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Abstract

In this paper we investigate whether and how far density forecasts sensibly can
be combined to produce a “better” pooled density forecast. In so doing we bring
together two important but hitherto largely unrelated areas of the forecasting litera-
ture in economics, density forecasting and forecast combination. We provide simple
Bayesian methods of pooling information across alternative density forecasts. We
illustrate the proposed techniques in an application to two widely used published
density forecasts for U.K. inflation. We examine whether in practice improved den-
sity forecasts for inflation, one year ahead, might have been obtained if one had
combined the Bank of England and NIESR density forecasts or “fan charts”.

1 Introduction

Forecasts of the future values of economic variables are used widely in decision making.
For example in the U.K., inflation forecasts are central to the setting of monetary policy
by the Monetary Policy Committee (MPC) at the Bank of England. Recently there has
been increased attention given to providing measures of uncertainty associated with these
forecasts. Measures of uncertainty surrounding a “central tendency” (the point forecast)
can enhance the usefulness of the forecast; e.g. see the discussion in Garratt et al. (2003).
So called “density” forecasts are being used increasingly in economics and finance since
they provide commentators with a full impression of the uncertainty associated with the
forecasts; see Tay & Wallis (2000) for a review. More formally, density forecasts of inflation
provide an estimate of the probability distribution of its possible future values. In contrast

∗Address for correspondence: James Mitchell, National Institute of Economic and Social Research,
2 Dean Trench Street, Smith Square, London, SW1P 3HE, U.K. Tel: +44 (0) 207 654 1926. Fax: +44
(0) 207 654 1900. E-Mail: j.mitchell@niesr.ac.uk. Thanks to Ray Barrell, Robert Metz and Rebecca
Riley for their advice, in particular, about NIESR forecasts, Nigel Meade, Kostas Mouratidis and Martin
Weale for helpful comments and Yongmiao Hong for making available GAUSS code to implement his test
referred to below. Mitchell gratefully acknowledges financial support from the ESRC (Award Reference:
RES-000-22-0610). Computations were performed using the GAUSS and Ox programming languages.

1



to interval forecasts, that state the probability that the outcome will fall within a stated
interval such as inflation falling between 1% and 3%, density forecasts provide a complete
description of the uncertainty associated with a forecast; they can be seen to provide
information on all possible intervals.

Density forecasts of inflation in the U.K., for example, are now published each quarter
both by the Bank of England in its “fan” chart and the National Institute of Economic
and Social Research (NIESR) in its quarterly forecast, and have been for the last ten
years. Density forecasts inform the user of the forecast about the risks involved in using
the forecast for decision making. Indeed, interest may lie in the dispersion or tails of
the density itself; for example inflation targets often focus the attention of monetary
authorities to the probability of future inflation falling within some pre-defined target
range while users of growth forecasts may be concerned about the probability of recession.
Moreover, volatility forecasts, as measured by the variance, and other measures of risk
and uncertainty, can be extracted from the density forecast.

It is well established that combining competing individual point forecasts of the same
event can deliver more accurate forecasts, in the sense of a lower root mean squared
error (RMSE); see Bates & Granger (1969) and Stock & Watson (2004).1 The success of
combination follows from the fact that individual forecasts may be based on misspecified
models, poor estimation or non-stationarities. Indeed recent work, see e.g. Hendry &
Clements (2004), has begun to explore further why point forecast combination works
through analytical and Monte-Carlo investigation.

In this paper we take the natural next step of considering density forecast combination,
to-date a relatively unexplored area, investigating whether and how far density forecasts
sensibly can be combined to produce a “better” pooled density forecast. In so doing
we bring together two important but hitherto largely unrelated areas of the forecasting
literature in economics, density forecasting and forecast combination.2

However, a body of experience about combining probability distributions has accu-
mulated in the management science literature. One popular approach is for a Bayesian
motivation for the combination of density forecasts; typically this in the context of a ‘de-
cision maker’ aggregating the probability forecasts of a group of ‘experts’. This literature
provides a useful stylised framework in which to consider density forecast combination
and serves as the starting point in this paper. Accordingly, we review this literature in
Section 2 and then in Section 3 explain how an extension is required to the basic Bayesian
model when interested in forecasting other characteristics than the mean of the density.
One interpretation of this extension is it accommodates the fact that in economics it is

1Analogously, it is well established that it is often better to invest in a portfolio of assets than just a
single asset.

2Related work has considered the combination of event and quantile forecasts; see Clements (2002)
and Granger et al. (1989). These inevitably involve a loss of information compared with consideration
of the ‘whole’ density; e.g. only as the number of quantiles examined reaches infinity is no information
about the density lost. Garratt et al. (2003) and Pesaran & Zaffaroni (2004) consider the combination of
probability forecasts based on Bayesian model averaging. In contrast, the simple approaches to density
combination suggested in this paper are not predicated on estimation of a statistical model; they are
operational both with model-based and subjective (e.g. survey-based) density forecasts.
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widely acknowledged that data are inherently uncertain, given our belief that data are
realisations from stochastic data-generating-processes. In Section 4 we then make the
distinction between combining experts’ forecasts of various moments of the forecast den-
sity and directly combining the individual densities themselves. It is explained how this
distinction can prove important in affecting the shape of the combined density forecast.
Consistent with the Bayesian paradigm, we derive an analytical expression for the shape of
the directly combined density forecast, defined as the posterior distribution of the variable
we are seeking to forecast conditional on the information supplied by the experts. The
techniques that we consider for the combination of density forecasts offer users of density
forecasts useful and easy-to-use means of pooling information across alternative density
forecasts, irrespective of whether the density forecasts are model-based or subjective (e.g.
survey-based). Section 5 reviews the statistical tests proposed to evaluate the accuracy of
density forecasts ex post. Section 6 then illustrates the proposed techniques in an applica-
tion to two widely used density forecasts for U.K. inflation, that have both been published
each quarter in real-time for ten years. It examines whether in practice improved density
forecasts for inflation, one year ahead, might have been obtained if one had combined the
Bank of England and NIESR density forecasts or “fan charts”. Concluding comments are
made in Section 7.

2 Combining density forecasts

It is common practice to seek the advice of more than one expert before making a decision.
The benefits of doing so derive from the assumption that a set of experts provide more
information than a single expert. While the benefits of combining information about point
forecasts are well appreciated in economics, less attention has been paid to the aggregation
of probability distributions. However, this has received considerable attention within
many management science and risk analysis journals; for reviews see Genest & Zidek
(1986) and Clemen & Winkler (1999). First, it is useful to provide a selective review of
this work before considering an extension.

Clemen & Winkler (1999) distinguish behavioural and mathematical approaches to
combination. The behavioural approach seeks to combine experts’ opinions by letting
the experts interact in some manner to reach some collective opinion. This approach
is not considered further in this paper as one can imagine many situations in economic
forecasting when it would not be feasible practically; e.g. in the context of the application
in this paper the Bank of England and NIESR would have to sit down together and agree
about the shape of their combined fan chart. While clearly possibly within an institution,
indeed the Bank’s fan chart is, to a degree, based on the nine members of the MPC
interacting and reaching agreement, the behavioural approach is arguably less appropriate
when combining forecasts across different, even rival, institutions.

By contrast mathematical approaches combine the information across experts by us-
ing some rule or model. Early work focused on combination rules that satisfied certain
properties or axioms. Two common axiomatic approaches are the “linear opinion pool”
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and the “logarithmic opinion pool”. Let us consider them in turn.
Consider N forecasts made by expert i (i = 1, ..., N) of a variable y, assumed to be

real-valued. These N forecasts, denoted gi, are density forecasts, assumed continuous.
The linear opinion pool takes a weighted linear combination of the experts’ probabilities;
the combined density is defined as the finite mixture:

p(y) =
N∑

i=1

wigi(y), (1)

where wi are a set of non-negative weights that sum to unity. This combined density
satisfies certain properties such as the “unanimity” property (if all experts agree on a
probability then the combined probability agrees also); for further discussion, and con-
sideration of other properties see Genest & Zidek (1986) and Clemen & Winkler (1999).3

Further descriptive properties of mixture distributions are summarised in Everitt & Hand
(1981).

Inspection of (1) also reveals that taking a weighted linear combination of the experts’
densities can generate a combined density with characteristics quite distinct from those of
the experts. For example, if all the experts’ densities are normal, but with different means
and variances, then the combined density will be mixture normal.4 Mixture normal dis-
tributions can have heavier tails than normal distributions, and can therefore potentially
accommodate skewness and kurtosis. If the true (population) density is non-normal we
can begin to appreciate why combining individual density forecasts, that are normal, may
mitigate misspecification of the individual densities.

The logarithmic opinion pool is defined as:

p(y) = k
N∏

i=1

gi(y)wi , (2)

where k is a normalising constant. When wi = (1/N), p(y) is proportional to the geometric
mean of the experts’ distributions.

