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1 Introduction

Density forecasts, or more popularly “fan” charts, are being used increasingly in economics
and finance since they provide commentators with a full impression of forecast uncertainty.
They reflect the fact that point forecasts, namely the “central tendency” of the forecast,
are better seen as the central points of ranges of uncertainty. Therefore it is not a question
of a given point forecast proving to be right and another point forecast proving to be
wrong. Users of forecasts may not be surprised if, for example, inflation turns out to be
a little higher than the point forecast. Indeed they may not be very surprised if it turns
out much larger.

More formally, density forecasts of inflation provide an estimate of the probability
distribution of its possible future values. In contrast to interval forecasts, that state the
probability that the outcome will fall within a stated interval such as inflation falling
between 1% and 3%, density forecasts provide a complete description of the uncertainty
associated with a forecast; they can be seen to provide information on all possible intervals.
Density forecasts of inflation in the UK, for example, are now published each quarter
both by the Bank of England in its “fan” chart and the National Institute of Economic
and Social Research (NIESR) in its quarterly forecast, and have been for the last ten
years. Density forecasts inform the user of the forecast about the risks involved in using
the forecast for decision making. Indeed, interest may lie in the dispersion or tails of
the density itself; for example inflation targets often focus the attention of monetary
authorities to the probability of future inflation falling within some pre-defined target
range while users of growth forecasts may be concerned about the probability of recession.
Moreover, volatility forecasts, as measured by the variance, and other measures of risk
and uncertainty, can be extracted from the density forecast.1

Accordingly there is a growing literature that has sought to evaluate density forecasts
ex post ; e.g. see Diebold et al. (1999), Clements & Smith (2000), Clements (2004) and
Wallis (2004). The tool used to evaluate these density forecasts is based on the proba-
bility integral transform (pit) of the outturn with respect to the forecast densities. These
pit’s will be uniform (and for one-step ahead density forecasts also independently and
identically distributed [IID]) when the forecast densities coincide with the densities of the
data-generating-process [DGP]; see Diebold et al. (1998). Thus testing uniformity offers
users a statistical method to evaluate density forecasts similar to how point forecasts
are traditionally evaluated statistically ex post based on their root mean squared error
(RMSE) relative to the subsequent outturn.

Despite the burgeoning interest in and evaluation of density forecasts in economics less
attention has been paid to statistically both comparing and combining competing density
forecasts. This stands in contrast to the well-developed literature for point forecasts.
Statistical tests that explicitly compare the accuracy of one point forecast with another
are firmly established for point forecasts. Diebold & Mariano (1995) [DM] tests and their

1For further discussion of the importance of providing measures of uncertainty surrounding a “central
tendency” (the point forecast) see Granger & Pesaran (2000), Garratt et al. (2003) and for a review Tay
& Wallis (2000).
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various extensions, for example, are now used widely to test statistically whether two
point forecasts are equally accurate assuming some, usually a quadratic, loss function.
DM-type tests are then used routinely to select the “best” forecast from a potentially
large set of competing forecasts. Additionally, it is well recognised both theoretically and
empirically that combining competing individual point forecasts of the same event can
deliver more accurate forecasts, in the sense of a lower root mean squared error (RMSE);
see Bates & Granger (1969) and Stock & Watson (2004).

Therefore in an attempt to provide users of density forecasts with a comparable tool-kit
to that routinely used to examine point forecasts we propose and analyse the Kullback-
Leibler Information Criterion [KLIC] as a unified means of evaluating, comparing and
combining competing density forecasts whether model-based or subjectively formed. The
KLIC is a well-respected measure of ‘distance’ between two densities. It has been used
widely for over fifty years in a number of related ways, although it has not been related
to the evaluation of density forecasts and the pit’s.2

We believe the unity offered by the KLIC as a tool to analyse density forecasts to be
attractive. Although the pit has become the industry-standard, although not exclusive as
we see below, statistical means of evaluating individual density forecasts, many different
distributional tests have been used to test uniformity or via a transformation normality.
Despite this apparent choice, these tests can all be related to the KLIC. In particular,
following Bao et al. (2004), we consider how one of the popular tests, namely the Berkowitz
(2001) Likelihood Ratio [LR] test, can be directly related to the KLIC. This facilitates not
just evaluation of the density forecasts individually and their comparison, as discussed
by Bao et al., but also their combination. Since the true density is unknown, devising
an equivalent LR evaluation test based on the pit’s is computationally convenient. The
KLIC can then be used to compare competing density forecasts; a test for equal predictive
performance can be constructed. Based on a loss differential series, this test is a direct
generalisation of tests of equal point forecast accuracy popularised by DM and extended
by West (1996) and White (2000). It is also shown to be equivalent to devising a test
of equal density forecast accuracy when the logarithmic scoring rule rather than the pit
is used to evaluate the density forecasts; see Giacomini (2002).3 These tests formalise
previous attempts that have compared via visual inspection alternative density forecasts
according to their relative distance to, say, the uniform distribution; e.g. see Clements &
Smith (2000).

We then discuss how the KLIC offers a means of combining competing density fore-

2In particular, the KLIC is the basis for the Akaike model selection criterion (AIC). The AIC is em-
ployed frequently to rank alternative models according to how close they are to the true but unknown
density that generated the data. Estimated from the maximised log-likelihood, the AIC offers an ap-
proximately unbiased estimate of the expected, relative KLIC distance between a given model and the
true but unknown density, treated as a constant across competing models; for further discussion and
references see Burnham & Anderson (2002), Chapters 2 and 6. Focus in this paper is on estimation of
the KLIC using the pit’s so that density forecast evaluation, comparison and combination is operational
both with model-based and non model-based (subjective) density forecasts.

3Scoring rules examine the quality of density forecast by assigning a numerical score based on the
forecast and the event or value that materialises.
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casts, extending the insights of Bao et al. from density forecast comparison to combi-
nation. While Clements (2005) and Granger et al. (1989) have considered, respectively,
the combination of event and quantile forecasts, that inevitably involve a loss of infor-
mation compared with consideration of the ‘whole’ density, the combination of density
forecasts has been neglected. Indeed Clements (2003) identifies this as “an area waiting
investigation” (p.2). Recently, however, Hall & Mitchell (2004b) and Wallis (2005) have
re-introduced the finite mixture distribution as a means of combining density forecasts.4

Indeed the finite mixture distribution is a well understood and much exploited means of
combining density forecasts. For example, the Survey of Professional Forecasters [SPF],
previously the ASA-NBER survey, has essentially used it since 1968 to publish a combined
density forecast of future GNP growth and inflation. Since respondents to the SPF supply
density forecasts in the form of histograms the average or combined density forecast is de-
fined as the mean density forecast across respondents.5 Despite this long history, to-date
little attention has been paid to how the weights on the competing density forecasts in
the finite mixture should be determined. But as experience of combining point forecasts
has taught us, irrespective of its performance in practice use of equal weights is only one
of many options. For example, one popular alternative, the so-called regression approach,
is to tune the weights to reflect the historical performance of the competing forecasts.

Density forecast combination with the weights determined by the KLIC is considered
within the context of Bayesian Model Averaging (BMA). BMA offers a conceptually el-
egant means of conditioning on the entire set of density forecasts under consideration,
rather than a single ‘best’ forecast. It accounts for uncertainty about what is the ‘best’
model.6 In the BMA framework the combination weights are the model’s posterior prob-
abilities. The KLIC provides a natural means of estimating these weights since the best
model according to the KLIC is the model with the highest posterior probability.

The plan of the remainder of this paper is as follows. We review the statistical eval-
uation of individual density forecasts in Section 2 and specifically the Berkowitz LR test
in Section 2.1. In Section 3 we explain and discuss how the Berkowitz LR test can be
re-interpreted as a test of whether the KLIC equals zero. Section 4 shows how the KLIC
can be used to compare statistically the accuracy of two competing density forecasts. Re-
lationships with related tests that have been proposed recently, that involve use of scoring
rules or nonparametric estimation of the true density, are also considered. In Section 5

4Hall & Mitchell (2004a) offer an alternative approach of combining density forecasts. Following Morris
(1974, 1977) and Winkler (1981) they adopt a Bayesian approach where competing densities are combined
by a “decision maker” who views them as data that are used to update a prior distribution. Hall and
Mitchell also distinguish between combining competing forecasts of various moments of the forecast
density and directly combining the individual densities themselves, as with the finite mixture density.

5The SPF survey has been analysed by inter alia Zarnowitz & Lambros (1987), Diebold et al. (1999),
Giordani & Söderlind (2003) and Clements (2005).

6Garratt et al. (2003) and Pesaran & Zaffaroni (2004) have also considered the combination of prob-
ability forecasts using BMA. In contrast to the approach proposed in this paper their weights rely on
estimation of a statistical model. KLIC weights determined by the pit’s, as we see below, are operational
not just with model-based but also subjective (e.g. survey-based) density forecasts. Moreover, based on
pit’s they have the attraction of being familiar to those used to evaluating density forecasts.
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we propose and analyse the finite mixture density as a tool for the combination of density
forecasts. Focus is on how KLIC weights can be used to choose the combination weights.
We draw out in detail some properties of combining density forecasts in this manner. Par-
allels with the combination of point forecasts are made. This is important in beginning
to understand the situations in which density forecast combination will deliver improved
forecasts. We find that in contrast to the combination of point forecasts (with variance or
RMSE minimising weights) density forecast combination may not help even in-sample.7

Nevertheless, we try to offer advice to practitioners about the use of combined density
forecasts. This is supplemented by two Monte-Carlo experiments designed to draw out the
properties of the proposed method of density forecast combination. Section 6 considers
an application to UK inflation. We illustrate the use of the KLIC as a tool to evaluate,
compare and combine the Bank of England and National Institute of Economic and Social
Research (NIESR) “fan” charts of inflation. These well-known density forecasts have been
published in ‘real-time’ for over ten years. Inter alia this application lets us determine
whether in practice improved density forecasts for inflation, one year ahead, might have
been obtained if one had combined the Bank of England and NIESR “fan charts”. Section
7 concludes.

2 Evaluation of density forecasts: a review

While there exist well established techniques for the ex post evaluation of point forecasts,
often based around the RMSE of the forecast relative to the subsequent outturn, only
recently has the ex post evaluation of density forecasts attracted much attention. Cur-
rently, following Diebold et al. (1998), the most widespread approach is to evaluate density
forecasts statistically using the pit, itself a well-established result.8 Diebold et al. (1998)
popularised the idea of evaluating a sample of density forecasts based on the idea that a
density forecast can be considered “optimal” if the model for the density is correctly spec-
ified. One can then evaluate forecasts without the need to specify a loss function. This
is attractive as it is often hard to define an appropriate general (economic) loss function.
Alternatively, we could focus on a particular region of the density, such as the probability
of inflation being in its target range; see Clements (2004).

