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Abstract

The paper presents a new method of random number generation for tempered stable distribution.
This method is easy to implement, faster than other available approaches when tempering is
moderate and more accurate than the benchmark. All the results are given as parametric
formulas that may be directly used by practitioners.
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1 Definition and motivation

This paper addresses the problem of generating random numbers from tempered stable (henceforth
TS) distribution. A convenient parametric way to define it is the following.

Definition 1 (Tempered stable distribution) Random variable X has tempered stable distri-
bution TSα(β, δ, µ, θ) if its characteristic function takes the form ΦX(u) = eψX(u)+i(µ−µX)u where

ψX(u) =

{
− 1

2 cos πα
2
δα[(1 + β)(θ − iu)α + (1− β)(θ + iu)α − 2θα] α 6= 1,

1
π δ[(1 + β)(θ − iu) log (θ − iu) + (1− β)(θ + iu) log (θ + iu)− 2θ log θ] α = 1,

(1)

and where the centring term is µX = α(cos πα2 )−1βδαθα−1 for α 6= 1 and µX = − 2
πβδ(log θ+ 1) for

α = 1. The admissible parameter values are α ∈ (0, 2), β ∈ [−1, 1], δ, θ > 0, µ ∈ R.

The formulation above is derived as probably most applicable special case of general definition
introduced by Rosiński (2007). Tempered stable distributions constitute a family of possibly skewed,
leptokurtic densities with all moments finite. As macroeconomic distributions frequently display
moderate skewness and excess kurtosis, TS distribution might be remarkably useful in modelling
macroeconomic uncertainty via Monte Carlo simulation. This paper provides easy to implement
randomization method that enables such experiments. While tempered stable distributions utilized
in finance are endowed with more parameters, in case of macroeconomic data there is no clear
evidence that the reactions of economic agents to upsurges and downturns of indexes are asymmetric.
Hence more parsimonious parametrization should be sufficient.

TS distributions evolved from the concept of α–stable distributions, which arise from Central
Limit Theorem as limit densities for i.i.d. jumps with heavy power–law tails. Basic properties
of α–stable distributions may be found in Samorodnitsky and Taqqu (2000). The idea behind
TS density is to alter α–stable distribution so that resulting density had lighter tails. In order to
obtain the desired effect, spectral α–stable measure (expressed in polar coordinates) is multiplied by
a weighting function which dampens probabilities of generating numbers with large modulus. This
approach is known as tempering. The densities obtained this way may retain desirable properties
of α–stable distributions, display better fit to the actual data and have higher order moments
finite. Chakrabarty and Meerschaert (2011) demonstrate that any random walk with power–law
jumps may be approximated with tempered stable densities. Hence these distributions provide
a universal model of accumulated jump. The density considered here arises when spectral measure
of univariate α–stable distribution is weighted with exponent function e−θ|x|. Therefore TS is also
known as exponentially tempered stable distribution.

Tempered stable distribution inherits parameters α, β and δ of the α–stable distribution being
tempered. The tempering does not affect their qualitative properties: α ∈ (0, 2) stands for departure
from normality (if α = 2 the underlying α–stable distribution is Gaussian), β ∈ [−1, 1] governs
skewness (if β = 0 then both α–stable and TS distribution are symmetric), δ > 0 displays scale–like
behaviour. Additional parameter θ > 0 measures how far the resulting distribution is from the
underlying α–stable density. While θ ≈ 0 indicates it is almost exactly α–stable, θ � 0 signals a
significant departure from the underlying distribution. Parameter µ ∈ R stands for location.

TS distributions constitute densities of Smoothly Truncated Lévy Flights (STLF) stochastic
process introduced by Koponen (1995). Boyarchenko and Levendorskii (2000) extended this initial
concept proposing Koponen–Boyarchenko–Levendorskii (KoBoL) process. Finally, Rosiński (2007)
defined a general family of tempered stable Lévy processes. The class of infinitely divisible dis-
tributions that corresponds to his approach is closed under convolution, self–decomposable, has
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natural extension to higher dimensions, may display skewness, arbitrary gravity of tails and have
all moments finite (CLT may apply).

TS distribution is somehow similar to the well established Carr–Geman–Madan–Yor (CGMY)
distribution introduced in Carr et. al (2002). While both distributions are special cases of Classical
Tempered Stable (CTS) distribution that represents the increments of KoBoL, CGMY results from
asymmetric tempering of symmetric α–stable measure while TS stems from uniform tempering
of arbitrary α–stable distribution. This difference translates to diverse tail behaviour.

