just solved relations. Suppose that the minimum variance normalisation delivers us 

the following irreducible structural relations 

(2.9) ,121 ttt uxx += δ  ),0(~ 2
11 σNu t  

(2.10) ,232 ttt uxx += γ  ),0(~ 2
22 σNu t  

(2.11) ,343 ttt uxx += ϕ  ),(~ 2
333 σµNu t . 

The three solved vectors will be linking respectively x1t to x3t, x1t to x4t, and x2t to x4t. 

They will look like 

(2.12) ttt uxx 431 += θ  with ttt uuu 214 and, δδγθ +== , 

(2.13) ,541 ttt uxx += λ  with tttt uuuu 3215 and, δγδδγϕλ ++== , and 

(2.14) ,642 ttt uxx +=ψ  with tt uu 32 and, γγϕψ += . 

Basic statistics tells us that u4t will be distributed as 

(2.15) )]),cov(2[,0(~ 21
2
2

22
14 ttttt uuNu δσδσ ++ . 

And assuming that u1t and u2t are uncorrelated  

(2.16) ),0(~ 2
2

22
14 ttt Nu σδσ +  

In the same way 

(2.17) ),0(~ 2
3

222
2

22
15 tttt Nu σγδσδσ ++ , and  

(2.18) ),0(~ 2
3

22
26 ttt Nu σγσ + respectively. 

We can see that the magnitude of the variances of the solved vector depends on the 

values of the cointegrating parameters δ,γ, and φ, and it seems somewhat difficult to 

distinguish whether for example )( 2
3

22
2

2
1 tt σγσσ +< without any prior knowledge 

about γ. This does not mean that we cannot use the criterion of the minimum 

variances to detect the structural residuals. This is achieved by carrying out a more 

complex comparison, which involves, rather than comparing the variances of the 

irreducible cointegrating relations in absolute terms (simply with each other), 

comparing the variances of vectors relative to the same variable. 

Table 1 shows a four variable case, as in the example presented above, where the 

structural bivariate relationships are between x1 and x2, x2 and x3 and x3 and x4. The 

variances reported are in fact the ones of u1,…,u6. There we can see that the structural 

relationship between x1 and x2 always has the smallest variance in the row 

corresponding to vectors normalised for x1. In fact we can observe that 2
1σ must be 
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strictly smaller than both 2
2

22
1 tt σδσ + , and 2

3
222

2
22

1 ttt σγδσδσ ++  regardless of the 

values or the signs of the cointegrating parameters δ and γ. The same applies to the 

structural relationship between x2 and x3 as compared to the one linking x2 and x4, and 

so on. 

It is interesting to notice that irreducibility might also be useful to simplify the 

analysis of causal linkages between variables. This is because by ruling out non 

cointegrated series we would be working with smaller systems with a gain in 

efficiency. Therefore, in order to shed some light on the causal structure of the 

cointegrating system we perform likelihood ratio tests on the adjustment coefficients 

towards the irreducibly cointegrated relations. Below we apply the proposed 

methodology to the G-7 short-run interest rates with interesting results. 

 

 

3. Empirical Analysis 

a) The dataset 

The sample under investigation covers the period between 1977:1-1998:3. The short-

term interest rates we employed are those that are most likely to be used as policy 

instruments, namely the three-month Treasury bills. The only exception is Japan, 

where only the discount rate was available for the whole period under investigation. 

The source for the data is the IMF's International Financial Statistics. 

We begin the analysis by pre-testing for the order of integration of the series using 

standard Augmented Dickey-Fuller (ADF) tests. The number of lagged differences 

included in the test is decided on the basis of a criterion advised by Doornik and 

Hendry (1997), so as to ensure non-autocorrelated residuals on the auxiliary 

regressions. In each case the tests deliver the expected result that the series are all 

integrated of order one [I(1)], and hence follow stochastic trends. The results are 

shown in table 2.  

Having obtained confirmation that all interest rates are integrated of order one, we 

proceed by running cointegration tests for the complete G-7 series of short-term 

interest rates. For this and subsequent analysis we have used Johansen's (1988, 1991) 

likelihood based cointegration tests. Our theory would suggest that amongst the seven 

series there should be six cointegrating vectors. As suggested in Hall (1991) and 

Caporale et al (1997), in performing the rank tests we have been particularly careful 
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about correctly specifying the unrestricted VAR, therefore including as many lags of 

the variables as necessary to ensure non-autocorrelation in the residuals, as well as 

one-point dummies to correct for non-normality or heteroscedasticity of the 

disturbances. 