A sequence of estimated h-step ahead density forecasts, {g1t(yt)}T
t=1, for the realisations

of the process {yt}T
t=1, coincides with the true densities {ft(yt)}T

t=1 when the sequence of

7Out-of-sample, of course, there is no guarantee even with point forecasts that combination using
variance or RMSE minimising weights will help. Indeed many studies have found that equal weights
perform better out-of-sample; e.g. see Hendry & Clements (2004) and Smith & Wallis (2005).

8This methodology seeks to obtain the most “accurate” density forecast, in a statistical sense. It can
be contrasted with economic approaches to evaluation that evaluate forecasts in terms of their implied
economic value, which derives from postulating a specific (economic) loss function; see Granger & Pesaran
(2000) and Clements (2004).
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pit’s, z1t, are uniform U(0,1) variates where:9

z1t =

∫ yt

−∞
g1t(u)du = G1t(yt); (t = 1, ..., T ). (3)

Furthermore when h = 1, {z1t}T
t=1 are both U(0,1) and IID. In other words, one-step

ahead density forecasts are optimal and capture all aspects of the distribution of yt only
when the {z1t} are IID U(0,1). When h > 1 we should expect serial dependence in {z1t}T

t=1

even for correctly specified density forecasts. This is analogous to expecting dependence
(a MA(h− 1) process) when evaluating a sequence of rolling optimal h-step ahead point
forecasts or optimal fixed-event point forecasts; e.g. see Clements & Hendry (1998), pp.
56-62. There is not, however, a one-for-one relationship between the point forecast errors
and z1t.

By taking the inverse normal cumulative density function (c.d.f.) transformation of
{z1t} to give, say, {z∗1t} the test for uniformity can be considered equivalent to one for
normality on {z∗1t}; see Berkowitz (2001). For Gaussian forecast densities with mean given
by the point forecast, z∗1t is simply the standardised forecast error (outturn minus point
forecast divided by the standard error of the Gaussian density forecast). Testing normality
is convenient as normality tests are widely seen to be more powerful than uniformity tests.
However, testing is complicated by the fact that the impact of dependence on the tests for
uniformity/normality is unknown, as is the impact of non-uniformity/normality on tests
for dependence.

Consequently various single and joint tests of U(0,1)/N(0,1) and IID have been em-
ployed in empirical studies.10 These include Kolmogorov-Smirnov, Anderson-Darling,
Doornik-Hansen tests for U(0,1)/N(0,1), Ljung-Box tests and LM tests for IID, Hong,
Thompson and Berkowitz Likelihood Ratio (LR) tests for both U(0,1)/N(0,1) and IID. For
empirical examples see Clements & Smith (2000), Clements (2004) and Hall & Mitchell
(2004a).

2.1 Berkowitz’s LR test

For h = 1 Berkowitz (2001) proposes a three degrees of freedom LR test of the joint null
hypothesis of a zero mean, unit variance and independence of z∗1t against z∗1t following a

9It is instructive to run through the proof here; see Diebold et al. (1998) for details. Via the ‘change
of variables formula’, we know z1t has the probability density function (p.d.f.):

ht(z1t) =
∣∣∣∣∂G−1

1t (z1t)
∂z1t

∣∣∣∣ ft(G−1
1t (z1t)), (1)

=
ft(G−1

1t (z1t))
g1t(G−1

1t (z1t))
, (2)

where g1t(yt) = ∂G1t(yt)
∂yt

and yt = G−1
1t (z1t). Therefore when g1t(.) = ft(.), ht(z1t) = 1 for z1t ∈ (0, 1)

and z1t is a U(0,1) variate (t = 1, ..., T ).
10Alternatively, graphical means of exploratory data analysis are often used to examine the quality of

density forecasts; see Diebold et al. (1998) and Diebold et al. (1999).
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first-order autoregressive AR(1) process: z∗1t = µ + ρz∗1t−1 + εt, where V ar(εt) = σ2. The
test statistic LRB is computed as

LRB = −2
[
L(0, 1, 0)− L(µ̂, σ̂2, ρ̂)

]
, (4)

where L(µ̂, σ̂2, ρ̂) is the value of the exact log-likelihood of a Gaussian AR(1) model; e.g.
see Hamilton (1994) [p.119; eq. 5.2.9].11 Under the null LRB ∼ χ2

3.
A criticism of Berkowitz’s LR test is the maintained assumption of normality; see

Clements & Smith (2000) and Bao et al. (2004). It only has power to detect non-normality
through the first two moments. Consequently some authors, such as Clements and Smith
and Hall & Mitchell (2004a), have supplemented the Berkowitz test with a nonparametric
normality test, such as the Doornik-Hansen test. But as Bao et al. (2004) explain one
can still construct a Berkowitz type LR test without maintaining the normality assump-
tion. In this paper we confine attention to the traditional Berkowitz test, with normality
maintained. Nevertheless, the discussion below is also applicable if a more general test
were used to evaluate the density forecasts. Indeed any test, based on a sample average,
is appropriate; the KLIC can still be used as a tool to evaluate, compare and combine
density forecasts. We leave it for future work to study these more general tests. All of
the single and joint statistical tests employed on the pit’s, referred to above, amount to a
test for whether KLIC = 0.12

3 Relating Berkowitz’s LR test to the KLIC

The test for equal predictive accuracy of two competing density forecasts can be related to
the well-known Berkowitz (2001) LR test for the statistical adequacy of an individual den-
sity forecast. This involves, following the suggestion of Bao et al. (2004), re-interpreting
the Berkowitz LR test as a test of whether the KLIC ‘distance’ between the true (unknown)
density and the forecast density equals zero. We first detail the equivalence between the
Berkowitz LR test reviewed in Section 2.1 and the KLIC test, before turning in Section 4
to the test of equal predictive accuracy of two density forecasts.

Let the time-series yt be a realisation from the sequence of (unknown) DGPs ft(yt)
(t = 1, ..., T ).13 Note that the process ft(yt) (t = 1, ..., T ) may, or may not, deliver
outturns {yt}T

t=1 that are covariance-stationary. Nevertheless, some restrictions will be
required to ensure consistent estimation of the asymptotic variance of the mean of the
loss differential dt defined below.

The Kullback-Leibler information criterion ‘distance’ measure KLIC1t between the true

11The test can be readily generalised to higher order AR models; squared (and higher power) lagged
values of z∗1t can also be included in the model in an attempt to pick up nonlinear dependence; see
Berkowitz (2001).

12For example, in terms of the ensuing discussion, a test for the uniformity of {z1t} amounts to a test
for whether KLIC = 0 since under uniformity ht(z1t) = 1; see (8) below.

13For notational convenience we do not distinguish between random variables and their realisations.
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density ft(yt) and a density forecast g1t(yt) (t = 1, ..., T ) is defined as:14

KLIC1t =

∫
ft(yt) ln

{
ft(yt)

g1t(yt)

}
dyt or (5)

KLIC1t = E [ln ft(yt)− ln g1t(yt)] . (6)

The smaller this distance the closer the density forecast is to the true density; KLIC1t =
0 if and only if ft(yt) = g1t(yt). For a related discussion see Vuong (1989).

Assuming ft(yt) is known, under some regularity conditions, E [ln ft(yt)− ln g1t(yt)]
can be consistently estimated by KLIC1, the average of the sample information on ft(yt)
and g1t(yt) (t = 1, ..., T ):

KLIC1 =
1

T

∑T

t=1
[ln ft(yt)− ln g1t(yt)] . (7)

But ft(yt) is, even ex post, unknown.15 As we discuss below some authors have tried
to estimate it. Alternatively, following Bao et al. (2004), we invoke Berkowitz (2001)
Proposition 2 and note the following equivalence:

ln ft(yt)− ln g1t(yt) = ln pt(z
∗
1t)− ln φ(z∗1t) = ln ht(z1t), (8)

where z1t =

∫ yt

−∞
g1t(u)du, z∗1t = Φ−1z1t, pt(.) is the unknown density of z∗1t, φ(.) is the

standard normal density and Φ is the c.d.f. of the standard normal.16

In other words, testing the departure of {z∗1t}
T
t=1 from IID N(0,1) [or {z1t}T

t=1 from
IID U(0,1)] is equivalent to testing the distance of the forecasted density from the true
(unknown) density ft(yt). Following Bao et al. (2004), we believe that testing whether
pt(.) is IID N(0,1) is both more convenient and more sensible than testing the distance
between g1t(yt) and ft(yt) since we do not know ft(yt). If we did then, trivially, forecasting
would be easy. Furthermore estimation of ft(yt) typically requires some restrictions to be
explicitly placed on the heterogeneity of yt (e.g. covariance stationarity). Although pt(.)
is also unknown at least we know that when g1t(yt) is correctly specified pt(.) is IID N(0,1).
We can therefore consider general forms for pt(.) that can accommodate non-normality

14The best model according to the KLIC is the model with the highest posterior probability; see
Fernandez-Villaverde & Rubio-Ramirez (2004).

15Conceptually we may wish also to go as far as denying the existence of a “true” model. Rather than
seeking to identify the true model, we may view the aim of economic modelling as seeking to approximate
the truth adequately using a parsimonious model so that reliable inference can be made about the truth
using this model.

16Again via the ‘change of variables formula’ we know that if ht(z1t) is the p.d.f of z1t then the p.d.f
of z∗1t = Φ−1z1t is given by:

ht(z∗1t) = ht(Φz∗1t)
∣∣∣∣∂z1t

∂z∗1t

∣∣∣∣ (9)

where
∣∣∣∂z1t

∂z∗1t

∣∣∣ is the Jacobian of the transformation. Therefore pt(z∗1t) = ht(z1t)φ(z∗1t) =
(

ft(yt)
g1t(yt)

)
φ(z∗1t).

Taking logs we complete the proof.
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and dependence but that include IID N(0,1) as a special case.17 On the other hand, when
we specify g1t(yt) there is no certainty that it accommodates ft(yt).

To test the null hypothesis that ft(yt) = g1t(yt) we exploit the framework of West
(1996) and White (2000).18 Consider the loss differential {dt}:

dt = [ln ft(yt)− ln g1t(yt)] = [ln pt(z
∗
1t)− ln φ(z∗1t)] ; (t = 1, ..., T ). (10)

The null hypothesis of the density forecast being correctly specified is then

H0 : E(dt) = 0 ⇒ KLIC1 = 0 (11)

The sample mean d is defined as:

d = KLIC1 =
1

T

∑T

t=1
[ln pt(z

∗
1t)− ln φ(z∗1t)] . (12)

To test a hypothesis about dt we know d has via a central limit theorem, under
appropriate assumptions, the limiting distribution

√
T (d− E(dt))

d→ N(0, Ω), (13)

where a general expression, allowing for parameter uncertainty, for the covariance matrix
Ω is given in West (1996) Theorem 4.1. Under certain conditions parameter uncertainty
is asymptotically irrelevant and Ω reduces to the long run covariance matrix associated
with {dt} or 2π times the spectral density of dt−E(dt) at frequency zero.19 This is the
result seen in Diebold & Mariano (1995).20 This long run covariance matrix Sd is defined

as Sd = γ0 + 2
∑∞

j=1
γj, where γj =E(dtdt−j). HAC robust (to serial correlation and

heteroscedasticity) estimators of the variance of the loss differential dt can be used to
estimate Sd consistently. See White (1984), Chapter 6, for discussion of the conditions
necessary for consistent estimation.