2.1 The Bayesian approach

More recently the Bayesian approach has received attention. The experts’ densities are
combined by a “decision maker” who views them as data. Following Morris (1974, 1977),

3The key practical issue is how to determine wi. Hall & Mitchell (2004b) suggest a data-driven ap-
proach. Alternatively, model averaging has been suggested. Granger & Jeon (2004) suggest a thick-
modelling approach, based on trimming to eliminate the k% worst performing forecasts and then taking
a simple average of the remaining forecasts. Bayesian model averaging has been suggested also; e.g. see
Garratt et al. (2003) and Pesaran & Zaffaroni (2004). This provides a means of weighting alternative
model based density forecasts according to their respective posterior probabilities. These probabilities
are often proxied by some measure of the relative statistical in-sample fit of the model, as measured by,
say, the Schwartz information criterion. This approach cannot combine density forecasts that do not rely
on estimation of some statistical model. Most simply, equal weights, wi = 1/N , have been advocated;
e.g. see Hendry & Clements (2004).

4For related analysis in the context of Bayesian model averaging see Pesaran & Zaffaroni (2004).
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Bayes’ Theorem is used to update the decision maker’s prior distribution, h(y), in the
light of these data from the experts that takes the form of the joint density, or likelihood,
derived from their N densities. The difficulty faced by the decision maker is deciding upon
the form of the likelihood function; the likelihood must capture the bias and precision of
the experts’ densities as well as their dependence. In this paper we follow the spirit of
the popular approach of Winkler (1981).

Consider the mean, mi, and variance, vi, of expert i’s distribution:

mi =

∞∫
−∞

ygi(y)dy, (3)

vi =

∞∫
−∞

(y −mi)
2gi(y)dy, (4)

(i = 1, ..., N). It is assumed that mi and vi are the information reported by expert i
available to the decision-maker.5 In this paper we focus on the case when expert i reports
these two moments only; they are assumed to summarise their density gi(y). Appendix
A summarises how the approach can be extended to higher moments.

mi is considered as the point forecast of y, and vi as a measure of uncertainty.6 The
forecasting error for expert i is:

si = mi − y, (5)

and expert i’s density for si takes the form gi(mi − y). Let m = (m1, ...,mN)′ denote
the N -vector of reported means and v = (v1, ..., vN)′ the N -vector of reported variances.
Let the N -stacked vector s = (s1, s2, ..., sN)′ have covariance matrix Σ. Note that any
dependence among experts is modelled here by the dependence among their forecasting
errors.7

The decision maker aggregates the N experts’ forecasts as follows. Via Bayes’ Theorem
the consensus distribution is given by the posterior distribution:8

h(y|m,v) =
h(m|y).h(v|m,y).h(y)

h(m,v)
, (6)

∝ h(m|y).h(v|m,y)h(y), (7)

so that, assuming (i) h(y) is uniform and (ii) h(v|m,y) does not depend on m or y, an
assumption which is later relaxed in Section 3.1 and 4.1,

h(y|m,v) ∝ h(m|y), (8)

5Alternatively, we could think of mi and vi as the median and interquartile range.
6Given non-quadratic loss functions it is well known that the “optimal” central estimate may not be

the mean.
7Alternatively, copulas could be used; see Jouini & Clemen (1996). They allow the consideration of

more general multivariate distributions than the normal.
8Note we assume h(m|y,v) = h(m|y).
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where h denotes a probability density.
We assume s = (m1−y, ..., mN−y) ∼ N(0,Σ); i.e. h(m|y) ∝ exp

[
−1

2
(m−ye)′Σ−1(m−ye)

]
,

where e is an N -vector of ones. This assumption implies that the means reported by the
experts offer unbiased estimates for y. Calibration means this is plausible - we should
expect forecasters via model improvement etc. to eliminate any systematic bias that their
forecasts may have. Alternatively one could allow for biases in experts’ announcements
at the cost of introducing extra parameters to model the nature of the biases; see Lind-
ley (1983). Normality of the errors si does not imply that the experts’ densities gi are
themselves normal.

The posterior density for y, the combined density, is then given by:

h(y|m) ∝ φ [(y −m∗)/σ∗m] , (9)

where φ is the standard normal density function and

m∗ = e′Σ−1m/e′Σ−1e, (10)

σ∗2m = 1/e′Σ−1e. (11)

m∗ can also be interpreted as the maximum likelihood (ML) estimator.9 In this sense
m∗ is optimal. The weights, m∗, are familiar to economists, even if this particular deriva-
tion is not.

This familiarity is seen easily by considering the simple case of combining 2 forecasts
(when we can easily analytically invert the covariance matrix). Let the elements of Σ =
(σij). Then (10) implies

m∗ =
(σ22 − σ12)m1 + (σ11 − σ12)m2

σ11 + σ22 − 2σ12

, (12)

which is equivalent to both the minimum variance solution [see Bates & Granger (1969)]
and the regression method [see Granger & Ramanathan (1984)]; also see Clements &
Hendry (1998), pp. 229-230.10 However, these two approaches do not require normality.
The expression (12) is interesting as it clearly shows that weights can be negative.

At a practical level, to operationalise this approach to combination, the decision maker
needs to know Σ. Winkler suggests using the experts’ reported variances on the main
diagonal of Σ and then estimating the N(N−1)/2 non-diagonal elements; e.g. see Winkler
(1981, p. 482 and p. 484). Typically estimation of these elements is based on historical
data, namely the track-record of the N experts in predicting y. In fact, as we see below,
the experts’ reported variances should not be used to estimate Σ. Rather the historical
accuracy of the point estimates, which need not be the same, should be used. If Σ is

9The likelihood h(m|y) implies m are N random variables sampled from a normal distribution with
common mean y and variance-covariance matrix Σ. Treating Σ as fixed and known, differentiation of
the likelihood with respect to y reveals that the ML estimator m∗:

√
T (m∗ − y) d→ N(0, (e′Σ−1e)−1).

See also Halperin (1961).
10Nonlinear and time-varying combination methods can be considered too; e.g. see Deutsch et al.

(1994) and Diebold & Pauly (1987).
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unknown a prior can be adopted; see Winkler (1981). The combined forecasts then have
a t-distribution; see also Lindley (1983).

σ∗2m is the variance of the combined forecast. We see from (11) that σ∗2m → 0 as the
number of forecasters N tends to infinity, even when they are making errors, so long as
all of the N(N − 1)/2 covariances are either zero or greater than zero. We might expect
positive covariances when experts have access to common information sets etc.. In other
words, σ∗2m can tend to zero even when each expert remains uncertain about their forecasts
(vi > 0). In the following section we extend the focus of the Bayesian approach to higher
moments than the mean. This is important when data are realisations from stochastic
data generating processes (DGPs).

3 Forecasting the variance

Consistent with the spirit of the Bayesian paradigm introduced in Section 2.1, this section
extends the focus to forecast other characteristics than the mean of the density, specifically
the variance. The variance is an indicator of “uncertainty” or volatility. It is important
to define precisely what we mean by uncertainty, and explain how the measure we focus
on, average individual uncertainty, relates to alternative measures.

Let the time-series yt be a realisation from the sequence of DGPs ft(yt) (t = 1, ..., T ).11

When the DGP is stochastic we consider realisations from the DGP at a given point in
time, t, to have an associated variance, denoted σ2

t . σ2
t can vary across time, reflecting the

fact that for many time-series historically we can distinguish periods of varying volatility.
When σ2

t = 0, yt is a realisation from a deterministic process. ft(yt) might be some linear
or nonlinear, static or dynamic, process that is subject to random disturbances (shocks)
across time. This is consistent with many explanations of the behaviour of aggregate
inflation or output growth. Note that the process ft(yt) (t = 1, ..., T ) may, or may not,
be covariance-stationary.

Define µt and σ2
t as the mean and variance of the distribution of yt:

µt = E(yt) =

∞∫
−∞

ytft(yt)dyt, (13)

σ2
t = V ar(yt) =

∞∫
−∞

(yt − µt)
2ft(yt)dyt, (14)

and let mit and vit, see (3) and (4), denote the mean and variance of the density forecasts
announced or reported by expert i (i = 1, ..., N) at time t (t = 1, ..., T ). Consistent with
Section 2, it is assumed E(mit) = µt. Of course, vi can be greater than zero even if expert
i correctly forecasts the mean. Again let us assume for now that the density forecasts are

11For notational convenience we do not distinguish between random variables and their realisations.
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summarised by their first two moments. No distributional assumptions need to be made
about the density forecasts.

Decomposing expert i’s point forecasting error (yt −mit):

sit = yt −mit = yt − µt + µt −mit, (15)

sit = et + (µt −mit), (16)

and taking the conditional expectation of the average of the square of (16) across i, we
see that the uncertainty around a (randomly drawn) individual forecast, σ2

t ,

σ2
t =

1

N

N∑
i=1

s2
it = σ2

t + σ2
µt, (17)

equals aggregate uncertainty σ2
t , explained by the stochastic nature of yt, plus σ2

µt, where

σ2
µt = 1

N

N∑
i=1

(µt −mit)
2.12 σ2

µt reflects experts’ uncertainty, disagreement, about the true

mean.
We will relate σ2

t to the averaged or mean variance of the individual distributions (at
a given point in time), namely E(vit) - the mean of the reported variances. This has
been considered, for example by Zarnowitz & Lambros (1987), as an explicit measure of
uncertainty. In Section 3.1 we turn to how one might optimally combine these variances,
rather than simply take unweighted averages. This is analogous to our discussion of the
mean; experts’ announced variances are combined according to their accuracy.