 

 

b) Empirical Results 

We start by performing cointegration tests on the complete G-7 set of interest rates 

obtaining the results displayed in table 3. The test statistics indicate that the 

cointegrating rank of the system is four. Of course these tests only allow us to reject 

the hypothesis that there are less than four cointegrating vectors - they do not 

necessarily mean that there is not more. So, in order to learn something more about 

the structure of the linkages among these series, we perform cointegration tests on 

each pair of series to investigate whether cointegration holds among all of the series 

of the group. The aim is to establish the number of irreducible cointegrated relations 

and what series are involved in them. Of course if we find that pairwise cointegration 

holds between each pair of rates this tells us that the rank of the whole seven variable 

system is in fact 6. The conflict between the two test procedures is then seen as 

simply one of the small sample power and size of the tests in different contexts. 

The results for pairwise cointegration tests are presented in table 4. Looking at the 

results we get confirmation of what we suspected about the possible true rank of the 

system. The main result is that cointegration holds among every pair of series and 

with a unit elasticity in all cases but in two, namely the relationship Japan-Canada and 

Japan-France. The likely reason is the fact that in the case of Japan we used the 

discount rate, which appears to behave differently and to change much more slowly 

compared to other rates, therefore producing different results. 

Cointegration is clearly a property of the series and this is confirmed by the existence 

of nineteen irreducible cointegrating relations with unit coefficients out of twenty-one 

cointegrating tests. Of course, given such widespread cointegration it is almost certain 

that in fact all pairwise interest rates cointegrate. For example Italy and Japan clearly 

cointegrate, as do Italy and Germany, but the test between Germany and Japan is less 

significant. However, as the first two cointegrate, Germany and Japan must also 

cointegrate. 
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The second part of our analysis involves the ranking of the cointegrating vectors 

according to the criterion of minimum variability and the discussion of exogeneity 

issues which will help to clarify the relationships among the series (table 5).  The first 

two interesting results are that two of the minimum variance vectors link the US to 

Canada and Italy to France, both of which can be considered irreducible structural 

relationships. It then becomes rather hard to interpret the ranking when presented in 

the form of table 5. We therefore collate the information from table 5 in the form 

given in table 6.  

This table now presents a set of results, which are relatively easy to interpret. We 

have highlighted in bold the relationships which seem to be structural on a column by 

column interpretation. Clearly, on a minimum standard deviation criteria the US and 

Canada is a structural relationship, as is Germany and Japan, France and Italy, UK 

and Japan, Germany and Japan, and US and Japan. 

In the simple ranking of standard deviations given in table 6 these all appear in the 

lowest 7 places; we can exclude the relation between Canada and France, which is in 

position 6, from being structural as in the French column France and Japan have a 

lower standard deviation. The exogeneity tests reported in Table 5 add a little to this 

understanding. In the Japan Germany relationship, Japan is exogenous, and in the 

France-Italy relationship, France is exogenous. Perhaps most significantly, the US is 

found to be exogenous with respect to Japan. This suggests that Italy was largely 

following French rates and Germany was following Japanese rates, while Japan 

followed the US. All the other relationships seem to be bi-directional. 

Overall we have a picture of the US and Canada being a clear block, then most of the 

other countries being linked primarily through Japanese rates (these are not of course 

acting in a dominant way as no exogeneity can be established except with respect to 

Germany). Italy was clearly following France. The UK responded more to non-

European rates than to the other European countries, and, surprisingly, France and 

Germany seem to be responding more to world rates than to each other.  

These results clearly confirm the previous analysis conducted by Caporale and 

Williams (1998b), which rejected the so-called German Leadership Hypothesis 

(GLH), since Germany does not appear to be driving the European financial markets. 

This is suggested by exogeneity of US and Japanese rates in the pairwise 

cointegration tests with the German one. Also, in the tests with other European 
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countries, Germany does not appear to be exogenous in any but one of the cases. It 

does not seem that a leader exists in Europe. This conclusion is justified by the fact 

that we find feedback effects in causality among most of the series involved and in the 

other cases we find a sort of “circular” causality among the series, indicating that 

there is not a country that represents the leader.  