17In theory pt(.) should be as general as possible to reflect the true density of z∗1t. Bao et al. (2004)
suggest that εt be allowed to follow a more general distribution than the Gaussian, which as seen in
Section 2.1 was considered by Berkowitz. Specifically Bao et al. propose the use of a semi nonparametric
density.

18West and White develop a general framework for inference about predictive ability that inter alia
can account for parameter uncertainty, when relevant.

19There appear to be two distinct sources of parameter uncertainty. West (1996) provides conditions for
asymptotic irrelevance pertaining to the first. This first source of uncertainty is when the density forecasts
g1t(yt) are generated conditional on a set of (estimated) parameters. The second source of parameter
uncertainty arises from the fact that the loss differential series dt may itself require parameters (e.g. µ,
ρ and σ) in pt(z∗1t) to be estimated; see below. In general, the work of West (and co-authors) has shown
that ignoring parameter uncertainty distorts statistical tests employed on forecasts and forecast errors.
Therefore future work is required to investigate the effect of parameter uncertainty on the properties of
the KLIC, especially in small samples.

20When {dt} =
{
e2
1t − e2

2t

}
, where eit is the point forecasting error for forecast i, the test reduces to a

DM test of equal point forecast accuracy as measured by the RMSE.

9



Alternatively to this asymptotic test one could construct, along the lines of White’s
“bootstrap reality check”, a (small-sample) test based on the bootstrap. This would
involve re-sampling the test statistic d = KLIC1 by creating R bootstrap samples from
{dt}T

t=1 accounting for any dependence by using the so-called stationary bootstrap that
resamples using blocks of random length.

The test statistic KLIC1 is proportional (by a factor 2T ) to the LR test of Berkowitz
(2001), assuming Gaussianity of εt; i.e. LRB = 2TKLIC1. In terms of (12) Berkowitz’s
test, see (4), corresponds to assuming pt(z

∗
1t) = φ

[(
z∗1t − µ− ρz∗1t−1

)
/σ

]
/σ, where φ is

the (standardised) Gaussian density; i.e.

LRB = 2
∑T

t=1
[ln pt(z

∗
1t)− ln φ(z∗1t)] . (14)

Therefore, asymptotic critical values from the chi-squared distribution can be used
to test the null hypothesis, (11); these of course should be divided by 2T . As stressed
already this test only has power to detect non-normality through the first two moments.
Of course, as Bao et al. suggest (see footnote 17), we could overcome this criticism by
considering more general forms for pt(z

∗
1t). As also explained by Bao et al. rather than

evaluating the performance of the ‘whole’ density we can also evaluate in any regions of
particular interest.

4 A test of equal predictive accuracy of two density

forecasts using the KLIC

Extending the discussion above, a test for equal density forecast accuracy of two competing
(non-nested) density forecasts g1t(yt) and g2t(yt), both of which may be misspecified, is
then constructed based on {dt}T

t=1, where:21

dt = [ln ft(yt)− ln g1t(yt)]− [ln ft(yt)− ln g2t(yt)] , (15)

dt = ln g2t(yt)− ln g1t(yt), (16)

dt = [ln pt(z
∗
1t)− ln φ(z∗1t)]− [ln pt(z

∗
2t)− ln φ(z∗2t)] . (17)

The null hypothesis of equal accuracy is then

H0 : E(dt) = 0 ⇒ KLIC1 − KLIC2 = 0. (18)

The sample mean d is defined as:

d =
1

T

∑T

t=1
[[ln pt(z

∗
1t)− ln φ(z∗1t)]− [ln pt(z

∗
2t)− ln φ(z∗2t)]] . (19)

21The testing approach developed here extends Vuong (1989) to time-series data and is appropriate
out-of-sample. For IID (in-sample) data, Vuong proposed a statistical test for whether two models, say,
are equally close to the true model, where distance is measured by KLIC. Traditionally this distance is
proxied by the LR test statistic, perhaps corrected in-line with the parsimony of each model as reflected
by the Akaike or Schwarz criterion. As in classical nested hypothesis testing the results of this test
indicate the statistical evidence for a given model based on its goodness-of-fit.
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Following (13) again a test can be constructed based on the fact that we know d has,
under appropriate assumptions, the limiting distribution

√
T (d− E(dt))

d→ N(0, Ω). (20)

This again reduces to a DM type test in the absence of parameter uncertainty: d/
√

Sd

T

d→ N(0, 1). Additionally one could also exploit White’s “bootstrap reality check” and
construct an alternative to this asymptotic test based on the bootstrap. Also as suggested
by White (2000) the test of equal predictive accuracy (18) can be readily extended to
multiple (greater than two) models.

In fact to avoid having to postulate an unknown density pt(.) it is more convenient
to couch the test in terms of (16) rather than (17). In this case we can clearly see that
this test is equivalent to that proposed by Giacomini (2002). Giacomini proposes tests
that can be used to compare the accuracy of density forecasts where evaluation is based
on the logarithmic score, e.g. ln g1t(yt), rather than the pit’s. Therefore the scoring rules
approach of Giacomini is perhaps less restrictive than one might have originally thought;
its focus on scoring rules might mistakenly lead one to conclude that it is divorced from
the pit literature, but as seen here there is a strong relationship between the two. The
use of a logarithmic scoring rule is then seen to be less arbitrary than again it might have
initially appeared.

Related approaches to compare density forecasts statistically have been proposed by
Sarno & Valente (2004) and Corradi & Swanson (2004). Rather than use the KLIC mea-
sure of ‘distance’ they rely on the integrated square difference between the forecast density
and the true density (Sarno and Valente) and the mean square error between the c.d.f.
of the density forecast and the true c.d.f., integrated out over different quantiles of the
c.d.f. (Corradi and Swanson). But rather than rely on the pit’s in both cases they
estimate the true density or c.d.f. empirically. For example, Sarno and Valente implic-
itly assume ft(yt) = f(yt) (t = 1, ..., T ) and estimate f(yt) using the kernel estimator

f̂(yt) = 1
Th

∑T

i=1
K(yi−yt

h
), where K(.) is the kernel function and h a smoothing param-

eter. Both these approaches for comparing density forecasts are related to Li & Tkacz
(2001) who propose to evaluate an individual density forecast based on its (integrated
squared) distance from a nonparametric estimate of the true density function. While one
distance measure is not more natural than another, the KLIC can be readily computed
for subjective (e.g. survey based) as well as model based density forecasts and, in our
opinion, benefits from being based on the pit’s and not relying on estimation of ft(yt).

(18) is an unconditional test for equal forecast accuracy; see Giacomini & White (2004)
[GW]. GW have developed more general conditional tests. These test which forecast will be
more accurate at a future date rather than, as with the unconditional tests, testing which
forecast was more accurate ‘on average’. One could, for example, then recursively select
at time t the best forecasting method for t+1. Conditional tests can be straightforwardly
implemented in our framework. The null hypothesis of equal conditional forecast accuracy
(for one-step ahead forecasts) amounts to testing E(dt | h∗t−1) = E(h∗t−1dt) = 0 (t =
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2, 3, ...), where h∗t is a vector of “test functions” which we set equal to h∗t−1 = (1, dt−1)
′.

The GW test statistic GWT can be computed as the Wald statistic:

GWT = T
(
T−1

∑T

t=2
h∗t−1dt

)′
Σ̂−1

T

(
T−1

∑T

t=2
h∗t−1dt

)
, (21)

where Σ̂T is a consistent estimator for the asymptotic variance of h∗t−1dt and GWT
d→ χ2

2.
GW note that a robust HAC estimator for this variance could be employed, as with
DM-type tests, but they also explain that the sample variance is a consistent estimator

when one exploits the fact that the null hypothesis implies
{
h∗t−1, dt

}T

t=2
is a martingale

difference sequence. GW argue that this has the advantage of allowing the data {yt} to be
heterogenous and characterised by arbitrary structural breaks at unknown points. Their
test is also valid for nested models.

5 Combination of Density Forecasts using KLIC Weights

Rather than select a single ‘best’ forecast it can be felicitous to combine competing fore-
casts. This follows from appreciation of the fact that although one model may be ‘better’
than the others, we may not select it with probability one; we may not be sure that it
is the best forecast. Therefore if we considered this single forecast alone we would be
overstating its precision. We may better approximate the truth, and account for the
uncertainty in model selection, by combining forecasts.

5.1 Bayesian Model Averaging

The Bayesian approach, so-called Bayesian Model Averaging (BMA), offers a conceptually
elegant means of dealing with this model uncertainty. BMA is an application of Bayes’
theorem; model uncertainty is incorporated into the theorem by treating the set of models
S as an additional parameter and then integrating over S, where S ≡ {Si, i = 1, ..., N}
and the models Si are defined as continuous density functions git(yt) for the variable of
interest yt; for further discussion see Draper (1995).

The posterior density of the variable of interest yt given ‘data’ Ωt, pt(yt | Ωt), is then
defined as the weighted average of the predictive densities git(yt) = Pr(yt | Sit, Ωt), where
the weights wit are the model’s posterior probabilities, wit = Pr(Sit | Ωt):

22

pt(yt | Ωt) =
N∑

i=1

witgit(yt); (t = 1, ..., T ), (22)

where wit ≥ 0 and
∑N

i=1
wit = 1. pt(yt | Ωt), or for expositional ease suppressing depen-

dence on the ‘data’ Ωt when defining the posterior probabilities equivalently pt(yt), is the
combined density forecast. Outside of the Bayesian paradigm, this finite mixture density

22All probabilities are implicitly conditional on the set of all models S under consideration.
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is known as the “linear opinion pool”. (22) satisfies certain properties such as the “una-
nimity” property (if all forecasters agree on a probability then the combined probability
agrees also); for further discussion, and consideration of other properties see Genest &
Zidek (1986) and Clemen & Winkler (1999). Wallis (2005) has also motivated pt(yt) as
the combined density forecast. Further descriptive properties of mixture distributions are
summarised in Everitt & Hand (1981).

5.2 Characteristics of the combined density forecast

Inspection of (22) reveals that taking a weighted linear combination of the N individual
densities can generate a combined density with characteristics quite distinct from those of
the individual density forecasts. For example, if all the forecast densities are normal, but
with different means and variances, then the combined density will be mixture normal.
Mixture normal distributions can have heavier tails than normal distributions, and can
therefore potentially accommodate skewness and kurtosis. If the true (population) density
is non-normal we can begin to appreciate why combining individual density forecasts, that
are normal, may mitigate misspecification of the individual densities. We explore further
this issue in some simple Monte-Carlo experiments in Section 5.5.