Alternatively, see (11), uncertainty can be defined with respect to the mean (consensus)
forecast m∗

t , rather than the individual forecast mit.
13 This measure of uncertainty, σ∗2m ,

must have a lower variance than a randomly drawn individual forecast. For equal weights

this is seen as follows. V ar (yt −m∗
t ) = 1

N2 V ar

(
N∑

i=1

sit

)
= 1

N
σ2

t + (N−1)
N

ρ, where ρ is

the average covariance between all pairs of forecast errors. Since σ2
t ≥ ρ it follows that

V ar (yt −m∗
t ) ≤ σ2

t ; see also Batchelor & Dua (1995).
Average individual uncertainty σ2

t also relates to the uncertainty of the aggregate
distribution, derived via the linear opinion pool. The mean and variance of (1), now
including time subscripts, are given by:14

12The cross-product term disappears on the assumption that E(2et(µt −mit)) = 0, implying the true
disturbance et is uncorrelated with experts’ individual forecasts.

13Both the individual and mean measures of uncertainty rely on experts reporting information about
their probability distributions, namely mi and vi. In the absence of such information, time-series methods
(ARCH models etc.) are used widely to measure uncertainty; for an empirical comparison of alternative
measures of uncertainty using the Survey of Professional Forecasters see Giordani & Söderlind (2003).

14Related expressions decomposing the aggregate density (1), based on the ‘law of conditional vari-
ances’, are seen in Giordani & Söderlind (2003). This law states that for the random variables yt and i:
V (yt) = E[V (yt|i)] + V [E(yt|i)].
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E [pt(yt)] = m∗
t =

N∑
i=1

witmit, (18)

V [pt(yt)] =
N∑

i=1

witvit +
N∑

i=1

wit {mit −m∗
t}

2 . (19)

(19) indicates that the variance of the aggregate distribution equals average individual
uncertainty plus disagreement.15

3.1 Combining the variances

Consider N sample-based estimates of the population variance σ2
t , denoted s2

it, where:

s2
it = (yt −mit)

2; (i = 1, ..., N). (20)

These N alternative estimates of the uncertainty measure σ2
t differ across experts, i, when

expert’s point estimates mit differ.
We assume that E(s2

it) = σ2
t for all i; so, for example, both s2

1t and s2
2t are unbiased

estimates of the true variance σ2
t .

16 Of course, this is not inconsistent with there being
statistical evidence for bias between s2

1t and s2
2t in finite samples. Then consider the

difference between s2
it and the experts’ reported variances vit:

vit − s2
it = uit. (21)

It is further assumed that E(vit) = σ2
t , ∀i; i.e. experts’ reported forecasts of the

variance offer unbiased estimates of the true variance.17 Again in finite samples this
may not hold, but we assume that the forecasters calibrate their forecasts to ensure
unbiasedness of their reported variances in the long-run.

This assumption implies that the expert tries to forecast not just the variance of yt, σ2
t ,

but the variance allowing for its uncertainty about the mean forecast, σ2
µt (i.e. the expert

adds in the extra uncertainty σ2
µt due to the fact that the mean of their distribution may

not equal the true mean, in other words (µt−mit) may not equal zero). This is conceptually
important; we are saying, for example, that the variance of the Bank of England’s fan-
chart seeks to forecast not just aggregate uncertainty, σ2

t , but the uncertainty associated
with the fact that the Bank has estimated the mean of its fan-chart.

15For further discussion of the relationship, if any, between dispersion/disagreement and individual
uncertainty see Bomberger (1996).

16This assumption is made commonly when evaluating conditional volatility forecasts; see Taylor
(1999). Since volatility, the outturn, is not observed directly the square of the observed error term
is used as a proxy. This is not unreasonable. For example, if we consider the ARCH process st =

√
σtξt

where {ξt} is an i.i.d. sequence with mean zero and unit variance and σt denotes latent volatility (that
evolves according to some process), then if the model is correctly specified E(s2

t |t − 1) = σ2
t ; see also

Andersen & Bollerslev (1998).
17An equivalent assumption has already been made about the mean; s ∼ N(0,Σ).
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Given these assumptions it follows that E(uit) = 0, ∀i. We further assume that the
uit’s are jointly normally distributed with variance-covariance matrix Ωt. Although, of
course, any variance can only be greater than or equal to zero, no such restriction need
hold on the difference between two variance terms. Then we can use Ωt to find the
consensus distribution for the variances following our consideration of the mean. This is
achieved as follows.

Assuming ut = (u1t, ..., uNt) ∼ N(0,Ωt), i.e. h(vt| mt,yt) ∝ exp
[
−1

2
ut
′Ω−1

t ut

]
=

exp
[
−1

2
(vt − σ2

te) ′Ω−1
t (vt − σ2

te)
]
, where vt = (v1t, ..., vNt) and σ2

te = (yte−mt)
2, the

posterior density for σ2
t conditional on the experts’ reported variances is:

h(σ2
t |v) ∝ φ

[
(σ2

t − v∗t )/σ
∗
v

]
, (22)

where

v∗t = e′Ω−1
t vt/e

′Ω−1
t e, (23)

σ∗2vt = 1/e′Ω−1
t e. (24)

v∗t is the “optimally” combined variance, in the sense that it is the ML estimator of
σ2

t .
18

Again at a practical level the decision maker needs to know Ωt. Ωt can be estimated
based on historical data, namely the track-record of the N experts in predicting s2

it. Let us
suppose we have information on their track-record over the last Q periods, ut (t = 1, ..., Q;

where Q > N). A convenient estimator for Ωt is then given by 1
Q

Q∑
t=1

utu
′
t. Consistency

of this estimator requires ergodicity of {ut} in second moments so that:

1

Q

Q∑
t=1

utu
′
t

p→ E(utu
′
t) = Ωt, (25)

where Ωt = Ω for all t.

3.2 Combining the mean having combined the variances

Let us re-consider the weights used to derive the combined mean forecast, m∗
t , that con-

sistent with the discussion above are now time-varying. As indicated above, Winkler
suggested estimating Σt based on using the experts’ reported variances on the main diag-
onal and estimating the off diagonal elements based on the historical correlation between
their errors in forecasting the mean. As intimated above, in fact it is sensible that the
diagonal elements of Σt also should be estimated based on the historical accuracy of ex-
perts’ estimates of yt, namely their errors sit, rather than their reported variances vit.

18In theory, v∗t can be negative; although all the elements of vt are strictly positive the weights can be
negative; see (12). This case is slightly pathological, however. It would require some experts to report
quite odd variance forecasts, vit. In any case, we can interpret v∗t as a quasi-ML estimator.
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Otherwise expert i’s forecast may receive a large weight in the combined forecast just
because expert i (perhaps incorrectly) reports a low variance vit, irrespective of how well
their estimates mit of yt may have performed historically.

However, not just should Σt be estimated solely based on the errors sit but these errors
should be weighted according to the volatility at the time, σ2

t . The point forecasting errors
of a given expert, sit, need to be weighted to reflect the fact that a small error at a time
of considerable uncertainty (large σ2

t ) is quite different from a small error at a time of
relative certainty (small σ2

t ). It is appropriate not to weight only when it is assumed,
implicitly in Section 2.1, that {sit} is constant. In practice we may not wish to impose
such an assumption; we might expect experts’ errors sit to depend on the volatility of yt -
e.g. currently experts may well be making historically small errors in forecasting inflation
in the U.K., but we might expect this to be explained in part, at least, by the fact that
inflation in the U.K. is currently stable compared with its historical behaviour and can
be thought of as in some type of low volatility “regime”.

We require {st}, scaled by v∗t , to be ergodic in second moments so that:

1

Q

Q∑
t=1

1√
v∗t

sts
′
t

p→ E(sts
′
t) = Σt, (26)

where Σt = Σ for all t. In contrast Section 2.1 implicitly assumed that {st} itself was
ergodic in second moments; this is inconsistent with the view that experts’ forecasting
errors about the mean depend on the volatility of the process they are trying to forecast.

Use of the estimator 1
Q

Q∑
t=1

sts
′
t will deliver biased estimates unless σ2

t = σ2.

4 The combined density forecast: indirect and direct

methods

As well as wishing to aggregate the N experts’ predictions of the mean and variance
separately, the decision maker may want an aggregated forecast of the density itself. It is
important to distinguish two alternative processes by which the decision maker might seek
to derive this combined forecast of the ‘whole’ density: an indirect and a direct process.
The process chosen can affect the shape of the combined density.

The indirect approach derives the combined density by firstly combining the experts’
moments. Following the discussion above, assume the decision maker has N experts’ un-
biased estimates of the (unknown) population’s mean and variance. The decision maker
then obtains optimal combined estimates of the mean and variance following Section 3.
The decision maker can then translate these estimates into a combined density once she
has made an assumption about the nature of the population density. For example, sup-
pose the decision maker believes the population density to be normal. Then the combined
density is N(m∗

t , v
∗
t ).