 

 

4. Summary and Conclusions 

In this paper we have examined the causal linkages that exist between the G-7 short-

term interest rates. We have done so applying a methodology due to Davidson 

(1998a) which is based on the innovative concept of an irreducible cointegrating (IC) 

vector which can be defined as a subset of a cointegrating relation that does not have 

any cointegrated subsets. Application of this method has provided us with the proof 

that cointegration is a property of the G-7 short rates showing the importance of 

testing for irreducibility as a diagnostic. We have also extended Davidson's (1998a) 

methodology introducing the ranking of the IC relations according to the criterion of 

minimum variance. This has allowed us to distinguish between structural and solved 

IC vectors without any prior theoretical assumptions. Furthermore, we have 

performed exogeneity tests on all IC relations in order to gather information on the 

causal structure that links the rates.  

The results can be summarised as follows. First, the rank of the system appears to be 

6 when Davidson's approach is taken, compared to 4, which is the result obtained 

performing a rank test a la Johansen (1988) on the full system. Second, we have been 

able to isolate six irreducible structural relations, of which the two most significant 

ones involve the US and Canada, and Italy and France. Third, exogeneity tests seem 

to indicate a US world-wide leadership and reject the hypothesis of a German 

leadership in Europe, therefore confirming the findings of Caporale and Williams 

(1998b) and of other authors (see, e.g., Katsimbris and Miller, 1993). In brief, US and 

Canada appear to constitute the fundamental block, UK rates respond more to non-

European rates than to other European countries, Italy is clearly following France, and 

France and Germany respond to world rates rather than to each other. Last, it is 

important to mention the role of Japan that acts as the link between European rates 

and the US one. 
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Table 1. The relationship of variances of cointegrating errors between structural and 

solved vectors 

 x1 x2 x3 x4 

x1 ---- 1
2σ  2

2
22

1 tt σδσ +  2
3

222
2

22
1 ttt σγδσδσ ++  

x2 ---- ---- 2
2σ  2

3
22

2 tt σγσ +  

x3 ---- ---- ---- 3
2σ  

x4 ---- ---- ---- ---- 

 

 

Table 2. Unit root test on G7 short-term rates 

 ADF test value Critical value 95% Critical value 99% 

Canada -1.852 -2.89 -3.51 

France -1.383 -2.89 -3.51 

Italy -0.829 -2.89 -3.51 

USA -2.202 -2.89 -3.51 

UK -2.340 -2.89 -3.51 

Germany -2.749 -2.89 -3.51 

Japan -1.465 -2.89 -3.51 

 

 

Table 3. Unit root test on G7 long-term rates 

 ADF test value Critical value 95% Critical value 99% 

Canada -0.990 -2.89 -3.51 

France -0.938 -2.89 -3.51 

Italy -1.010 -2.89 -3.51 

USA -1.338 -2.89 -3.51 

UK -0.442 -2.89 -3.51 

Germany -2.073 -2.89 -3.51 

Japan -0.720 -2.89 -3.51 
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Table 4. G7 short term rates cointegration test 

Eigenvalue Log-likelihood rank 

 481.013 0 

0.7557 540.215 1 

0.5184 570.903 2 

0.3961 592.086 3 

0.2975 606.915 4 

0.1550 613.99 5 

0.0877 617.845 6 

0.0370 619.428 7 

 

Ho:rank=p )ˆ1log( pT λ−−  (T-nm)° 95% cv ∑
+=

−−
n

pi
iT

1
)ˆ1log( λ (T-nm)° 95%cv 

P ==  0 118.4** 88.8** 45.3 276.8** 207.6** 124.2 

P <=  1 61.38** 46.03** 39.4 158.4** 118.8** 94.2 

P <=  2 42.37** 31.77 33.5 97.05** 72.79* 68.5 

P <=  3 29.66* 22.24 27.1 54.68** 41.01 47.2 

P <=  4 14.15 10.61 21 25.03 18.77 29.7 

P <=  5 7.71 5.783 14.1 10.87 8.156 15.4 

P <=  6 3.164 2.373 3.8 3.164 2.373 3.8 

*indicates rejection of the null at the 95% level 

** indicates rejection of the null at the 99% level 

° -(T-nm) is a small sample correction replacing (-T) in the λ-max and λ-trace 

statistics 
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Table 5 Pairwise cointegration tests for G7 short-term rates 