Further characteristics of the combined density pt(yt) can be drawn out by defining mit

and vit as the mean and variance of forecast i’s distribution at time t: mit =

∞∫
−∞

ytgit(yt)dyt

and vit =

∞∫
−∞

(yt −mit)
2git(yt)dyt; (i = 1, ..., N). Then the mean and variance of (22) are

given by:23

E [pt(yt)] = m∗
t =

N∑
i=1

witmit, (23)

Var [pt(yt)] =
N∑

i=1

witvit +
N∑

i=1

wit {mit −m∗
t}

2 . (24)

(24) indicates that the variance of the combined distribution equals average individual
uncertainty (“within” model variance) plus disagreement (“between” model variance).24

But this result does not stand in contrast to that obtained when combining point forecasts
where combination using “optimal” (variance or RMSE minimising) weights means the

23Related expressions decomposing the aggregate density (22), based on the ‘law of conditional vari-
ances’, are seen in Giordani & Söderlind (2003). This law states that for the random variables yt and i:
V (yt) = E[V (yt|i)] + V [E(yt|i)]. For criticism see Wallis (2005).

24For further discussion of the relationship, if any, between dispersion/disagreement and individual
uncertainty see Bomberger (1996).
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RMSE of the combined forecast must be equal to or less than that of the smallest individ-
ual forecast; see Bates & Granger (1969) and for related discussion in a regression context
Granger & Ramanathan (1984) [G-R]. This is because while density forecast combination
increases the variance relative to its average across individuals, see (24), the variance or
uncertainty of this variance (about the ‘true’ but unknown variance) need not rise and
could fall. The weights used to combine will affect what happens. Similarly, while point
forecast combination may or may not increase the mean forecast E [pt(yt)], its variance
(about what we might consider the ‘true’ mean yt) may or may not fall, again depending
on the weights used. When optimal G-R weights are used we know that this variance will
fall.

Indeed focusing on the entire density rather than a single moment, the combined
density forecast does provide better predictive accuracy as measured by the logarithmic
score when the weights used are the model’s posterior probabilities; in turn this implies
that the combined density forecast minimises the KLIC distance relative to ft(yt). This
follows from the fact that since KLICit ≥ 0, E(ln pt(yt)) ≥ E(ln git(yt)) (i = 1, ..., N ;
t = 1, ..., T ); see Raftery et al. (1997). But crucially this does not imply that the predictive
accuracy of any given moment improves.

5.3 Determination of the combination weights

The key practical problem we face when seeking to combine N density forecasts using
(22) is how to determine wit. Maintaining a Bayesian perspective wit is given as:

wit = Pr(Sit | Ωt) =
Pr(Ωt | Sit) Pr(Sit)

N∑
i=1

Pr(Ωt | Sit) Pr(Sit)

. (25)

We assume uniform priors on Pr(Sit) for all i (i = 1, ..., N). Then define Bt = wit

wjt
=

Pr(Ωt|Sit)
Pr(Ωt|Sjt)

as the Bayes factor for model i against model j. Bt describes the contribution of

the data towards the posterior odds: Pr(Sit|Ωt)
Pr(Sjt|Ωt)

. The Bayes factor reflects how much the data

will cause us to change our prior probabilities about each model. Note Bt = Pr(Ωt|Sit)
Pr(Ωt|Sjt)

=
L(Ωt|Sit)
L(Ωt|Sjt)

, the relative likelihood L of model i versus model j. Therefore Bt = git(yt)
gjt(yt)

and

ln Bt = ln git(yt) − ln gjt(yt), the logarithmic score. Accordingly Good (1952) called the
logarithmic Bayes factor the “weight of evidence”.

At a practical level, following the discussion above, one can therefore move from KLICi

to wi. Note that wit = wi since we rely on sample averages to estimate the KLIC; cf.
(12). Of course on an out-of-sample basis these weights can be time-variant. Moving
from KLICi to wi is related to how one moves, say, from the Akaike criterion to Akaike
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weights.25 The KLIC weights wi are defined as:

wi =
exp(−∆i)∑N

i=1
exp(−∆i)

(i = 1, ..., N), (26)

where ∆i = KLICi − min(KLIC), where min(KLIC) is the minimum of the N different

KLICi values, and
∑N

i=1
wi = 1. Therefore ∆i = 0 for the best density and is positive

for the other density forecasts; the larger ∆i the less plausible is density i as the best
density. From (26) we see that, consistent with our discussion about the log Bayes factor,
w1/w2 = E [g1t(yt)/g2t(yt)], the expected ratio of the two density forecasts (in an in-sample
context this ratio can be interpreted as the expected ratio of the likelihood functions of
the models given the data: i.e. the relative strength of model 1 over model 2 since the
likelihood of the i-th model Li ∝ exp(−∆i), since ln ft(yt) is constant across models i). wi

can be interpreted as the probability that density forecast i is the most accurate density
forecast in a KLIC sense.

Related work has used model selection criteria like the Akaike and Schwarz information
criteria to proxy the posterior probabilities and define wi; see Garratt et al. (2003) and
Pesaran & Zaffaroni (2004).26 These measure the relative statistical in-sample fit of
the model. An advantage of KLIC weights is that since they do not rely on statistical
estimation of a model as with Akaike and Schwarz weights but rather the pit’s they
are operational both with model and non-model (e.g. survey-based) density forecasts.
Moreover, as we argue in this paper, we believe there is an elegance to a unified tool for
the evaluation, comparison and combination of density forecasts that exploits the pit’s.

Alternative approaches to the determination of wi have been suggested. There is
the data-driven approach of Hall & Mitchell (2004b) discussed further in Section 6.3.4.
Granger & Jeon (2004) suggest a thick-modelling approach, based on trimming to elimi-
nate the k% worst performing forecasts and then taking a simple average of the remaining
forecasts. Most simply, equal weights, wi = 1/N , have been advocated; e.g. see Hendry &
Clements (2004) and Smith & Wallis (2005). Indeed they are used by the SPF when pub-
lishing their combined density forecasts. Markov Chain Monte-Carlo simulation methods
have also been used; e.g. see Raftery et al. (1997).

5.4 Further characteristics of the combined density forecast

It is instructive to draw out some characteristics of these combination weights. For sim-
plicity consider combining just two density forecasts so that w1 = exp(−∆1)

exp(−∆1)+exp(∆2)
=

exp(−KLIC1)
exp(−KLIC1)+exp(−KLIC2)

. Then even if KLIC1 → 0, w1 9 1 unless KLIC2 → ∞ also. This
means that even if the true model is one of the two models under consideration, if the

25For a textbook exposition see Burnham & Anderson (2002), p. 75. These AIC weights can be
interpreted from a Bayesian perspective as the probability that the model is the best approximation to
the truth given the data; see Burnham & Anderson (2002), pp. 302-305.

26Minimising the Akaike criterion is approximately equivalent to minimising the expected Kullback-
Leibler distance between the true density and the estimated density.
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other model is ‘close’ to the truth, then a weight of one will not be given to the true model.
This all follows from the uniform prior imposed on Pr(Sit). A by-product of assuming a
uniform prior and using the relative likelihoods (the data) to define the weights is that
even if the true model is under consideration it will not receive a weight of one, unless
the other models examined are very bad. To confront this problem one might consider
some Bayesian learning type process whereby in the light of the empirical evidence for the
model, as reflected by the KLIC, the prior is recursively (with the arrival of new data) up-
dated. We leave this issue to future research. Alternatively, one might consider what we
call, näıve BMA weights that although without obvious theoretical foundation do exhibit
the property that w1 → 1 as KLIC1 → 0, irrespective of the size of KLIC2:

w1,naı̈ve = 1− KLIC1

KLIC1 + KLIC2

. (27)

Encouragingly, these näıve weights ensure that the true model will receive a weight of
unity.

It is also instructive to draw out some further characteristics of this density forecast
combination method by relating it to the combination of point forecasts. Density forecast
combination using (22) with weights (26) can, as explained, deliver 1,0 weights (w1 = 1
and wi = 0 for ∀i 6= 1) but this does not necessarily, in contrast to combination in
the point forecast case, imply the forecast with a weight of 1 is “optimal” (in the sense
of Diebold et al.; i.e. KLIC = 0). It just implies it is better than the other density
forecast. Furthermore, when the weights are not 1,0 this does not imply, in contrast to
the case of point forecasts combined following G-R, that combination will deliver improved
density forecasts (in-sample). Only when the ‘true’ model is in the set of models under
consideration (and the other models perform badly) will not only the weight on this model
(the posterior probability of it being the “best” density forecast, in the sense of minimising
the KLIC ‘distance’) be unity but the KLIC distance be zero.

The analogous case with point forecast combination appears to be testing for “con-
ditional efficiency” (encompassing) of forecast 1 relative to forecast 2 (a zero coefficient
on forecast 2 in the G-R regression) but not simultaneously “Mincer-Zarnowitz [M-Z] ef-
ficiency” (a unit coefficient on forecast 1 in the G-R regression).27 With density forecasts
the counterpart of M-Z efficiency is met only when the pit’s associated with the combined
(1,0) (i.e. the best individual) forecast are also IID U(0,1) (or the KLIC distance is zero).
So to establish efficiency (in both senses) of the combined density forecast it is important
to supplement examination of the weights (although we are not testing their significance
statistically, accounting for their sampling variability) with a statistical test for IID U(0,1)
or KLIC = 0. Density forecast combination via the linear opinion pool requires the weights
to sum to unity. Future work is required to consider how we might simultaneously ex-
amine the density analogues of conditional and M-Z efficiency. Statistical testing of the
significance of the KLIC weights, moving from combination to encompassing-type tests,
also appears to remain an important area for research with density forecasts.

27Related discussion for forecast probabilities of events is provided by Clements (2005).
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5.5 Monte-Carlo experiments

We consider two separate Monte-Carlo experiments to draw out further some properties
of density forecast combination.

Let R denote the number of Monte-Carlo replications; we set R = 500. T = 50 denotes
the number of out-of-sample forecasts, typical for macroeconomic applications. In both
experiments we abstract from dynamics; independence is therefore a product of the design
of the experiments induced by the random number generator. We also abstract from pa-
rameter uncertainty and assume sample estimates equal to their population counterparts;
accordingly our results are insensitive to the size of any in-sample (training) period. This
lets us focus on issues of specification rather than estimation.

5.5.1 Monte-Carlo Experiment #1

This experiment examines the accuracy of using KLIC weights, (26), to estimate the mixing
coefficient wi in (22). Knowing this true weight, we consider the accuracy of the KLIC
based estimates as a function of various parameters in the DGP. Accuracy is measured by
comparing the average (across R) KLIC estimate (and its variance) with the true weights.

Following (22) the true density is defined as the finite mixture:

ft(yt) = w1g1t(yt) + (1− w1)g2t(yt), (28)

where 0 ≤ w1 ≤ 1 and g1t(yt) and g2t(yt) are two individual density forecasts:

g1t(yt) = N(αx1t, 1), (29)

g2t(yt) = N(βx2t, 1), (30)

(t = 1, ..., T ), where x1t and x2t are uncorrelated randomly drawn N(1,1) variates. Then
for each replication we compute {ŵ1}R

r=1 using (26). For various values of w1, α and β
we then compute for T = 50: (i) w1, the average ŵ1 across R; (ii) σw1 , the standard
deviation of ŵ1 across R and (iii) the Monte-Carlo standard error [MCSE] defined as
σw1/

√
R. σw1 measures the uncertainty of ŵ1 and MCSE measures the uncertainty of w1.