19 It should be noted that the normality assumption for the pop-

19Similarly Hendry & Clements (2004) in their Monte-Carlo experiments consider a combined density

11



ulation density is not completely ad hoc. First, as ML estimates, both m∗
t and v∗t are

asymptotically normally distributed. Secondly, since we have assumed that all experts’
forecasts have the same expectation of the mean and variance, if all experts’ forecast den-
sities are themselves normal then the combined density will be normal too. It is only when
the individual forecast densities have different means and/or variances that the combined
density will be mixture normal. Also if the individual densities are not normal then the
combined density will not be normal.

The second approach directly combines the experts’ densities. We have already seen
one simple method of doing this, the linear opinion pool; see (1). Here we suggest an
alternative, consistent with the Bayesian paradigm introduced above. We define the
combined density forecast as the posterior distribution of the variable we are seeking to
forecast conditional on the information supplied by the experts. This information is again
assumed to be summarised by the moments announced by the experts. We continue to
assume, without loss of generality, that the decision maker only has information on the
forecast means and variances announced by the experts.20 In contrast to the indirect
approach, the decision maker no longer needs to take a view regarding the shape of the
population distribution. As we see below, the direct approach can deliver a combined
density that dramatically departs from normality. It follows that the direct approach is
inappropriate if the decision maker knows the population distribution is normal since,
in contrast to using the indirect approach, the combined density will not in general be
normal. Let us consider this second approach in more detail.

forecast that is normal with mean equal to m∗
t and variance estimated from the historical (in their case

in-sample) mean errors, defined as (yt − m∗
t ). This approach to measuring the variance, as discussed

below in the context of NIESR forecasts, runs into problems at times of change; the past error variance is
then a poor indicator of future error variances. However, there may be an attraction to assuming a known
distributional form for the combined density. Consider the case where the time-series {yt} is generated
according to yt = w1x1t+(1−w1)x2t, where {x1t} and {x2t} are othogonal normally distributed processes.
Then if we consider two misspecified forecasting models, the first of which considers only x1t and the
second only x2t, then the combined density based on directly combining the two misspecified density
forecasts, say using (1), will not be normal despite the fact that {yt} is. As discussed, this remains so
even when the two misspecified density forecasts are normal, assuming the two forecasts are not identical,
unless w1 = 0 or 1.

20However, the analysis can be straightforwardly extended to higher moments. In so doing we can
condition on the information provided when one expert, like the Bank of England when forecasting
inflation for example, views the density as two-piece normal. We might view the two-piece normal
assumption of the Bank as relevant information which we wish to condition on when deriving the combined
density forecast. We can condition on this by noting that the two-piece normal distribution requires us
to consider higher moments than the first and second. This can be done by introducing a third moment,
skewness. See Appendix A.
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4.1 Directly combining experts’ density forecasts: a Bayesian
approach

The form of the combined density follows directly from Bayes’ Theorem, see (6), with
time subscripts now added:21

h(yt|mt,vt) ∝ h(mt|yt).h(vt|mt,yt).h(yt), (27)

where h(vt|mt,yt) is such that vt is allowed to depend on mt and yt; this is consistent,
for example, with the view, often supported empirically, that there is a relationship be-
tween the level and variability of inflation; see Demetriades (1989). Since we retain the
assumption that h(yt) is uniform, it follows that:

h(yt|mt,vt) ∝ h(mt|yt).h(vt|mt,yt). (28)

Since we know the form of h(mt|yt) and h(vt|mt,yt) then:

h(yt|mt,vt) ∝ exp

[
−1

2
(mt−yte)′Σ−1

t (mt−yte)− 1

2
ut
′Ω−1

t ut

]
or (29)

h(yt|mt,vt) ∝ exp

[
−1

2
(mt−yte)′Σ−1

t (mt−yte)−
1
2
(vt − (yte−mt)

2)
′
Ω−1

t (vt − (yte−mt)
2)

]
(30)

where above we saw that σ2
te = E(yte−mt)

2.22

The individual densities are combined in (29) according to the reliability of their first
two moments. Note that the assumption that the moments of the individual densities
offer unbiased estimates of the population moments is maintained.23

Inspection of (29) reveals that the mean and variance of the combined density, derived
by differentiation of (29) with respect to yt, no longer equal m∗

t and v∗t . While the product
of two normal (scalar) random variables with zero means and different variances has a
known distributional form, being based on the delta and modified Bessel functions, in our
multivariate case we simply illustrate the properties of (29) via some simple numerical
simulations. These are instructive in demonstrating that the combined density using the
direct method can take on various shapes.

In our experiments attention is restricted to two density forecasts; denote the reported
means provided by the two experts m1 and m2, and their reported variances v1 and v2.

21Appendix A notes how the decision maker could condition on higher moments announced by the
experts to derive the posterior distribution of y conditional on not just the first two moments announced
by the experts but also, say, reported skewness.

22Note that the reciprocal of the normalising constant in (29) is
∫

h(mt|yt)h(vt|mt, yt)dy =∫
exp

[
− 1

2 (mt−yte)′Σ−1
t (mt−yte)− 1

2ut
′Ω−1

t ut

]
dy.

23While we feel that in practice this is a reasonable assumption, see Section 2.1, it is useful to consider
combination of two sample based estimates of the population density that may not be unbiased. We
distinguish between the following cases: (i) when both are biased and (ii) when one is unbiased and one
is biased. In case (i) density combination may help. In case (ii) combination will deliver worse results.

13



0 2 4

0.2

0.4

sigma11=1; sigma22=1; omega11=1; omega22=1 sigma11=1; sigma22=1; omega11=10; omega22=10 sigma11=0.1; sigma22=0.1; omega11=1; omega22=1

m1=3; m2=3
v1=3; v2=1

m1=3; m2=1
v1=3; v2=3

m1=3; m2=1
v1=3; v2=4

m1=3; m2=1
v1=3; v2=1
sigma11=1; sigma22=1; 
omega11=1; omega22=1

m1=3; m2=1
v1=3; v2=1
sigma11=10; sigma22=0.1; 
omega11=10; omega22=0.1

m1=3; m2=1
v1=3; v2=1
sigma11=1; sigma22=0.1; 
omega11=1; omega22=0.1

S1

S2

S3

0 2 4

0.25

0.50

0 2 4

0.5

1.0

1.5

0 2 4

0.25

0.50

0 2 4

0.25

0.50

0.75

0 2 4

0.5

1.0

0 2 4

0.5

1.0

0 2 4

0.5

1.0

1.5

0 2 4

0.5

1.0

Figure 1: Exploring the form of the combined density forecast

We carry out three sets of illustrations. The first set considers the situation where both
experts report the same mean and variance but the weight the decision maker places on
the two experts’ opinions varies. The second set examines when the experts disagree on
the mean and variance and the decision maker places equal weight on their advice. The
third set examines when the experts disagree on the mean and variance and the weight
the decision maker places on the two expert varies too. The results are summarised in
three panels (S1, S2 and S3) in Figure 1.

In S1 we explore the effect Σt and Ωt have on the shape of the combined density
when the two forecasters agree on both the mean and the variance; m1 = m2 = 3; v1 =
v2 = 1. Σt and Ωt are assumed diagonal; three sets of values for the elements on their
main diagonals (denoted sigma11, sigma22, omega11 and omega22) are considered to
reflect when the decision maker trusts their mean and variance forecasts equally and
when they trust their mean predictions more than their variance predictions. Figure
1 shows that the combined density is, as we might expect, unimodal centered on the
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mean only when the unreliability associated with their mean forecasts is small compared
with that associated with their variance forecasts. When the decision maker weights the
means and variances similarly the combined density is bimodal. These shapes contrast
the shape of the combined density that the indirect method would deliver; the indirect
method forces a compromise; the combined density may then place a lot of weight in a
region that neither of the experts thought likely.

In S2 we consider the situation where the decision maker trusts the experts’ announce-
ments equally; it is assumed Σt = Ωt = I2. Note this implies that the experts’ forecasts of
the mean and variance are unreliable (imperfect); they do not have zero variances. We see
that the combined density, (29), takes on various shapes depending on {m1, m2, v1, v2}.
Let us summarise three aspects of the figures in S2 : (i) when the experts report the
same mean the combined density is symmetric, although bimodal in the case considered;
(ii) when the reported means differ but the reported variances are the same the com-
bined density is again symmetric but unimodal, although with far less weight in the tails
than the normal distribution; (iii) when both the reported means and variances differ the
combined density becomes asymmetric.

In S3 we consider the case when the decision maker believes one expert is more reliable
than the other and the experts disagree about the mean and variance. We differentiate
between three cases according to how much more accurate expert 2 is than expert 1. We
see that as the decision maker trusts expert 2 more and more, the combined density moves
increasingly in-line with this expert’s announcements; the combined density becomes in-
creasingly skewed to the left reflecting the lower mean (and variance) reported by expert
2.