 )ˆ1log( pT λ−−  -(T-nm)° 95% cv ∑
+=

−−
n

pi
iT

1
)ˆ1log( λ  -(T-nm)° 95% cv

USA-Canada 14.23* 9.678 14.1 16.58* 11.27 15.4 

USA-Japan 22.46** 14.57* 14.1 23.68** 15.36 15.4 

USA-UK 14.71* 9.936 14.1 17.31* 11.7 15.4 

USA-France 14.48* 11.92 14.1 15.48* 12.74 15.4 

USA-Italy 16* 13.16 14.1 19* 15.63* 15.4 

USA-Germany 24.45** 20.17** 14.1 24.45** 20.17** 15.4 

Canada-France 15.52* 11.8 14.1 17.94* 13.64 15.4 

Canada-UK 14.72* 12.15 14.1 17.39* 14.35 15.4 

Canada-Italy 21.09** 18.52** 14.1 21.34** 18.74* 15.4 

Canada-Japan 24.71** 20.39** 14.1 24.76** 20.43** 15.4 

Canada-Germany 17.47* 13.93 14.1 17.47* 13.93 15.4 

UK-France 15.95* 12.55 14.1 19.46* 15.31 15.4 

UK-Germany 30.99** 23.74** 14.1 31.24** 23.93** 15.4 

UK-Italy 17.8* 14.48 14.1 19.71* 16.03 15.4 

UK-Japan 19.9** 15.31* 14.1 24.62** 18.94* 15.4 

Germany-France 16.31* 14.32* 14.1 18.43* 16.18* 15.4 

Germany-Italy 22.21** 18.7* 14.1 25.75** 21.68* 15.4 

Germany-Japan 14.8* 13 14.1 17.03* 14.95 15.4 

Italy-Japan 27.96** 25.96** 14.1 29.79** 27.67** 15.4 

Italy-France 24.09** 21.15* 14.1 30.62** 26.89** 15.4 

Japan-France 27.46** 21.9** 14.1 28.91** 23.05** 15.4 

* indicates rejection of the null of no cointegration at 95% level 

** indicates rejection of the null of no cointegration at 99% level 

° -(T-nm) is a small sample correction replacing (-T) in the λ-max and λ-trace 

statistics 
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Table 6. Short-term rates, ranking of IC vectors 

IC vectors eigenvalue standard deviation exogeneity restrictions

Italy-France 0.254565 1.173084 France exogenous 

Germany-Japan 0.165175 1.571049 Japan exogenous 

USA-Canada 0.172846 1.782502 Feedback 

UK-Japan 0.225159 1.883635 Feedback 

Japan-France* 0.293614 1.967761 Feedback 

Canada-France 0.186971 2.108287 Canada exogenous 

USA-Japan 0.261784 2.126364 USA exogenous 

Canada-UK 0.168093 2.138164 Feedback 

Germany-France 0.18824 2.21158 Feedback 

USA-UK 0.180218 2.359356 USA exogenous 

USA-France 0.167506 2.405468 France exogenous 

UK-Germany 0.307000 2.467542 Feedback 

Canada-Japan* 0.265748 2.496532 Feedback 

Canada-Italy 0.226752 2.497663 Feedback 

Italy-Japan 0.283097 2.540980 Feedback 

USA-Germany 0.263376 2.545527 USA exogenous 

USA-Italy 0.183315 2.647584 Italy exogenous 

UK-France 0.191583 2.674037 UK exogenous 

Canada-Germany 0.198368 2.772337 Canada exogenous 

Germany-Italy 0.253395 2.820897 Germany exogenous 

UK-Italy 0.211309 3.190997 Feedback 

* indicates cointegration with non-homogeneous coefficients 
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Table 7 Cross tabulation of Standard deviations for the G7 short rates. 

 USA Canada Japan Germany France Italy UK 

USA - 1.78 2.1 2.5 2.4 2.6 2.3 

Canada 1.78 - 2.5 2.7 2.1 2.5 2.1 

Japan 2.1 2.5 - 1.57 1.96 2.5 1.88 

Germany 2.5 2.7 1.57 - 2.2 2.8 2.4 

France 2.4 2.1 1.96 2.2 - 1.17 2.6 

Italy 2.6 2.5 2.5 2.8 1.17 - 3.2 

UK 2.3 2.1 1.88 2.4 2.6 3.2 - 

Structural IC relations are in highlighted in bold 
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