When g1t(yt) = g2t(yt) =⇒ w1 = 0.5 ⇔ w1/w2 = g1t(yt)/g2t(yt).
We draw two conclusions from the results of this Monte-Carlo experiment as sum-

marised in Table 1. First, ceteris paribus, using (26) to estimate w1 is most accurate for
values of w1 close to zero/unity. Secondly, ceteris paribus, the accuracy of the estimated
weights increases the greater the distance between the two densities (the greater the value
of β−α). Accordingly, the most accurate estimates are delivered both when w1 is close to
zero/unity and when β−α ≥ 2, or in other words {yt}T

t=1 is generated exclusively by just
one of the two densities, (29) or (30), and these two densities look very different. This
is reflected by values of w1 close to w1 and small values of σw1 . For mid-range values of
w1, even when β − α is large, there is considerable uncertainty about both ŵ1 and w1;
while one cannot reject the hypothesis that w1 = w1 there is considerable variation in ŵ1.
This suggests that for small to moderate sized samples even when the data are generated
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from a mixture density like (28), or (22), estimating the combination weights using (26)
is unreliable unless one of the component densities dominates the mixture.

These two findings appear to reflect the limitations of using (4), and the maintained
normality assumption, to estimate the KLICs, via (12); the estimated weights deviate
most from the true weights when the combined density is most non-normal. This happens
when the true weights are not close (or equal) to zero (or unity) and the distance between
the two densities, as measured by β −α, is large. In these two cases Berkowitz’s LR test,
as traditionally employed, cannot pick up the non-normality present under the DGP and
accordingly delivers distorted weights. Future work should assess whether more accurate
estimated weights are obtained using the modified Berkowitz test, suggested by Bao et al.
(2004) and referred to in footnote 17, that relaxes the maintained normality assumption.

5.5.2 Monte-Carlo Experiment #2

This experiment (i) explores the size and power properties for the KLIC test of equal pre-
dictive performance (18) and (ii) examines and draws out some characteristics of density
forecast combination using (22).28 The latter lets us isolate some stylised situations in
which KLIC based combination works, and some in which it does not.

As a comparator to the finite mixture (22) we consider as an alternative combined
density forecast N(m∗

t , v
∗
t ), the Gaussian density with mean equal to the combined point

forecast, m∗
t , and variance v∗t computed from the in-sample residuals (outturn less com-

bined point forecast). Such a density forecast combination has been considered by Hendry
& Clements (2004) and in a related meteorology literature by Déqué et al. (1994) and
Wilks (2002).

Along the lines of Giacomini (2002) and Hendry & Clements (2004), our DGP is
designed to reflect the case where two competing forecasters use misspecified models.29

Each model is misspecified by excluding the variable the other model includes. As shown
by Granger (1989) we know that while pooling the information is optimal, pooling the
forecasts is not, in general. Specifically we consider the following DGP for the process
{yt}:

yt = αx1t + βx2t + εt, (31)

where εt ∼ IID N(0,1), independently of the regressors, and the regressors x1t and x2t

are uncorrelated N(0,1) variates. The true (conditional) density is therefore ft(yt) =
N(αx1t + βx2t, 1). Two competing forecasters, unaware of the nature of the process
governing the determination of yt in (31), then compute density forecasts of yt based on
the following misspecified models:

yt = αx1t + ε1t, (32)

yt = βx2t + ε2t. (33)

28Complimentary work by Giacomini (2002) has also investigated the size and power of the KLIC test
(as indicated in Section 4, under a scoring rules interpretation). We juxtapose this investigation with
examination of the accuracy of the density forecasts individually as well as density forecast combination.

29As discussed by Hendry & Clements (2004) we remind ourselves that the reasons for success or failure
of combination can be multi-faceted. Results using a specific DGP can only ever be illustrative.
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Both correctly assume a normal density with a variance of unity. Their implied density
forecasts are therefore, respectively:

Forecast 1 : g1t(yt) = N(αx1t, 1), (34)

Forecast 2 : g2t(yt) = N(βx2t, 1). (35)

The pit’s of each of these forecasts are:

z∗1t = εt + βx2t, (36)

z∗2t = εt + αx1t, (37)

which are IID N(0,1) when β = 0 or α = 0. The RMSE of the point forecast from (34)

is
√

1 + β2 and that of forecast (35) is
√

1 + α2. E(z∗1t) = 0; V (z∗1t) = σ2
1 = 1 + β2.

The expected difference in logarithmic scores E(ln g2t(yt)− ln g1t(yt)) = (β2−α2)/2 since
E(ln(g2t(yt)) = −(α2+1)/2 and E(ln(g1t(yt)) = −(β2+1)/2.30 Therefore when α = β the
two forecasts are equally accurate. As α = β rises both density forecasts are deteriorating,
although equally so. We investigate the following as a function of α and β:

1. The rejection rates (across R) for g1t(yt) and g2t(yt) based on testing the statistical
adequacy of the individual density forecasts g1t(yt) and g2t(yt) using the KLIC at
5%; see (11). Essentially these tabulate the size and power of the Berkowitz LR test
(4) for the evaluation of an individual density forecast.

2. The rejection rate for the KLIC test of equal predictive performance; cf. (18). When
α = β the the rejection rate is the size of the test. When α 6= β the rejection rate
is the power of the test.

3. The average and variance (across R) of the KLIC for g1t(yt) and g2t(yt). Denote
the averages for g1t(yt) and g2t(yt), KLICm1 and KLICm2, respectively, with their
variances denoted σ2

KLIC1
and σ2

KLIC2
. The ratio of KLIC1 to KLIC2 indicates the

relative gain in forecast accuracy delivered by using (33) rather than (32).

4. w1, the average and variance (across R) of the KLIC weights on g1t(yt) in the BMA
combined density forecast; see (26). The weight on g2t(yt) is one minus the weight
on g1t(yt). Denote the average weight on g1t(yt) by w1 and the variance by σ2

w1
.

We also consider the näıve BMA weights (27); these are denoted w1,naı̈ve and the
variance σ2

w1,naı̈ve.

5. The rejection rates for the BMA combined density forecast pt(yt) using the KLIC
weights based on testing the statistical adequacy of the combined density forecast
using the KLIC at 5%. Results are also indicated using näıve weights.

6. The rejection rates for the density forecast N(m∗
t , v

∗
t ) based on testing its statistical

adequacy using the KLIC test at 5%.

30The R2 based on the regression (32) is 1− β2+1
α2+β2+1

; the R2 based on the regression (33) is 1− α2+1
α2+β2+1

.
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The results are summarised in Tables 2 and 3. Let us draw out five findings. First,
ceteris paribus, the higher the ratio of KLIC1 to KLIC2, i.e. the more accurate Forecast
2 is relative to Forecast 1, the better the power of the KLIC test of equal predictive
performance.

Secondly, power depends not just on this KLIC ratio but the accuracy of an individual
density forecast. The less likely we are to reject an individual forecast (using LR1 or
LR2), i.e. the more satisfactory an individual density forecast, the better the power for
a given KLIC ratio. The test of equal predictive performance is also, in general, slightly
over-sized although we found in unreported experiments that this tendency to over-reject
vanishes for larger T . Use of the bootstrap test may also deliver improvement. These
findings are consistent with Giacomini (2002).

Thirdly, the estimated weights w1 remain equal between the two competing density
forecasts even when one model is much more accurate than the other, unless the best
performing model is itself in absolute terms performing badly. This is explained, as
discussed in Section 5, by the fact that for the weight to tend to zero the KLIC for the
worst performing model (relative to the best model) must be very high. Therefore one
can get equal weights for [α = 0; β = 1] despite the fact that model 2 is almost 6 times
better as evidenced by the KLIC ratio just because the KLIC for Forecast 1 is not high
enough. In our experiment one needs KLICm1 − KLICm2 > 1 for weights to budge from
around 0.5, as seen for [α = 1, β = 2] and [α = 1, β = 3]. Alternatively one can have a
situation where both models are bad but as relatively speaking the better model performs
well it is given a weight of one; e.g. see [α = 1, β = 3] where both models individually are
rejected more than 88% of the time, but Forecast 1 receives a weight close to zero just
because Forecast 2 is close to 20 times better as evidenced by their KLIC ratio.

Fourthly, the combined density forecast BMA, in general, delivers more accurate fore-
casts than the individual density forecasts. This is evidenced by a lower rejection rate
for BMA than the individual density forecasts (rows LR1 and LR2). Combination using
BMA performs quite well as long as α and β do not both get very high. Recall that
the two-component mixture normal density with different means but common variances
is symmetrical only if w1 = w2 = 0.5; see Everitt & Hand (1981), p.27. We are there-
fore probably overstating the validity of density forecast combination using BMA as the
density evaluation test considered assumes normality, and will therefore not pick up any
departures from it. Only when the weight equals zero [e.g. for α = 1, β = 3] will the
combined density forecast also be normal. In other cases the BMA density may become
very non-normal while, by assumption, the true density is normal. Nevertheless, it is
encouraging that the mean and variance of the transformed pit’s z∗it implied by the com-
bined density forecast BMA have mean zero and a variance of unity more often than the
individual density forecasts.

Fifthly, the evidence is mixed as to whether density forecast combination using näıve
weights in BMA is better than using KLIC weights. As expected, the Gaussian combined
density density forecast N(m∗

t , v
∗
t ) does very well with rejection rates less than 1%.
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6 Empirical Application: Comparing and Combining

“Fan” Charts of UK Inflation

The application serves not just to illustrate density forecast comparison and combination
but is also of considerable interest per se. Forecasting inflation is of pivotal importance
for central banks in an era of inflation targeting. We focus on quarterly forecasts of
one-year ahead RPIX inflation (RPI excluding mortgage payments: ONS code CHMK),
the principal monetary policy target over the sample period. The year ahead forecasts
correspond to a five quarter ahead horizon. Strictly the forecasts are conditional on the
assumption that nominal interest rates remain constant throughout the forecast period;
however, following previous analysis, we regard the forecasts as unconditional on the
(plausible) assumption that inflation does not react within a year to changes in interest
rates; see Clements (2004) and Wallis (2004).