5 Evaluation of density forecasts

While there exist well established techniques for the ex post evaluation of point forecasts,
often based around the root mean squared error of the forecast relative to the subsequent
outturn, only recently has the ex post evaluation of density forecasts attracted much
attention. Currently, following Diebold et al. (1998), the most widespread approach is
to evaluate density forecasts statistically using the probability integral transform, itself
a well-established result.24 Diebold et al. (1998) popularised the idea of evaluating a
sample of density forecasts based on the idea that a density forecast can be considered
“optimal” if the model for the density is correctly specified. One can then evaluate
forecasts without the need to specify a loss function. This is attractive as it is often hard
to define an appropriate general (economic) loss function. Alternatively, we could focus
on a particular region of the density, such as the probability of inflation being in its target
range; see Clements (2004).

24This methodology seeks to obtain the most “accurate” density forecast, in a statistical sense. It can
be contrasted with economic approaches to evaluating forecasts that evaluate forecasts in terms of their
implied economic value, which derives from postulating a specific (economic) loss function; see Granger
& Pesaran (2000) and Clements (2004). Other work has evaluated density forecasts using scoring rules;
e.g. see Giacomini (2002).
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A sequence of estimated density forecasts, {pt(yt)}T
t=1, for the realisations of the process

{yt}T
t=1, coincides with the true densities {ft(yt)}T

t=1 when the sequence of probability
integral transforms (pit’s), zt, is independently and identically distributed (i.i.d.) with a
uniform distribution, U(0,1), where,

zt =

∫ yt

−∞
pt(u)du; (t = 1, ..., T ). (31)

Density forecasts are optimal and capture all aspects of the distribution of yt only when
the {zt} are both i.i.d. and U(0,1). By taking the inverse normal cumulative density
function (CDF) transformation of {zt} to give, say, {z∗t } the test for uniformity can
be considered equivalent to one for normality on {z∗t }; see Berkowitz (2001). This is
useful as normality tests are widely seen to be more powerful than uniformity tests.
However, testing is complicated by the fact that the impact of dependence on the tests
for uniformity/normality is unknown, as is the impact of non-uniformity/normality on
tests for dependence.

In the empirical application below we abstract from any perceived uncertainties re-
garding the appropriateness of specific tests; in total we consider ten alternative statistical
tests for i.i.d. uniformity/normality. These tests have all been used, or proposed, for eval-
uation of density forecasts; see Appendix B for a review. The tests vary in what they
test, as well as in terms of their properties/assumptions; some of the tests focus on the
distribution, others focus on independence. We do supplement these with consideration of
both a joint and portmanteau test for i.i.d. uniformity, namely the Hong and Thompson
test, respectively. By considering a variety of tests we simply hope to provide robust
evaluation; we look for consensus across the ten tests.

6 Combining the Bank of England and NIESR den-

sity forecasts of U.K. inflation

The application serves not just to illustrate the use of density forecast combination but is
also an area of considerable interest per se. Forecasting inflation is of pivotal importance
for central banks in an era of inflation targeting. We focus on quarterly forecasts of
one-year ahead RPIX inflation (RPI excluding mortgage payments: ONS code CHMK),
the principal monetary policy target over the sample period. The year ahead forecasts
correspond to a five quarter ahead horizon. Strictly the forecasts are conditional on the
assumption that nominal interest rates remain constant throughout the forecast period;
however, following previous analysis, we regard the forecasts as unconditional on the
(plausible) assumption that inflation does not react within a year to changes in interest
rates; see Clements (2004) and Wallis (2004). As discussed by Hendry & Clements (2004),
in any application the reasons for success or failure of combination can be multi-faceted.
Our application is intended to illustrate the use of the proposed methods of combination,
rather than explain why combination may, or may not, help. Moreover, just as there
appears to be an empirical consensus that combination of point (mean) forecasts often

16



works, this application can serve as an early indicator of whether combining density
forecasts will prove as helpful.

6.1 Bank of England density forecasts

We consider the quarterly sequence of one-year ahead inflation forecasts published by the
Bank. These forecasts are published in the Inflation Report in February, May, August
and November, which we correspond to q1, q2, q3 and q4, respectively. The Bank of
England has published density forecasts for RPIX inflation from 1993q1. Up until 1995q4
these took the form of charts showing the central projection, together with an estimate of
uncertainty based on the historical mean absolute error. At this stage the Bank did not
quantify a skew so that the mode, median and mean projections are equal; the density
forecast is (implicitly) assumed normal.25 From 1996q1 the Bank has published the so-
called “fan” chart, that allows for skewness. From 1997q3 these charts have been based
on the deliberations of the MPC.26 The final projection for RPIX inflation, prior to the
new target for inflation announced by the Chancellor in December 2003, was published
in the February 2004 Inflation Report.

The fan chart is based analytically on the two-piece normal distribution; for details see
Wallis (2004). The Bank publishes the parameter values underlying each published fan
chart by supplying via its spreadsheets information on the following five statistics: the
mode (µd), median, mean (E(Y )), uncertainty (σ) and skew. The uncertainty statistic is
a parameter of the two-piece normal distribution; see Wallis (2004), Box A, for details -
following Wallis note that we correct earlier confusion about what the uncertainty measure
published by the Bank represents. The skew statistic is defined as the mean minus the
mode. Given these parameters, following Wallis, we can back-out the standard errors
σ1 and σ2 of the two normal distributions on which the two-piece normal distribution is
based. Then [see also Clements (2004)] we can compute the {z} as follows:

P (Y < y) =


2σ1

σ1+σ2
Φ
(

y−µd

σ1

)
for y < µd(

σ1−σ2

σ1+σ2

)
+ 2σ2

σ1+σ2
Φ
(

y−µd

σ2

)
for y > µd

 , (32)

where Φ is the standard normal CDF. Using actual inflation data up to 2004q2 this gives
us 42 density forecasts in total to compare with the subsequent outturn for RPIX inflation
from 1994q1-2004q2.

25In 1995q1 uncertainty is not recorded; we simply assume the value from the previous Inflation Report.
This seems a reasonable assumption given that uncertainty is being quantified based on historical RMSE
which should not be expected, at least in large-samples, to change much quarter from quarter.

26The density forecasts from 1993q1-1997q2 are available at:
http://www.bankofengland.co.uk/inflationreport/historicalforecastdata.xls. From 1997q3 they are available
at http://www.bankofengland.co.uk/inflationreport/rpixinternet.xls.
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6.2 NIESR density forecasts

We consider the quarterly forecasts of annual RPIX inflation as published in the National
Institute Economic Review.27 Since 1992q3 NIESR has, in a sense implicitly, published
probability forecasts for inflation, in that the Review contained the table “Average Abso-
lute Errors”. This table indicated the historical accuracy of NIESR forecasts by reporting
the mean absolute error.28 Since 1996q1 NIESR has explicitly published probability fore-
casts for inflation. These have taken the form of (tabular) histograms, indicating the
probability of inflation falling within a band, although these bands have changed pe-
riodically. These probability forecasts are centered on the point forecast published in
the Review. This point forecast is produced by NiGEM, a large-scale macroeconometric
model, subject as is usual in models of this type to the judgement of the forecasters. In
deriving the density forecasts, normality is assumed. This is because earlier work that
analysed the historical errors (from 1984-1995) made in forecasting RPI inflation could
not reject normality; nor indeed could they reject unbiasedness (in fact rationality); see
Poulizac et al. (1996). The variance of the density forecast is then set equal to the variance
of the historical forecast error.29 Given the backward looking and mechanistic nature to
this method of determining the variance, it is important, as we see in Section 6.3, what
historical sample period is chosen to estimate the variance.

The Review focuses on forecasting inflation in the fourth quarter of the current year
and the fourth quarter of the next year; therefore only the q4 publication offers a one-year
head forecast.30 While we can extract from back-issues of the Review one-year ahead point
forecasts for the other quarters, published uncertainty estimates are only available for q4.
Therefore, we have to make an assumption in order to infer uncertainty estimates for
the other quarters.31 For further analysis of NIESR density forecasts see Hall & Mitchell

27The Review is currently published in January, April, July and October. Prior to 1996 the publication
timetable was slighly different. In any case we refer to the four publications of the Review each year as
q1, q2, q3 and q4. Given our interest in one-year ahead forecasts it does not seem unreasonable to ignore
these changes to the publication timetable since the information set is little different and there is still
one year’s worth of shocks.