The issue of random number generation for TS distribution has not been solved yet in a satis-
factory way. Methods that are fast and easy to implement are only available for certain parameter
values. Four algorithms – rejection by Brix (1999), generalized Kanter method by Devroye (2009),
Laplace transform inversion by Ridout (2009) and approximate exponential rejection by Baeumer
and Merschaert (2010) – were dedicated to generating random draws from exponentially tempered
stable distributions. However, the first is valid only for α < 1, the latter requires that β = 1 while
the remaining two are applicable if both conditions hold. In the general case only generic methods
– shot–noise representation of Cohen and Rosiński (2007), compound Poisson approximation algo-
rithms proposed in Kawai and Masuda (2011) or rejection–squeeze technique by Devroye (1981)
– remain viable. As it is reasonable to expect the first two approaches would be either imprecise
or slow, rejection–squeeze algorithm remains the only promising option. No results for any of these
methods have been reported for α ≥ 1 and |β| 6= 1.

Intuition suggests that TS distributions particularly relevant in modelling macroeconomic data
display moderate departure from Gaussian and mild skewness, which translates to α ≥ 1 and
|β| 6= 1. However, as Palmer et al. (2008) and Kawai and Masuda (2011) in their numerical
experiment consider only β = 1 (the former also assumes α < 1), there is no literature treating this
case. The aim of this text is to bridge this gap.

The problem investigated in the remaining part of this paper is formulation of random number
generator valid for all admissible values of α and β. The proposed algorithm is easy to implement
and much faster than the alternative approach of Devroye (1981) for moderately tempered distri-
butions. The new method relies on mixture representation of TS random variables that is parallel
to decomposition property of α–stable random variates.

This paper is structured as follows. Mixture representation for tempered stable random variables
along with a new randomization algorithm is introduced in section two. Section three compares its
performance with two other viable procedures. The final section concludes.

2 Generating random variates with mixture representation

In the following section it is demonstrated that every TS random variable might be expressed as
weighted average of two independent TS random variates with β = 1. The similar result for α–stable
distributions may be found1 in Samorodnitsky and Taqqu (2010). A random number generation
algorithm is also proposed that relies on this new representation. It is valid for all parameter values
and may be written in just one line of code, provided that generating random numbers for TS
distribution with β, δ = 1 is readily available. Hence it is particularly easy to implement.

Using Definition 1 it is possible to prove the following representation that may be directly
employed to generate random numbers for TS distribution.

Proposition 1 (Mixture representation) Let Y +, Y − be independent, set Y ± ∼ TSα(1, 1, 0, θ±),
set V ± = δ(1± β)1/α 2−1/α, θ± = θV ±, then X = V +Y + − V −Y − + µ ∼ TSα(β, δ, µ, θ).

1See Property 1.2.13. This result is attributed to Zolotarev, but no direct reference has been traced.
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Proof : It is enough to show that log ΦX(u) = log ΦY +(V +u) + log ΦY −(−V −u) + iµu. In case
of α 6= 1 it holds that

log ΦY ±(±V ±u) = − δα

2 cos πα2
(1± β)[(θ ∓ iu)α − θα]± i δα

2 cos πα2
α(1± β)θα−1u,

while α = 1 yields

log ΦY ±(±V ±u) =
1

π
δ[(1± β)(θ ∓ iu) log (θ ∓ iu)− (1± β)θ log θ]± i 1

π
δ(1± β)(log θ + 1)u,

so in both cases log ΦY +(V +u) + log ΦY −(−V −u) = ψX(u)− iµXu. �

This result provides foundation for Algorithm 1. It may be extended to CGMY by altering θ±.
Although a number of different algorithms might be used to generate TS random variates Y ±

endowed with β = 1, solely the procedure proposed by Baeumer and Meerschaert (2010) will be
utilized. Out of all the methods investigated by Kawai and Masuda (2011), this algorithm per-
formed best in terms of accuracy and computation time. Assume Sα(1, 1, 0) stands for α–stable
distribution with unit skewness β and scale δ and naught location µ, defined as in Samorodnitsky
and Taqqu (2000). Equate c to sufficiently low percentile of this distribution. Beaumer and Meer-
schaert algorithm is the following.

Algorithm 0 (Baeumer & Meerschaert, 2010)
Step 0. Determine constant c.
Step 1. Generate U ∼ U(0, 1), V ∼ Sα(1, 1, 0).
Step 2. If U ≤ e−θ(V+c), return Y = V − αθα−1/ cos πα2 , otherwise go to Step 1.
Algorithm 0 returns pseudo–random number Y drawn from TSα(1, 1, 0, θ).