6.1 The Bank of England “fan” chart

We consider the quarterly sequence of one-year ahead inflation forecasts published by
the Bank of England. These forecasts are published in the Inflation Report in February,
May, August and November, which we correspond to q1, q2, q3 and q4, respectively. The
Bank of England has published density forecasts for RPIX inflation from 1993q1. Up
until 1995q4 these took the form of charts showing the central projection, together with
an estimate of uncertainty based on the historical mean absolute error. At this stage the
Bank of England did not quantify a skew so that the mode, median and mean projections
are equal; the density forecast is (implicitly) assumed normal.31 From 1996q1 the Bank of
England has published the so-called “fan” chart, that allows for skewness or the “balance
of risks” to be on the upside or downside; see Britton et al. (1998). From 1997q3 these
charts have been based on the deliberations of the Monetary Policy Committee (MPC).32

The final projection for RPIX inflation, prior to the new target for inflation announced by
the Chancellor in December 2003, was published in the February 2004 Inflation Report.

The fan chart is based analytically on the two-piece normal distribution; for details
see Wallis (2004). The Bank of England publishes the parameter values underlying each
published fan chart by supplying via its spreadsheets information on the following five
statistics: the mode (µd), median, mean (E(Y )), uncertainty (σ) and skew. The uncer-
tainty statistic is a parameter of the two-piece normal distribution; see Wallis (2004),
Box A, for details - following Wallis note that we correct earlier confusion about what
the uncertainty measure published by the Bank of England represents. The skew statistic
is defined as the mean minus the mode. Given these parameters, following Wallis, we

31In 1995q1 uncertainty is not recorded; we simply assume the value from the previous Inflation Report.
This seems a reasonable assumption given that uncertainty is being quantified based on historical RMSE
which should not be expected, at least in large-samples, to change much quarter from quarter.

32The density forecasts from 1993q1-1997q2 are available at:
http://www.bankofengland.co.uk/inflationreport/historicalforecastdata.xls. From 1997q3 they are available
at http://www.bankofengland.co.uk/inflationreport/rpixinternet.xls.
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can back-out the standard errors σ1 and σ2 of the two normal distributions on which the
two-piece normal distribution is based. Then, see also Clements (2004), we can compute
the pit as follows:

P (Y < y) =


2σ1

σ1+σ2
Φ

(
y−µd

σ1

)
for y < µd(

σ1−σ2

σ1+σ2

)
+ 2σ2

σ1+σ2
Φ

(
y−µd

σ2

)
for y > µd

 , (38)

where Φ is the standard normal c.d.f..

6.2 The NIESR “fan” chart

We also consider the quarterly forecasts of annual RPIX inflation published in the Na-
tional Institute Economic Review.33 Since 1992q3 NIESR has, albeit in a sense implicitly,
published probability forecasts for inflation, in that the Review contained the table “Aver-
age Absolute Errors”. This table indicated the historical accuracy of NIESR forecasts by
reporting the mean absolute error.34 Since 1996q1 NIESR has explicitly published proba-
bility forecasts for inflation. These have taken the form of tabular histograms, indicating
the probability of inflation falling within a band, although these bands have changed
periodically. These probability forecasts are centred on the point forecast published in
the Review. This point forecast is produced by NiGEM, a large-scale macroeconometric
model. In deriving the density forecasts, normality is assumed. This is because ear-
lier work that analysed the historical errors (from 1984-1995) made in forecasting RPI
inflation could not reject normality; nor indeed could they reject unbiasedness (in fact
rationality); see Poulizac et al. (1996). The variance of the density forecast is then set
equal to the variance of the historical forecast error.35

The Review focuses on forecasting inflation in the fourth quarter of the current year
and the fourth quarter of the next year; therefore only the q4 publication offers a one-year
head forecast. While we can extract from back-issues of the Review one-year ahead point
forecasts for the other quarters, published uncertainty estimates are only available for
q4. Therefore, we follow Mitchell (2005) in his summary of National Institute density
forecasts and make an assumption in order to infer uncertainty estimates for the other
quarters. We simply assume the density forecast is normal with standard deviation equal
across the four quarters in a year. This assumption is sensible if we believe NIESR only
re-calibrated their forecast variances once a year.36

33The Review is currently published in January, April, July and October. Prior to 1996 the publication
timetable was slighly different. In any case we refer to the four publications of the Review each year as
q1, q2, q3 and q4. Given our interest in one-year ahead forecasts it does not seem unreasonable to ignore
these changes to the publication timetable since the information set is little different and there is still
one year’s worth of shocks.

34Assuming normality, a 58% confidence interval around the point forecasts corresponds to the point
estimate ± the mean absolute error.

35Past forecast errors are commonly used as a practical way of forecasting future errors; e.g. see Wallis
(1989), pp. 55-56.

36The quarterly time-series of density forecasts used in this paper are available from Mitchell (2005).
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Given the backward looking and mechanistic nature to NIESR’s method of determining
the variance, it is important what historical sample period is chosen to estimate the
variance. Until 2002 NIESR considered historical forecast errors back until 1982. Since
then they have focused on errors post 1993 and the variance of their density forecast
dropped dramatically; see Mitchell (2005) for details. As we shall see below, with the
advantage of hindsight we observe that by, until 2002, considering historical forecast errors
back until 1982, NIESR were basing their uncertainty forecasts on their track-record across
two different inflation ‘regimes’, the recent regime (post 1993/4) characterised by lower
volatility. This serves as a timely reminder to forecasters that just as with point forecasts,
basing density forecasts on past experience can lead to misleading forecasts when regimes
change. NIESR was in fact well aware of this. For example, to quote from Poulizac
et al. (1996) (p. 62), “Both our inflation forecast and the reliability of this forecast must
depend on the seriousness with which the government approaches inflation targetting. It
is not clear that past experience is a good guide to this... and, in turn, [this] probably
implies that the error variances [based on historical performance]... overstate the current
uncertainty associated with the inflation rate”.37 But until 2002 NIESR continued to
publish uncertainty forecasts based on forecast errors back to 1982. However Mitchell
(2005) has found that a break in the unconditional variance of NIESR’s forecast errors
around 1993-94 could have been detected via recursive analysis of these forecast errors
towards the end of 1996.

6.3 Empirical results

In this section we present the results of evaluating, comparing and combining the Bank of
England and NIESR point and density forecasts. Using actual inflation data up to 2004q2
we have 42 point and density forecasts in total to compare with the subsequent outturn
for RPIX inflation from 1994q1-2004q2. We also present results based on forecasts made
from 1997q3, as this corresponds to the period in which the MPC were charged with
responsibility for the Bank of England’s forecasts.

We consider the performance of, specifically, the combined density forecasts both
in-sample and using recursive out-of-sample experiments. In-sample we compute the
combining weights on the two forecasts using all of the 42 time-series observations. The
out-of-sample analysis is designed to simulate whether in practice, in real-time, one could
have pooled the Bank of England and NIESR density forecasts to obtain ‘better’ forecasts.
Accordingly, from 1997q3 recursively we re-estimate the combination weights using data
available up to period (t−5). This acknowledges the fact that one has to wait five quarters
to evaluate the performance of a given (year-ahead) forecast. These recursively computed
optimal weights are then used to produce a series of combined density forecasts from

37NIESR has considered how stochastic simulation can be used as an alternative to historical errors to
measure the uncertainty associated with the inflation rate; see Blake (1996). It is explained that this is
expected to deliver a better measure of uncertainty if a new policy regime (say a new target for inflation)
has been adopted. Using a coherent policy structure with interest rate setting determined by a monetary
policy rule, Blake found that stochastic simulation suggested a smaller inflation standard error.
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1997q4 to 2004q2.
As well as the actual density forecasts published by the Bank of England and NIESR,

we consider a slight modification of each. For the Bank of England, we impose normality
on the fan chart so that while the mean and variance of the fan chart are as published
by the Bank of England, any skewness is ignored; we denote this forecast BankN . For
NIESR we continue to consider a normal density forecast centred on the point forecast
but rather than using the standard deviation estimates published by NIESR in q4 we
compute rolling estimates. The standard deviation of the density forecast is computed
recursively each quarter by setting it equal to the standard deviation of the pooled (across
quarters) historical forecast errors (back to 1988) across a rolling 20 quarter window. At
each point in time only information that would have been available in real-time is used;
we denote this density forecast NIESRR.38 While not explicitly conditioning on any break
in the variance, use of a rolling window is a simple means of ignoring some ‘old’ forecast
error data.

The accuracy of the point forecasts is summarised by their RMSE. The accuracy
of the density forecasts is summarised by the average log score, the KLIC and the p-
value from the associated Berkowitz LR test LRB which amounts to a test for whether
KLIC = 0. As indicated in Section 2, we expect autocorrelation in z∗it since we are looking
at five-step ahead quarterly forecasts; the forecast horizon is longer than the periodicity of
data. Therefore, although for completeness we present KLIC and LR estimates based on
pt(z

∗
it) = φ

[(
z∗it − µ− ρz∗it−1

)
/σ

]
/σ, we focus on those that are unaffected by dependence

in z∗it and consider pt(z
∗
it) = φ [(z∗it − µ) /σ] /σ; let KLICIN and LRIN denote the former

tests for zero mean, unit variance and zero first-order autocorrelation and KLICN and
LRN denote the latter tests for zero mean and unit variance, both under a maintained
hypothesis of normality. Recall that KLICIN = LRIN/2T and KLICN = LRN/2T , where
LRIN and LRN are computed via substitution of pt(z

∗
it), defined appropriately, in (4) or

(14).

6.3.1 Evaluation of point forecasts

Table 4 uses the RMSE to summarise the accuracy of the Bank of England and NIESR
point forecasts. Over both the 1993q1-2003q2 and 1997q3-2003q2 periods the Bank of
England’s forecasts are more accurate than those of NIESR, as evidenced by a lower
RMSE. However, as we see from Table 5, even over the full-sample period this difference
is not statistically significant at 95% using a DM test with HAC estimation of the vari-
ance; the associated test statistic is 1.19.39 Statistical tests (not reported) also reject the
significance of the bias component of RMSE for both the Bank of England and NIESR,
again using a HAC robust estimator of its standard error.

38The NIESRR density forecasts used are available from Mitchell (2005).
39This result is robust to the small-sample correction suggested by Harvey et al. (1997).
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6.3.2 Evaluation of “fan” charts

Table 4 also summarises the performance of the Bank of England and NIESR density
forecasts. Examination of LRIN and LRN reveals that over the full-sample period the
Bank of England density forecasts are rejected as statistically adequate (at best the p-
value is 0.003). However, while one rejects the density forecasts using LRIN over the
1997q3-2003q2 period, LRN suggests the density forecasts are well specified (with a p-
value of 0.097). This rejection using LRIN should not be assumed to imply statistical
inadequacy since this test may be contaminated by the serial correlation we expect in the
pit’s. LRN , on the other hand, is robust to such dependence.

These results are consistent with earlier studies that tend to find that the Bank of
England (year-ahead) density forecasts fail tests for independence (constituting no vio-
lation of forecast optimality) but perform better against the distributional ones, at least
over the 1997q3- period.40 Interestingly, if we impose normality on the Bank of England
density forecasts, with mean and variance as before, accuracy is only marginally worse
(indeed the KLIC estimates are identical to 2 d.p.); the Bank of England’s assumption of
a two-piece normal distribution since 1996q1, empirically at least, makes little practical
difference.