28The mean absolute error (or deviation about zero) is defined as md =
∫
|y| f(y)dy. For the

standard normal distribution where f(y) = 1√
2π

exp−
1
2 y2

, then md =
∫ ∞

−∞
|y| 1√

2π
exp−

1
2 y2

dy =√
2
π

∫ ∞

0

y exp−
1
2 y2

dy =
√

2
π = 0.79788. Accordingly, assuming normality, a 58% confidence interval

around the point forecasts corresponds to the point estimate ±md.
29Past forecast errors are commonly used as a practical way of forecasting future errors; e.g. see Wallis

(1989), pp. 55-56.
30Consistent with NIESR’s emphasis on inflation forecasts for Q4, H.M. Treasury in its regular com-

parison of independent forecasts focuses on Q4 when considering inflation; e.g. see Treasury (2004)
31In contrast, previous work evaluating NIESR density forecasts, notably Wallis (2004), has analysed

only the q4 forecasts. Naturally this leads to a very small available sample. However the following caveat
should be made when evaluating, as in this paper, NIESR density forecasts for all four quarters. Since
NIESR has only (explicitly at least) published density forecasts of inflation for the fourth quarter it is
in this sense unfair to evaluate NIESR on its performance for quarters q1-q3. Nevertheless, we feel that
the measures of uncertainty used to calibrate the density forecasts in q1-q3 follow closely the spirit of
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(2004a).
Here we simply assume the density forecast is normal with standard deviation equal

across the four quarters in a year. This assumption is sensible if we believe NIESR only
re-calibrated their forecast variances once a year. More specifically, from 2000q4 we use
the standard deviation explicitly published in q4 of the previous year. From 1996q1,
following Wallis (2004), the implied values for the standard deviation are backed out of
the published histogram. From 1993q1-1995q4 the standard deviation is set at 2. This
seems reasonable for the following reasons: (i) this was the value in 1996q1; (ii) analysis
of the historical forecasting errors for forecasts made in q1, q2, q3 and q4 suggests a
standard deviation around two, except for forecasts made in q2; (iii) the mean absolute
error for RPI (not RPIX) presented in “Average Absolute Errors” was unchanged in these
three years suggesting that NIESR viewed uncertainty to have remained constant.

Table 1 summarises the properties of the Bank of England and NIESR density fore-
casts, while Figures 2-4 provide a visual impression. Interestingly, these figures clearly
show that for much of the sample-period NIESR placed far more weight in the tails of
their density forecast than the Bank of England.

6.3 Combination: In-sample and Recursive Out-of-Sample Re-
sults

We compare the performance of Bank of England, NIESR and combined density forecasts
both in-sample and using recursive out-of-sample experiments, designed to mimic ‘real-
time’ application of the proposed density forecast combination techniques. In-sample
we estimate Σt and Ωt using all of the 42 observations; these are then used to construct
combined density forecasts using both the indirect and direct methods. The out-of-sample
analysis is designed to simulate whether in practice, in real-time, the decision maker
could have pooled the Bank of England and NIESR density forecasts to obtain ‘better’
forecasts. Accordingly, we split the sample period in two. From 1997q3 recursively, quarter
by quarter, we re-estimate Σt and Ωt using data available up to period (t − 5). This
acknowledges the fact that one has to wait five quarters to evaluate the performance
of a given (year-ahead) forecast. These recursively updated estimates for Σt and Ωt

are then used to produce a series of combined density forecasts from 1997q4 to 2004q2.
These combined forecasts are computed used information available in real-time to the
decision maker. Note that our out-of-sample period corresponds to the period post Bank
of England operational independence. Following Clements (2004) we also consider a
benchmark density forecast. It is assumed Gaussian with mean equal to actual inflation
five quarters previously and variance equal to that estimated from the available sample
for actual inflation.

Table 2 summarises the results of the forecast competition. For interest, as well
as the density forecast evaluation results we report two summary statistics widely used
to evaluate point forecasts, bias and RMSE. Statistical tests (not reported) reject the

NIESR’s approach.
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significance of the bias component, using a robust estimator of its standard error.
Let us consider the in-sample results first, although of course the Bank of England

and NIESR results can also be seen as out-of-sample. The Bank of England density
forecasts only fail the tests for independence. They pass the distributional tests.32 Of
course, we should expect serial correlation in {zt} since the forecast horizon is longer
than the periodicity of the data; we expect MA(4) auto-correlation. Accordingly we also
test for dependence in {zt} having split them into four groups corresponding to those
forecasts made in q1, q2, q3 and q4. Under the assumption that the density forecasts are
adequate, each of the four groups should exhibit independence. As suggested by Diebold
et al. (1998), we use a Bonferroni correction to mitigate the effects of an inflated Type
1 error when testing across the four groups. This test supports the MA(4) assumption
and so lends further support to the view that the Bank density forecasts are correctly
specified.33 Interestingly, if we impose normality on the Bank density forecasts, with
mean and variance as before, results are virtually unchanged; the Bank’s assumption of
a two-piece normal distribution since 1996q1, empirically at least, makes little practical
difference.

In contrast NIESR density forecasts fail many of the distributional tests, as well as
the independence test. This distributional failure was expected; see Figures 2-4. NIESR
clearly over-estimated the degree of uncertainty associated with its point forecast for the
period 1994-2002.34 This is explained by their reliance on a mechanical examination of
historical forecast errors too far back into the past. With the advantage of hindsight, we
can see that by considering forecast errors back until 1982, NIESR were basing their un-
certainty forecasts on their track-record across two different inflation ‘regimes’, the recent
regime (post 1992/3) characterised by lower volatility; see Hall & Mitchell (2004a) for
further discussion. This serves as a timely reminder to forecasters that just as with point
forecasts, basing density forecasts on past experience can lead to misleading forecasts.
From 2002 NIESR considered errors from 1993 only and we see in Figure 4 the variance of

32These results are consistent with Clements (2004) who evaluates Bank density forecasts of year-ahead
inflation, using a restricted set of statistical tests, over the shorter sample period, 1997q3-2002q1.

33While we focus on evaluation of density forecasts using statistical tests, it should be noted, particularly
given the small-sample size available, that exploratory data analysis based on examination of the plot
against the uniform distribution and the auto-correlation functions [see Figures 8 and 9] does suggest the
Bank (albeit, if our results are reliable, in a statistically insignificant manner) over-estimated the degree
of uncertainty. Figure 8 reveals that the distribution function for the Bank is S-shaped. This indicates
that they placed too much weight in the tails. This is consistent with the findings of Wallis (2004).

34This will not surprise NIESR; they corrected their variance estimates in 2002. In fact, to quote from
NIESR themselves, Poulizac et al. (1996) p. 62, “Both our inflation forecast and the reliability of this
forecast must depend on the seriousness with which the government approaches inflation targetting. It
is not clear that past experience is a good guide to this... and, in turn, [this] probably implies that the
error variances... overstate the current uncertainty associated with the inflation rate”. NIESR, see Blake
(1996), have considered how stochastic simulation can be used as an alternative to historical errors to
measure the uncertainty associated with the inflation rate. It is explained that this is expected to deliver
a better measure of uncertainty if a new policy regime (say a new target for inflation) has been adopted.
Using a coherent policy structure with interest rate setting determined by a monetary policy rule, Blake
found that stochastic simulation suggested a smaller inflation standard error.
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the density drop. We note that the Bank of England and NIESR mean (variance) forecast
errors have a correlation coefficient of 0.73 (-0.33).

The benchmark density forecast passes all of the distributional tests, that do not also
test independence in some manner, aside from the AD test. Like the Bank of England and
NIESR forecasts the benchmark density does exhibit dependence due to the over-lapping
nature of the forecasts.

But does combination help? Consider the indirect combination method first (column
Ind) in Table 2. Combining the Bank of England and NIESR density forecasts using this
method does not appear to deliver improved forecasts. While better than NIESR forecasts,
the combined forecasts appear worse than those of the Bank of England.35 Indeed, exami-
nation of the weights attributed to the Bank of England we see that the NIESR forecasts,
using this method, offer little information compared to those of the Bank. The Bank
has a weight of 0.9321 on the mean, and 0.8455 on the variance. Interestingly, using the
indirect method to combine the Bank of England and benchmark densities does appear
to help, with the majority of the tests suggesting an improvement in forecast accuracy.

However, and encouragingly, the direct method to combination suggests there are
clear gains associated with combining Bank of England and NIESR density forecasts; see
column Dir in Table 2. Not just do the distributional tests suggest improvement (in all
cases the test statistic is lower, or the p-value is higher, relative to the individual density
forecasts), but despite the over-lapping nature of the forecasts there is no longer evidence
for serial correlation.

These results extend out-of-sample. The statistical tests suggest that the direct
method of combination delivers more accurate density forecasts than use of Bank of
England or NIESR forecasts alone. These improvements involve elimination of depen-
dence. Combining competing density forecasts therefore appears to be a promising line
of research. We note that using the indirect combination method to pool the Bank and
NIESR forecasts there is little fluctuation in the weights attached to their mean and vari-
ance announcements across the recursive samples; the Bank has a minimum weight on
the mean (variance) of 0.8353 (0.8132) and a maximum of 1.032 (0.8392).