Note that the scope of this algorithm is limited as it is viable only if β = 1.
If α ≥ 1 constant c in Algorithm 0 depicts truncation threshold of α–stable distribution sup-

ported on the entire real line. Hence the resulting procedure is approximate. As demonstrated in
Brix (1999), for α < 1 and c = 0 this rejection becomes exact. Random draws from Sα(1, 1, 0) may
be generated with rdnsta procedure2 by McCulloch, based on Chambers et al. (1976).

The following procedure stems directly from Proposition 1.

Algorithm 1 (Mixture representation)
Step 0. Set V ± = δ(1± β)1/α 2−1/α, θ± = θV ±.
Step 1. Generate independent Y + ∼ TSα(1, 1, 0, θ+), Y − ∼ TSα(1, 1, 0, θ−).
Step 2. Return X = V +Y + − V −Y − + µ.
Algorithm 1 returns pseudo–random number X obtained for TSα(β, δ, µ, θ).

Unlike most available methods, Algorithm 1 is viable for all parameter values, including α ≥ 1 and
|β| 6= 1. Note that its output is endowed with arbitrary values of both β and δ.

3 Comparison with other algorithms

This section contains the description of two additional randomization algorithms valid for TS dis-
tribution with α ≥ 1 and |β| 6= 1. Algorithm 2 is a benchmark where pseudo–random draws are

2Available at: http://www.econ.ohio-state.edu/jhm/programs/RNDSSTA.
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generated by an inverse of piecewise linear cdf approximation obtained via Fast Fourier Transform
(FFT). Algorithm 3 relies on rejection-squeeze technique proposed by Devroye (1981). The results
obtained for the algorithm proposed in previous section are compared with the outcomes of these
two procedures.

Perhaps the easiest way to obtain alternative (benchmark) random draws from TS distribution
is to invert approximated cdf. Let F (x) be the cdf of TSα(β, δ, 0, θ) with essential support [a, b] and
pdf f(x). Assume N is large integer, for k = 0, . . . , N − 1 denote xk = a+ hk with h = (b− a)/N .
The numerical inversion of linearly approximated cdf may be implemented as follows.

Algorithm 2 (Cdf inversion)
Step 0. Evaluate F (x0), . . . , F (xN−1) .
Step 1. Generate U ∼ U(0, 1). Find n such that F (xn) ≤ U < F (xn+1).
Step 2. Return X = xn + h(U − F (xn))(F (xn+1)− F (xn))−1 + µ.
Algorithm 2 returns pseudo–random number X obtained for TSα(β, δ, µ, θ).

In Algorithm 2 cdf is approximated by a piecewise linear function.
To implement Algorithm 2 pointwise values of F (xk) need to be first evaluated. If pdf proxies

are initially obtained by FFT, the sought quantities may be found from F (xk+1) = F (xk) + hf(xk)
under boundary condition F (x0) = 0. In Appendix B the modified version of Mittnik et al. (1999)
FFT algorithm is presented that may be conveniently utilized to obtain the values of f(xk). This
version evaluates pdf over asymmetric interval [a, b] while the original algorithm requires a = −b.

The final algorithm considered relies on the rejection–squeeze technique. Given

d1 =
1

2π

∫
R
|ΦX(u)| du, d2 =

1

2π

∫
R
|Φ(2)
X (u)| du,

it follows from the result obtained by Devroye (1981) that pdf f(x) of TSα(β, δ, 0, θ) fulfils

∀ x ∈ R : f(x) ≤ min {d1, d2/x2}. (2)

This inequality was originally utilized to derive the following rejection–squeeze algorithm.

Algorithm 3 (Devroye, 1981)
Step 0. Evaluate d1 and d2.
Step 1. Generate independent U ∼ U(0, 1), V,W ∼ U(−1, 1).
Set Y =

√
d2/d1 · V/W . If |V | < |W |, then go to Step 3.

Step 2. If U < f(Y )Y 2/d2, then return X = Y + µ. Otherwise, go to Step 1.
Step 3. If U < f(Y )/d1, then return X = Y + µ. Otherwise, go to Step 1.
Algorithm 3 returns pseudo–random number X drawn from TSα(β, δ, θ, µ).

The expected number of times Step 1 is executed to generate one random number is 4
√
d1d2.