In contrast Table 4 shows that the NIESR density forecasts, at least as actually pub-
lished, are rejected by both LRIN and LRN over both sample periods. Again this is
consistent with earlier work; see Hall & Mitchell (2004a). The distributional failure is
not surprising since until 2002 NIESR clearly over-estimated the degree of uncertainty
associated with its point forecast. As indicated, this is explained by their reliance on a
mechanical examination of historical forecast errors too far back into the past. We note
that the Bank of England and NIESR mean forecast errors have a correlation coefficient
of 0.73.

However the re-calibrated NIESR density forecasts NIESRR, that rely on rolling esti-
mates of the density’s standard deviation, do perform well. They pass the distributional
test, LRN , both over the full and shorter samples periods (with p-values of 0.44 and 0.53,
respectively). Indeed the density forecast NIESRR performs better than any of the Bank
of England’s density forecasts. Given the poorer performance of NIESR point estimates,
this reminds us of the importance of using reliable uncertainty forecasts.

40Clements (2004) evaluates Bank density forecasts of year-ahead inflation, using a range of statistical
tests, over the shorter sample period, 1997q3-2002q1. Hall & Mitchell (2004a) also provide a more
detailed evaluation of Bank of England and NIESR density forecast, like Clements, considering a range
of statistical tests. While we focus here on evaluation of density forecasts using the Berkowitz LR test, it
should be noted, particularly given the small-sample size available, that exploratory data analysis based
on examination of the plot against the uniform distribution and the auto-correlation functions does
suggest the Bank (albeit, if our results are reliable, in a statistically insignificant manner) over-estimated
the degree of uncertainty. The distribution function for the Bank is S-shaped. This indicates that they
placed too much weight in the tails. This is consistent with the findings of Wallis (2004).
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6.3.3 Comparing the Bank of England and NIESR “fan” charts

Table 5 presents the results of the KLIC tests that statistically compare the accuracy of
the Bank of England and NIESR point and density forecasts. HAC robust estimators of
the variance of the loss differential {dt} are used when undertaking these tests of equal
forecast accuracy, specifically we use a Newey-West estimator with Bartlett weights.

As mentioned in Section 6.3.1 above, we cannot reject the null hypothesis of equal
point forecast accuracy using a traditional DM test, assuming a quadratic loss function,
with a test statistic of 1.19. However, using the test proposed in Section 4, we find that
the Bank of England’s fan chart is more accurate, in a statistically significant manner,
than NIESR’s (the test statistic is 10.01, with an associated asymptotic 95% critical value
of 1.96). But NIESR’s re-calibrated density forecasts NIESRR are statistically better than
the Bank’s (the test statistic is 4.55).

Furthermore, although Table 4 indicated that imposing normality on the Bank of
England density forecasts rendered them slightly less accurate, Table 5 reveals that one
cannot reject the hypothesis that imposing normality makes no difference (the test statistic
is 0.37). This implies that the Bank of England’s opinion about the balance of risks is
statistically no better than assuming there is no upside or downside risk to inflation.

6.3.4 Combining the Bank of England and NIESR “fan” charts

Tables 6 and 7 analyse the combined point and density forecasts. Table 6 presents the
combination weights on Bank of England and NIESR, exploiting (in-sample) all of the
available 42 time-series observations. Table 6 shows that the Bank of England receives a
weight of 1.04 and NIESR a weight of -0.1 when optimally combining the two competing
point estimates using a G-R type regression with no intercept. The robust standard errors
also presented indicate that only the Bank of England’s point forecast is statistically
significant. Indeed statistically one can accept encompassing : the Bank of England has a
weight of unity and NIESR a weight of zero. Similar results are obtained if one constrains
the weights to sum to unity.

In contrast Table 6 shows that when combining the density forecasts, the weights on
NIESR are more equal to those on the Bank of England. NIESR receives a weight of 0.43
while the re-calibrated NIESR density forecasts NIESRR receives a weight of 0.53.

Table 7 then considers the accuracy of the combined point and density forecasts both
in-sample and in the recursive out-of-sample experiments.

Let us consider the in-sample results for the point forecasts first. Optimal combination
of point forecasts must reduce the RMSE. Reassuringly, Table 7 shows that this is indeed
the case! The optimal combined point forecast has a RMSE of 0.497 as opposed to a
RMSE of 0.53 for the Bank of England and 0.83 for NIESR (see Table 4). If we constrain
the combination weights to sum to unity then the combined RMSE is still lower than the
individual RMSEs but is slightly higher than the estimate presented in Table 7. Use of
equal weights leads to less accurate point forecasts, as does use of BMA weights (these are
the weights used to combine the density forecasts based on the KLIC estimates). Out-of-
sample this result is reversed; equal and BMA weights perform similarly but beat optimal
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weights (equal weights have a RMSE of 0.40 opposed to 0.46 for the recursively computed
optimal weights). Explanations for this are put forward in Hendry & Clements (2004)
and Smith & Wallis (2005).

A different picture emerges when we analyse the performance of the combined density
forecasts. While in-sample combination of point forecasts (using optimal G-R weights)
must deliver greater accuracy, in-sample combination of the density forecasts using BMA
KLIC weights need not. Indeed this is what happens in Table 7. The combined density
forecast using BMA weights is worse than the Bank of England density forecast (with a
KLIC of 0.35 rather than 0.33).

Accordingly, Hall & Mitchell (2004b) propose that one combine density forecasts by
performing a numerical search to choose that set of combination weights that deliver the
best value of the test statistic used to evaluate the performance of density forecasts (in
our case the Berkowitz LR test statistic). In other words, these weights minimise the ‘dis-
tance’, as measured by the KLIC, between the forecasted and true, but unknown, density.
In this way, as with combination using the G-R regression, combination cannot deliver
worse forecasts than the individual forecasts in-sample. It may, however, as happens in
this application deliver a weight of unity on the Bank of England and zero on NIESR,
essentially implying that combination cannot help.

Table 7 also shows that in-sample density forecast combination using BMA weights is
better than use of equal weights. This is reflected by a higher score and lower KLIC esti-
mates. However, which is particularly interesting in the light of Monte-Carlo experiment
#2, density forecast combination using (22) is worse than just using a normal combined
density forecast N(m∗

t , v
∗
t ). Combination using N(m∗

t , v
∗
t ) delivers satisfactory density

forecasts (with a p-value of 0.65) that are also better than either the Bank of England or
NIESR density forecast individually (see Table 4).

Out-of-sample the performance of the combined density forecast with BMA weights
is still worse than the Bank of England’s; this is reflected by a KLIC of 0.39 rather than
the 0.1 for the Bank of England seen in Table 4. Use of BMA weights is, however, better
than use of equal weights; the KLIC rises to 0.42. The normal combined density N(m∗

t , v
∗
t )

again does better out-of-sample than density forecast combination using (22), with a KLIC
of 0.13. But this is still less accurate than the Bank of England individually. Finally, we
considered combining the Bank of England and NIESRR density forecasts. This does
deliver density forecasts that pass the LRN test (with a p-value of 0.09). But one would
have done better considering the NIESRR density forecast alone; again density forecast
combination does not help.

6.3.5 Summing up the empirical results

Both the point and density forecasts published by the Bank of England are more accurate
than those published by NIESR, and at least since 1997q3 appear to pass the evaluation
test that KLIC = 0. The test for equal density forecast accuracy proposed in this paper also
revealed the Bank of England’s density forecast to be better statistically than NIESR’s.
However, the Bank of England’s opinion about the balance of risks is statistically no
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better than assuming there is no risk. Moreover, it was easy to construct, using real-time
data, alternative variance estimates for NIESR’s density forecast that result in NIESR’s
density forecast beating the Bank’s.

We also found that the combined density forecasts did not beat the best individual
density forecasts. This appears to be consistent with the view that combination of a
‘good’ forecast with an inferior forecast can make matters worse. However, the KLIC
weights did deliver better combined density forecasts than equal weights. Clearly, as with
the combination of point forecasts, the weights used matter.

7 Concluding Comments

This paper has proposed and analysed the Kullback-Leibler Information Criterion (KLIC)
as a unified statistical tool to evaluate, compare and combine density forecasts. Computa-
tion of the KLIC is facilitated by exploiting its relationship with the well-known Berkowitz
LR test for the evaluation of individual density forecasts based on the pit’s.

We have found that the KLIC provides a useful (and statistically quite powerful) tool to
compare competing density forecasts statistically. However, care should be exercised when
using the finite mixture density to combine density forecasts. Although the KLIC provides
a theoretically attractive means of weighting the competing densities in this mixture, since
the best forecast according to the KLIC has the highest posterior probability, in contrast
to point forecast combination with optimal weights density forecast combination using
KLIC weights need not equal or improve upon the performance of the best individual
forecast even in-sample yet alone out-of-sample. The finite mixture density can generate
highly non-normal combined densities that may or may not help. We saw in the second
Monte-Carlo experiment that combination can help but the empirical application revealed
use of the finite mixture density made the density forecasts worse than the best individual
density forecast. A Gaussian combined density forecast, centred on the combined point
forecast, did better than the mixture normal combination. However, there is no reason
to expect this will always be the case.
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Table 1: Monte-Carlo Experiment #1

w1 α β w1 σw1 MCSE
0 0.00 0.00 0.50 0.03 0.001
0 0.00 1.00 0.31 0.07 0.003
0 0.00 2.00 0.04 0.03 0.001
0 0.00 3.00 0.00 0.00 0.000
0 1.00 1.00 0.32 0.07 0.003
0 1.00 2.00 0.04 0.03 0.001
0 1.00 3.00 0.00 0.00 0.000
0.2 0.00 0.00 0.50 0.03 0.002
0.2 0.00 1.00 0.39 0.07 0.003
0.2 0.00 2.00 0.14 0.10 0.004
0.2 0.00 3.00 0.03 0.07 0.003
0.2 1.00 1.00 0.38 0.07 0.003
0.2 1.00 2.00 0.13 0.10 0.004
0.2 1.00 3.00 0.03 0.06 0.003
0.4 0.00 0.00 0.50 0.03 0.001
0.4 0.00 1.00 0.46 0.08 0.003
0.4 0.00 2.00 0.36 0.19 0.008
0.4 0.00 3.00 0.27 0.26 0.012
0.4 1.00 1.00 0.46 0.08 0.004
0.4 1.00 2.00 0.34 0.18 0.008
0.4 1.00 3.00 0.28 0.28 0.013
0.6 0.00 0.00 0.50 0.03 0.001
0.6 0.00 1.00 0.54 0.08 0.004
0.6 0.00 2.00 0.66 0.19 0.009
0.6 0.00 3.00 0.74 0.27 0.012
0.6 1.00 1.00 0.54 0.08 0.003
0.6 1.00 2.00 0.63 0.18 0.008
0.6 1.00 3.00 0.73 0.27 0.012
0.8 0.00 0.00 0.50 0.03 0.001
0.8 0.00 1.00 0.62 0.07 0.003
0.8 0.00 2.00 0.87 0.10 0.004
0.8 0.00 3.00 0.97 0.06 0.003
0.8 1.00 1.00 0.62 0.08 0.003
0.8 1.00 2.00 0.86 0.10 0.004
0.8 1.00 3.00 0.97 0.08 0.004
1 0.00 0.00 0.50 0.03 0.001
1 0.00 1.00 0.69 0.06 0.003
1 0.00 2.00 0.96 0.03 0.001
1 0.00 3.00 1.00 0.00 0.000
1 1.00 1.00 0.69 0.07 0.003
1 1.00 2.00 0.96 0.03 0.001
1 1.00 3.00 1.00 0.00 0.000