7 Conclusion

This paper suggests techniques for the combination of density forecasts that have a
Bayesian motivation. An application to U.K. inflation suggests that pooling informa-
tion across density forecasts can deliver empirical gains. This is consistent with previous
findings about point forecasts. In future work we hope to add further to the tool-kit of
the applied econometrician interested in assessing density forecasts, by suggesting statis-
tical tests that enable one to test statistically for the superiority of one density forecast
over another. We might think of these tests as extensions to the Diebold-Mariano tests
routinely used to compare statistically competing point forecasts. A start has already

35It is worth noting that, as expected, the RMSE is lower using the indirect combination method when
the weights used on the point estimates are not re-computed following Section 3.2.
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been made by Giacomini (2002) who proposes formal tests that can be used to rank al-
ternative density forecasts based on their evaluation using scoring rules. It would also be
interesting to compare methods of density forecast combination with event and quantile
based combination techniques.
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A Combining the reported measures of skewness

This section extends the discussion in Sections 3 and 4 to consider how the decision maker
can use available information from the experts on higher moments than the mean and
variance when combining their density forecasts. In a symmetric distribution the mean,
median and mode coincide; but many experts such as the Bank of England, for example,
view it as important to allow for asymmetries in their forecast densities; see Britton et al.
(1998). The Bank of England does this by supplying information on the mean and mode
of its density forecast. Standardised skewness, sk

i , is then defined for expert i as the scaled
(by uncertainty) difference between the mean and mode:

[
E(y)− µd

]
/σ.

The decision maker when deriving the combined density can then condition on higher
moments announced by the experts (such as standardised skewness sk = (sk

1, ..., s
k
N)) by

straightforwardly augmenting Bayes’ Theorem to deliver the posterior distribution of y
conditional on not just the first two moments announced by the experts, but also reported
skewness: h(y|m,v, sk) ∝ h(m|y).h(v|m,y).h(sk|m,v,y).h(y). To make the indirect and
direct combination methods operational we need to define the likelihood h(sk|m,v,y).
This is is achieved as follows; it is based on the difference between experts’ announced
skewness and actual skewness.

In measuring actual standardised skewness we confront the problem of determining the
mode. However, a convenient measure of standardised skewness can be estimated from
the sample by recalling that for the Pearson class of distributions standardised skewness
may be expressed in terms of the first four moments; e.g. see Kendall & Stuart (1963),
p.85. Specifically actual skewness is proxied for expert i by Sik, where:

Sik =

√
β1i(β2i + 3)

2(5β2i − 6β1i − 9)
, (33)

where

β1i =
µ2

3i

µ3
2i

and β2i =
µ4i

µ2
2i

, (34)

and µri = sr
it = (yt −mit)

r denotes the r-th central moment for expert i.
Then consider the difference between actual skewness and reported skewness:

sk
i − Sik = u2it, (35)

where consistent with the discussion above it is assumed that experts’ forecasts of skew-
ness are unbiased in the long-run so that u2t = (u2,1t, ..., u2,Nt) ∼ N(0,Ξt). Therefore
h(sk|m,v,y) ∝ exp(−1

2
(u′2tΞ

−1
t u2t)).

B Statistical tests for the adequacy of density fore-

casts: testing i.i.d. U(0, 1)/N(0, 1)

This section reviews the approach taken in this paper to test the statistical adequacy of
density forecasts. An eclectic approach to testing i.i.d. uniformity/normality is followed.
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We consider a range of statistical tests that have been used in empirical studies.36 The
tests are used to detect misspecification in the mean, variance, skewness and/or kurtosis
of the forecasts. But the tests differ not just in terms of their motivation, which we do
not discuss here, but with respect to what they test. Some test for misspecification in all
of the first four moments, while others focus on specific moments. Below we summarise
relevant aspects of the tests.37

1. Kolmogorov-Smirnov (KS) test for uniformity of {zt}. The KS test relies on random
sampling. As noted, for example, by Diebold et al. (1999) the effect of dependence
on the distribution of the KS test statistic is unknown.

2. Anderson and Darling (AD) test for uniformity of {zt}. Using Monte-Carlo Noceti
et al. (2003) found the AD test to have more power to detect misspecification than
the KS test (and related distributional tests).

3. Berkovitz’s parametric test of i.i.d. N(0,1); see Berkowitz (2001). We consider the
three degrees of freedom test of zero mean, unit variance and independence against
an AR(1). This test only has power to detect non-normality through the first two
moments.

4. The Jarque-Bera (JB) test for normality of {z∗t }; see Jarque & Bera (1980). JB test
for normality looking at the coefficients of skewness and kurtosis. This test has no
power to detect misspecification in the first two moments.

5. The Doornik-Hansen (DH) test for normality of {z∗t }; see Doornik & Hansen (1994).
DH develop a test for normality, again based on skewness and kurtosis, that seeks to
overcome the perceived problem with JB-type tests that they are unreliable except
for very large T . Based on a transformation, DH propose a small-sample test. The
test is based on random sampling, and has no power to detect misspecification in
the first two moments.

6. The Bai and Ng (BN) ‘robust’ version of the JB test on {z∗t }; see Bai & Ng (2003).
Bai and Ng extend the JB test, designed for i.i.d. data, to weakly dependent data.
Essentially, any serial dependence is taken into account by consistently estimating
the long-run variance (the spectral density at frequency zero) using a HAC estimator
that is robust to serial dependence (and heteroscedasticity).

7. A robust test for mean zero and variance one (DM) of {z∗t }. Along the lines of the
Diebold & Mariano (1995) test, the joint hypothesis of a zero mean and a variance of
unity for {z∗t } is tested by computing p-values for the statistic D using the standard

normal CDF, where D =
(

1
T

∑T

t=1
(z∗t )

2 − 1
)

(σ∗/
√

T )−1 and σ∗ is an estimator

36Alternatively, graphical means of exploratory data analysis are often used to examine the quality of
density forecasts; see Diebold et al. (1998) and Diebold et al. (1999).

37See Mitchell (2004) for further details and a Monte-Carlo based investigation of the size and power
of these tests.
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for the standard deviation of {(z∗t )2} . We use a HAC estimator for this standard
deviation to be robust against serial correlation (and heteroscedasticity). This test
ignores the third and fourth moments.

8. A Ljung-Box (LB) test of independence of {zt}. To test for independence of the {zt}
series we use the Ljung-Box test for auto-correlation; see Harvey (1989), p. 259.
Since dependence may occur in higher moments we consider (zt − z)j for j = 1, 2, 3;
results are denoted LB1, LB2 and LB3, respectively.

9. The Hong joint test for uniformity and independence applied to {zt}; see Hong
(2002). This test is theoretically attractive as it offers a joint test. This means
one can control the size of the test, something that cannot easily be done using
separate tests for uniformity/normality and independence. Hong’s joint test for
i.i.d. U(0,1) is based on generalised spectral analysis. We estimate the spectrum
nonparametrically using the Bartlett kernel and, following Hong, use a data-driven
approach to determine the bandwidth. This requires us to choose a preliminary
bandwidth. Hong proposes two test statistics, M0 and M1. Hong recommends
M1 in small samples; accordingly we consider this. Hong also proposes a test for
independence robust to non-uniformity.

10. A portmanteau test of uniformity and independence of {zt} based on summing al-
ternative test statistics; see Thompson (2002). This test has been used by Clements
(2004) to evaluate the Bank of England density forecasts of U.K. inflation. Thomp-
son proposes the test statistic QT for uniformity and independence which is based
on summing, assuming equal weights, the Cramer-von-Mises test for uniformity and
tests for uncorrelatedness of {zt} and

{
(zt − z)2} [see Durlauf (1991) and Fong &

Ouliaris (1999)] based on the cumulative periodogram:

QT =

∫ 1

0

F̂ 2(s)ds +

∫ 1

0

P̂ 2
z (s)ds +

∫ 1

0

P̂z2

2
(s)ds, (36)

where

∫ 1

0

F̂ 2(s)ds is the Cramer-von-Mises, or integrated-squared, distance be-

tween F̂ (s) and zero measuring the goodness-of-fit relative to the uniform CDF38,

P̂z(s) =
√

2
π

∑T−1

j=1
T 1/2ρ̂z(j)

sin jπs
j

, where s ∈ [0, 1] and ρ̂z(j) is the j-th sample au-

tocorrelation of {zt} (j = 1, 2, 3...), where P̂z(s) is the basis for the spectral based
test for the martingale hypothesis for zt considered by Durlauf (1991) and Fong &

Ouliaris (1999), and P̂z2(s) is analogous to P̂z(s) but based on {z2t} = {2 |zt − 0.5|};
this is analogous to in the time-domain testing for correlation in

{
(zt − z)2}. Finite

sample critical values for QT , and its components, are derived by examining the
quantiles of the test statistics based on simulation of uniform random variables with
T = 42.