In order to run Algorithm 3 some preliminary work is required. First of all, the formula for
second order derivative of ΦX(u) has to be found. Define Cα,δ = αδα(cos πα2 )−1/2, then for α 6= 1
this derivative is

Φ
(2)
X (u) = −Cα,δ(Cα,δ[(1 + β)(θ − iu)α−1 − (1− β)(θ + iu)α−1 − 2βθα−1]2+

+(1− α)[(1 + β)(θ − iu)α−2 + (1− β)(θ + iu)α−2]) · ΦX(u),
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while for α = 1 it holds that

Φ
(2)
X (u) = − δ

π
(
δ

π
[(1 + β) log (θ − iu)− (1− β) log (θ + iu)− 2β log θ]2 + 2

θ + iβu

θ2 + u2
) · ΦX(u).

Secondly, the integrals have to be determined. As analytic results for d1 and d2 seem difficult to
compute, it is probably necessary to approximate both quantities numerically. Finally, the pdf of TS
distribution needs to be evaluated in arbitrary points of its domain. If the pdf is first approximated
in the points equally spaced over its essential support (as in Algorithm 2), this last step may be
done via cubic spline interpolation performed on each subinterval.

Note that in case of α ≥ 1 there are no known formulas for pdf of TS distribution. Furthermore,
it is no longer possible to follow the route of Kawai and Masuda (2011) and elicit the pdf from the
relation, binding densities of TS distribution and α–stable distribution being tempered. The reason
is that for |β| 6= 1 this identity does not hold. Therefore in Algorithm 2 and 3 Fourier inversion
of characteristic functions is utilized. As Devroye (1981) procedure is exact and the underlying pdf
approximation involves (in addition) cubic splines, it is reasonable to conjecture that Algorithm 3
would be more precise than Algorithm 2.

In order to compare the quality of random numbers generated with Algorithm 1 and by the
remaining two approaches the following exercise was undertaken. Each procedure was run with eight
different sets of parameters to obtain 100 samples of 106 pseudo–random numbers. All distributions
were standardised (with µ = 0 and δ implying unit variance) and thus parametrized with just
α, β and θ. Both mean computation time and first five mean sample moments about the origin
were recorded in each case. The results are depicted in Table 1 and might be readily compared with
theoretical values, obtained with the formulas from Appendix A. Figures in brackets denote unbiased
estimates of standard deviation. As computation time does not vary much across replications, the
corresponding estimates of standard deviation were not reported. Emphasized numbers indicate
either the smallest mean execution time (in seconds), or the mean sample moment most similar
to the relevant theoretic value.

In the numerical experiment conducted above the main criterion used to evaluate competing
procedures was precision of mean sample moments. There are two reasons for it. First of all,
in order to compute minimum distance measure, such as Kolmogorov–Smirnov metric3, theoretical
results for cdf are required. As formulas for cdf of TS distribution are not known, it would need to
be approximated numerically. This approach favours randomization methods that rely on the same
approximation. Second of all, sample moments are easier to interpret and allow for more intuitive
assessment of the results thus obtained.

Implementation details were as follows. In all FFT procedures N = 213 was utilized as powers
of 2 are computationally most efficient. In Algorithm 2 constant c was set to the bottom 0.1
percentile of the sample of 106 random draws coming from the relevant α–stable distribution. Results
of all the calculations presented in this work were performed in MATLAB c©7.11.0 (R2010b) on
a PC with Inter R©CoreTMi5 M460 CPU (2.53 GHz, 4.0 GB RAM) under 64–bit Windows R©7 Home
Premium operating system. The code is available upon request.

In the undertaken exercise rejection–squeeze method produced most precise sample moments 23
out of 40 times. Mixture representation delivered most accurate sample moments in 10 cases while
cdf inversion ranked first for 7 different sets of parameters. Therefore for this instance Algorithm 3
is clearly best in terms of quality of pseudo–random numbers generated. Algorithms 1 and 2 seem
to be comparable, although the previous is slightly more precise. Devroye procedure always requires
most computation time. While for θ = 1 cdf inversion is the fastest out of three algorithms, in case

3Extensive review of possible approaches may be found in Basu et al. (2011).
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Mean sample moments Mean time
Parameters Method (1) (2) (3) (4) (5) (sec)

α = 1.8, β = 0.5, θ = 1

Theoretic 0.00000 1.00000 0.10000 3.24000 1.26400 NA

Mixture 0.00080 0.99738 0.10690 3.21406 1.33312 5.261
(0.00100) (0.00154) (0.00431) (0.01465) (0.07686)

Inversion 0.00178 0.99997 0.10486 3.24023 1.28262 1.393
(0.00095) (0.00147) (0.00404) (0.01411) (0.07089)

Devroye -0.00014 0.99987 0.09954 3.23877 1.26140 6.539
(0.00097) (0.00146) (0.00502) (0.01525) (0.08893)