Notes: w1 is the true weight in (28); α and β control the characteristics of the two component
densities (29) or (30); w1 is the mean of {ŵ1}R

r=1; σw1 is the standard deviation of {ŵ1}R
r=1 and

MCSE is the Monte-Carlo standard error, where MCSE = σw1/
√

R.
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Table 2: Monte-Carlo experiment #2
α 0.000 0.000 0.000 0.000 0.000 0.100 0.100 0.100 0.100
β 0.000 0.200 0.400 0.700 1.000 0.100 0.580 1.015 1.65
LR1 0.084 0.048 0.086 0.382 0.876 0.052 0.200 0.858 1.00
LR2 0.084 0.050 0.042 0.060 0.064 0.044 0.052 0.052 0.050
KLICm1 0.033 0.030 0.037 0.076 0.187 0.029 0.052 0.183 0.764
σKLIC1 0.027 0.024 0.029 0.055 0.102 0.025 0.041 0.101 0.277
KLICm2 0.033 0.030 0.030 0.031 0.032 0.029 0.031 0.030 0.031
σKLIC2 0.027 0.024 0.023 0.025 0.027 0.024 0.025 0.026 0.025
KLIC equal 0.000 0.114 0.240 0.620 0.910 0.052 0.472 0.904 1.00
w1 0.500 0.500 0.498 0.489 0.462 0.500 0.495 0.462 0.327
σw1 0.000 0.003 0.006 0.013 0.025 0.002 0.010 0.026 0.059
w1,naive 0.500 0.501 0.450 0.315 0.166 0.501 0.395 0.163 0.044
σw1,naive 0.000 0.112 0.177 0.202 0.141 0.069 0.217 0.146 0.042
BMA 0.084 0.046 0.040 0.060 0.060 0.046 0.048 0.044 0.076
BMA naive 0.084 0.044 0.036 0.044 0.046 0.046 0.038 0.046 0.078
N(m∗

t , v
∗
t ) 0.010 0.004 0.006 0.010 0.010 0.002 0.002 0.006 0.006

Notes: LR1 and LR2 denote the rejection rates, at 5%, for testing the optimality of the individual
density forecasts g1t(yt) and g2t(yt) using the Berkowitz LR test (4); KLICm1 and KLICm2

are the average values of the KLIC, (12), for g1t(yt) and g2t(yt) across Monte-Carlo replications
R, and σKLIC1 and σKLIC2 are the standard deviations across replications; KLIC equal is the
rejection rate, at 5%, for the KLIC test of density forecast equality (18); w1 and σw1 are the
average and standard deviation (across R) of the KLIC weights on g1t(yt) in the BMA combined
density forecast, cf. (26); w1,naive and σw1,naive are the average and standard deviation (across
R) of the KLIC weights on g1t(yt) in the naive BMA combined density forecast, cf. (27); BMA is
the rejection rate, at 5%, for testing the optimality of the combined density forecast pt(yt) with
KLIC weights (26) using the Berkowitz LR test (4); similarly BMA naive and N(m∗

t , v
∗
t ) are the

rejection rates for the combined density forecast using, respectively, naive BMA weights (27)
and the Gaussian combined density forecast with mean equal to the optimal combined point
estimate and variance calculated from the in-sample residuals using m∗

t .
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Table 3: Monte-Carlo experiment #2 (cont.)

α 0.200 0.200 0.200 0.200 0.400 0.400 1.000 1.000 1.000 1.000
β 0.200 0.400 0.700 1.000 0.400 1.000 1.000 1.400 2.000 3.000
LR1 0.046 0.098 0.374 0.874 0.100 0.846 0.842 0.988 1.000 1.000
LR2 0.050 0.060 0.058 0.062 0.100 0.106 0.822 0.892 0.884 0.886
KLICm1 0.029 0.037 0.074 0.193 0.036 0.178 0.181 0.466 1.232 3.343
σKLIC1 0.023 0.031 0.054 0.107 0.029 0.101 0.104 0.203 0.413 0.923
KLICm2 0.029 0.033 0.030 0.032 0.036 0.036 0.183 0.189 0.185 0.186
σKLIC2 0.025 0.027 0.025 0.027 0.029 0.031 0.107 0.105 0.103 0.107
KLIC equal 0.068 0.138 0.540 0.862 0.068 0.698 0.060 0.304 0.908 1.000
w1 0.500 0.499 0.489 0.460 0.500 0.465 0.500 0.432 0.268 0.056
σw1 0.003 0.006 0.013 0.025 0.006 0.025 0.032 0.051 0.075 0.045
w1,naive 0.489 0.475 0.318 0.160 0.496 0.184 0.501 0.296 0.136 0.056
σw1,naive 0.128 0.172 0.207 0.133 0.195 0.144 0.176 0.132 0.073 0.034
BMA 0.046 0.058 0.048 0.060 0.050 0.064 0.090 0.114 0.188 0.552
BMA naive 0.044 0.044 0.038 0.054 0.046 0.062 0.084 0.140 0.234 0.502
N(m∗

t , v
∗
t ) 0.002 0.004 0.000 0.004 0.002 0.006 0.008 0.002 0.006 0.006

Table 4: Individual Forecast Performance: Point and Density Results

1993q1-2003q2 1997q3-2003q2
RMSE S KLICIN KLICN LRp

IN LRp
N RMSE S KLICIN KLICN LRp

IN LRp
N

Bank 0.53 -0.83 0.33 0.14 0.000 0.003 0.40 -0.61 0.25 0.10 0.007 0.097
BankN 0.53 -0.83 0.33 0.14 0.000 0.003 0.40 -0.62 0.25 0.10 0.008 0.095
NIESR 0.83 -1.57 0.91 0.43 0.000 0.000 0.45 -1.42 0.86 0.75 0.000 0.000
NIESRR 0.83 -1.21 0.20 0.02 0.001 0.435 0.45 -0.90 0.12 0.03 0.127 0.534

Notes: S=Average Log Score; KLICIN is the KLIC estimate for zero mean, unit variance and
zero first-order dependence derived by scaling LRIN by 2T; KLICN is the KLIC estimate for zero
mean and unit variance derived by scaling LRN by 2T; BankN is Bank of England fan chart with
normality imposed; NIESRR is NIESR density forecast based on rolling estimates of the standard
deviation; LRp

IN is the p-value for the three degrees of freedom (Berkowitz) LR test for zero mean,
unit variance and zero first-order dependence LRIN ; LRp

N is the p-value for the two degrees of
freedom (Berkowitz) LR test for zero mean and unit variance LRN
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Table 5: Comparing Bank of England and NIESR point and density forecasts 1993q1-
2003q2

DM: Bank=NIESR 1.189
KLIC equal: Bank=NIESR 10.007
KLIC equal: Bank=NIESRR 4.551
KLIC equal: Bank=BankN 0.374

Notes: DM is a Diebold-Mariano test for equality between the Bank of England and NIESR
point forecasts. KLIC equal is the test for equal density forecast accuracy between the Bank of
England and NIESR density forecasts, and modified versions of each; see (18). The asymptotic
95 per cent critical value is 1.96.

Table 6: Combination weights on the Bank of England and NIESR point and density
forecasts: 1993q1-2003q2

w1 w2

Point 1.042 -0.106
robust e.s.e. (0.213) (0.227)

Density 0.572 0.428
Density: Bank vs. NIESRR 0.470 0.530

Notes: The point forecasts are combined using a G-R regression; e.s.e. is estimated standard
error, in parentheses; w1 denotes the weight on the Bank of England density and w2 the weight
on the NIESR density.

Table 7: Combined Forecast Performance: Point and Density Results
In-sample (1993q1-2003q2) Out-of-sample (1997q3-)

Point Forecasts RMSE RMSE
Optimal weights 0.497 0.457
Equal weights 0.642 0.397
BMA weights 0.619 0.393

Density Forecasts KLICN S LRp
N KLICN S LRp

N

BMA weights 0.345 -1.076 0.000 0.392 -0.894 0.000
N(m∗

t , v
∗
t ) 0.010 -0.719 0.654 0.131 -0.676 0.043

BMA: Equal weights 0.373 -1.125 0.000 0.422 -0.894 0.000
BMA weights: Bank and NIESRR 0.133 -0.995 0.004 0.090 -0.720 0.114

32



References

Bao, Y., Lee, T.-H. & Saltoglu, B. (2004), A test for density forecast comparison with
applications to risk management. Department of Economics, UC Riverside.

Bates, J. M. & Granger, C. W. J. (1969), ‘The combination of forecasts’, Operational
Research Quarterly 20, 451–468.

Berkowitz, J. (2001), ‘Testing density forecasts, with applications to risk management’,
Journal of Business and Economic Statistics 19, 465–474.

Blake, A. (1996), ‘Forecast error bounds by stochastic simulation’, National Institute
Economic Review 156, 72–79.

Bomberger, W. (1996), ‘Disagreement as a measure of uncertainty’, Journal of Money,
Credit and Banking 28, 381–392.

Britton, E., Fisher, P. & Whitley, J. (1998), ‘The inflation report projections: under-
standing the fan chart’, Bank of England Quarterly Bulletin 38, 30–37.

Burnham, K. P. & Anderson, D. R. (2002), Model selection and multimodel inference:
A practical information-theoretic approach. (Second edition), Springer-Verlag: New
York.

Clemen, R. & Winkler, R. (1999), ‘Combining probability distributions from experts in
risk analysis’, Risk Analysis 19, 187–203.

Clements, M. P. (2003), ‘Editorial: Some possible directions for future research’, Inter-
national Journal of Forecasting 19, 1–3.

Clements, M. P. (2004), ‘Evaluating the Bank of England density forecasts of inflation’,
Economic Journal 114, 844–866.

Clements, M. P. (2005), ‘Evaluating the Survey of Professional Forecasters probability
distributions of expected inflation based on derived event probability forecasts’, Em-
pirical Economics . Forthcoming.

Clements, M. P. & Hendry, D. F. (1998), Forecasting Economic Time Series, Cambridge
University Press: Cambridge.

Clements, M. P. & Smith, J. (2000), ‘Evaluating the forecast densities of linear and
non-linear models: Applications to output growth and unemployment’, Journal of
Forecasting 19, 255–276.

Corradi, V. & Swanson, N. R. (2004), ‘Predictive density and conditional confidence
interval accuracy tests’, Journal of Econometrics . Forthcoming.

33
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