38One could consider the KS or AD test, but Thompson finds it easier to work with the Cramer-von-
Mises test.
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Aside from the Hong test, all of the above tests have been used by time-series analysts
when evaluating density forecasts ex post. Selected examination of the empirical literature,
with a bias towards macroeconomic applications, suggests that the KS/AD, DH and LB
tests are most commonly used.
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Table 1: Bank of England and NIESR Density Forecasts of Inflation:
Summary Properties

BANK NIESR
mode mean s.d. outturn z mean s.d. outturn z

199301 3.4 3.4 1.8 2.675 0.3436 4.785 2 2.675 0.1458
199302 3.5 3.5 1.5 2.413 0.2343 4.942 2 2.413 0.103
199303 3.3 3.3 1.5 2.195 0.2308 4.497 2 2.195 0.125
199304 3.4 3.4 1.5 2.26 0.2236 4.202 2 2.26 0.1657
199401 3.4 3.4 0.9 2.746 0.2339 4.117 2 2.746 0.2466
199402 3.4 3.4 1 2.703 0.2428 3.204 2 2.703 0.401
199403 3.2 3.2 0.9 2.911 0.3739 3.707 2 2.911 0.3453
199404 2.4 2.4 0.9 2.901 0.711 2.79 2 2.901 0.5221
199501 2.7 2.7 0.9 2.879 0.5787 3.361 2 2.879 0.4046
199502 3.8 3.8 1 2.834 0.167 2.636 2 2.834 0.5394
199503 3.4 3.4 0.9 2.896 0.2876 2.547 2 2.896 0.5691
199504 3 3 0.9 3.221 0.5972 3.025 2 3.221 0.5391
199601 2.3 2.1 0.929 2.865 0.7924 3.023 2 2.865 0.4685
199602 2.2 2.3 0.9075 2.559 0.6199 2.404 2 2.559 0.5309
199603 2.4 2.6 0.929 2.814 0.6063 2.56 2 2.814 0.5506
199604 2.4 2.4 0.9 2.796 0.67 2.627 2 2.796 0.5336
199701 2.3 2.4 0.9075 2.591 0.5915 1.817 2 2.591 0.6506
199702 2.2 2.4 0.8324 2.943 0.7491 2.103 2 2.943 0.6628
199703 1.99 2.2 0.7877 2.546 0.6829 2.103 2 2.546 0.5877
199704 2.19 2.72 0.7503 2.53 0.4543 2.394 2 2.53 0.5272
199801 2.44 2.53 0.5009 2.525 0.5114 2.308 2 2.525 0.5433
199802 2.37 2.15 0.6592 2.3 0.5626 2.504 2 2.3 0.4593
199803 2.86 3 0.6213 2.173 0.08376 2.5 2 2.173 0.435
199804 2.59 2.72 0.6379 2.159 0.1904 2.47 1.8 2.159 0.4314
199901 2.52 2.58 0.6239 2.094 0.2193 2.372 1.8 2.094 0.4385
199902 2.23 2.34 0.6035 2.066 0.3354 2.24 1.8 2.066 0.4614
199903 1.88 2.03 0.5858 2.126 0.5844 2.78 1.8 2.126 0.3582
199904 1.84 1.79 0.5531 2.114 0.7171 2.324 1.67 2.114 0.45
200001 2.32 2.42 0.5718 1.87 0.1669 2.406 1.67 1.87 0.374
200002 2.47 2.52 0.5531 2.262 0.3253 2.107 1.67 2.262 0.5369
200003 2.48 2.48 0.54 2.38 0.4262 2.371 1.67 2.38 0.5022
200004 2.19 2.24 0.563 1.952 0.3086 2.016 1.67 1.952 0.4847
200101 2.09 2.04 0.5531 2.368 0.7201 1.662 1.67 2.368 0.6638
200102 1.94 1.89 0.5531 1.863 0.4727 2.168 1.67 1.863 0.4274
200103 1.96 1.96 0.55 1.976 0.5113 2.322 1.67 1.976 0.4179
200104 2.06 2.26 0.595 2.61 0.7325 1.795 1.67 2.61 0.6873
200201 2.13 2.33 0.5857 2.892 0.8298 2.15 1.67 2.892 0.6716
200202 2.05 2.05 0.52 2.914 0.9518 2.029 1.67 2.914 0.702
200203 2.31 2.31 0.51 2.849 0.8547 2.103 1.67 2.849 0.6725
200204 2.41 2.41 0.48 2.6 0.6541 2.351 0.71 2.6 0.6373
200301 2.7 2.7 0.56 2.305 0.2401 2.254 0.71 2.305 0.5286
200302 2.35 2.45 0.5229 2.165 0.3024 2.629 0.71 2.165 0.2567

27



Table 2: Evaluation of the Bank of England, NIESR and combined density forecasts using
both the indirect (Ind) and direct (Dir) methods: In-sample and out-of-sample results

In-sample: 93q1-03q2 Recursive Out-of-Sample: 97q3-03q2
Bank NIESR Bench Ind Ind2 Dir Bank NIESR Bench Ind Dir

Bias -0.104 -0.187 -0.067 -0.110 -0.086 -0.048 -0.020 0.053 -0.036 -0.011 -0.051
RMSE 0.5312 0.8384 0.4833 0.5389 0.4581 0.6386 0.4044 0.4543 0.458 0.4105 0.4744
KS 0.156 0.298 0.184 0.223 0.128 0.101 0.143 0.317 0.237 0.224 0.171
KS:cv 0.205 0.205 0.205 0.205 0.205 0.205 0.269 0.269 0.269 0.269 0.269
AD 1.723 5.374 2.545 3.670 0.887 0.344 0.675 4.181 1.760 2.122 0.999
DH 0.702 0.008 0.888 0.345 0.387 0.750 0.752 0.986 0.241 0.782 0.460
BN 0.316 0.508 0.603 0.175 0.494 0.830 0.653 0.861 0.327 0.491 0.619
Ber 0.000 0.000 0.000 0.000 0.000 0.302 0.007 0.000 0.002 0.000 0.022
JB 0.663 0.019 0.807 0.411 0.463 0.880 0.825 0.871 0.381 0.677 0.795
DM 0.002 0.000 0.072 0.000 0.202 0.246 0.056 0.000 0.195 0.000 0.009
mean -0.057 -0.093 -0.190 -0.070 -0.087 -0.005 -0.009 0.028 -0.103 -0.017 -0.032
sd 0.661 0.440 1.377 0.488 0.837 0.887 0.721 0.305 1.325 0.484 0.683
QT 2.115 5.903 2.310 2.790 2.305 0.670 1.281 1.435 1.514 1.510 0.888
cvm 0.236 0.982 0.269 0.566 0.144 0.043 0.089 0.768 0.269 0.329 0.145
cvm1 1.467 2.601 1.712 1.628 1.302 0.367 0.677 0.450 0.924 0.636 0.424
cvm2 0.412 2.320 0.328 0.596 0.859 0.261 0.516 0.218 0.321 0.545 0.320
H: M1 0.002 0.005 0.011 0.004 0.005 0.000 0.001 0.002 0.010 0.001 0.001
H: iid 7.414 16.290 9.318 8.526 6.569 1.311 2.997 1.634 4.580 2.729 1.329
LB1 0.003 0.000 0.000 0.001 0.004 0.203 0.061 0.205 0.011 0.074 0.144
LB2 0.058 0.000 0.047 0.095 0.002 0.447 0.054 0.372 0.020 0.174 0.652
LB3 0.005 0.000 0.000 0.002 0.000 0.086 0.062 0.502 0.008 0.049 0.404
Bonf x x x x x x x x x x x

Notes: Ind2 are the Bank and benchmark indirect combination; bias and RMSE summarise the
performance of the point (mean) forecast; KS is the Kolmogorov-Smirnov statistic; KS:cv is the
associated 95% critical value; AD is the Anderson-Darling statistic which has an associated 95%
critical value of 2.502; DH is the p-value of the Doornik-Hansen test for normality; BN is the
p-value of the Bai-Ng robust test for normality; Ber is the p-value of the Berkovitz test for iid
normality; JB is the p-value of the Jarque-Bera test for normality; DM is the p-value of the Diebold-
Mariano type test for mean and variance of zero and unity; mean and sd are the sample mean and
standard deviation of {z∗t }; QT is the Portmanteau test statistic of Thompson for uniformity and
independence; cvm, cvm1 and cvm2 are the component test statistics for uniformity, first moment
and second moment independence - the 95%critical values for these 4 statistics computed via
simulation are 0.98, 0.45, 0.47 and 0.47. H: M1 is the Hong joint test statistic for uniformity
and independence with associated 95% critical value of 0.052; H: iid is the Hong test statistic for
independence that is robust to non-uniformity with associated 95% critical value of 1.96. LB1, LB2
and LB3 are the p-values for the Ljung-Box tests for serial correlation in the first, second and third
power; Bonf is denoted x when there is no evidence of serial correlation in the q1, q2, q3 and q4
forecasts as judged using Bonferroni corrected critical values
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Figure 2: Bank of England (solid) and NIESR (dotted) density forecasts of inflation:
subsequent outturn for inflation is marked with a vertical line
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Figure 3: Bank of England (solid) and NIESR (dotted) density forecasts of inflation
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Figure 4: Bank of England (solid) and NIESR (dotted) density forecasts of inflation
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Figure 5: Indirect (solid) and direct (dotted) combined Bank of England and NIESR
density forecasts of inflation
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Figure 6: Indirect (solid) and direct (dotted) combined Bank of England and NIESR
density forecasts of inflation
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Figure 7: Indirect (solid) and direct (dotted) combined Bank of England and NIESR
density forecasts of inflation
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Figure 8: Cumulative Distribution Functions of {zt) and uniform distribution for the
out-of-sample period
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