α = 1.8, β = 0.5, θ = 0.3

Theoretic 0.00000 1.00000 0.33333 5.66666 13.11111 NA

Mixture -0.00005 0.99977 0.33287 5.67531 13.28997 1.348
(0.00099) (0.00151) (0.01359) (0.23317) (4.12589)

Inversion 0.00422 1.00020 0.34674 5.67578 13.43504 1.498
(0.00103) (0.00156) (0.01758) (0.22502) (4.19854)

Devroye -0.00009 0.99980 0.33408 5.68166 13.59037 6.679
(0.0.00105) (0.00147) (0.01489) (0.23422) (4.65564)

α = 1.8, β = 0.25, θ = 1

Theoretic 0.00000 1.00000 0.05000 3.24000 0.63200 NA

Mixture 0.00051 0.99825 0.05384 3.22427 0.66312 4.962
(0.00099) (0.00151) (0.00415) (0.01683) (0.07109)

Inversion 0.00178 1.00020 0.05546 3.24285 0.65987 1.379
(0.00103) (0.00156) (0.00399) (0.01637) (0.06877)

Devroye -0.00009 1.00013 0.05073 3.240565 0.64543 6.527
(0.00105) (0.00147) (0.00500) (0.01378) (0.08087)

α = 1.8, β = 0.25, θ = 0.3

Theoretic 0.00000 1.00000 0.16666 5.66666 6.55555 NA

Mixture -0.00006 1.00006 0.16556 5.63382 6.41802 1.35008
(0.00097) (0.00228) (0.01603) (0.23989) (3.68532)

Inversion 0.00434 1.00038 0.17761 5.67187 6.16371 1.4952
(0.00091) (0.00209) (0.01661) (0.22877) (3.87348)

Devroye -0.00001 1.00015 0.16697 5.67940 6.76973 6.63823
(0.00095) (0.00221) (0.01598) (0.23182) (5.66080)

Table 1: Theoretic vs. mean sample moments about the origin for standardised TS distribution.
Emphasized numbers indicate either the smallest (mean) execution time, or the (mean) sample
moment most similar to corresponding theoretic value.
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Mean sample moments Mean time
Parameters Method (1) (2) (3) (4) (5) (sec)

α = 1.3, β = 0.5, θ = 1

Theoretic 0.00000 1.00000 0.3500 4.19000 5.10650 NA

Mixture 0.00033 0.99941 0.35195 4.18689 5.12810 4.030
(0.00114) (0.00171) (0.00712) (0.03108) (0.20955)

Inversion 0.00209 0.99997 0.35597 4.19493 5.15209 1.315
(0.00104) (0.00150) (0.00665) (0.03169) (0.25313)

Devroye -0.00006 0.99993 0.34955 4.18741 5.10322 6.526
(0.00110) (0.00181) (0.00692) (0.03058) (0.21146)

α = 1.3, β = 0.5, θ = 0.3

Theoretic 0.00000 1.00000 1.16666 16.22222 71.16666 NA

Mixture 0.00003 0.99983 1.16422 16.13521 70.29359 1.122
(0.00111) (0.00384) (0.04026) (0.64611) (14.97359)

Inversion 0.00525 0.99990 1.18133 16.23628 70.57834 1.264
(0.00093) (0.004073) (0.03903) (0.70732) (14.28063)

Devroye -0.00011 0.99980 1.16696 16.15821 70.73032 6.622
(0.00102) (0.00378) (0.04682) (0.61055) (14.97679)

α = 1.3, β = 0.25, θ = 1

Theoretic 0.00000 1.00000 0.17500 4.19000 2.55325 NA

Mixture 0.00028 0.99940 0.17587 4.18425 2.55211 3.764
(0.00115) (0.00178) (0.00689) (0.03140) (0.20573)

Inversion 0.00209 1.00026 0.18108 4.19234 2.58993 1.318
(0.00091) (0.00171) (0.00620) (0.02998) (0.20864)

Devroye 0.00003 1.00025 0.17531 4.19667 2.55781 6.471
(0.00095) (0.00199) (0.00676) (0.03453) (0.25243)

α = 1.3, β = 0.25, θ = 0.3

Theoretic 0.00000 1.00000 0.58333 16.22222 35.58333 NA

Mixture -0.00012 0.99986 0.57840 16.19642 35.63813 1.12853
(0.00096) (0.00333) (0.03923) (0.77978) (21.42623)

Inversion 0.00541 0.99947 0.59935 16.12214 34.88052 1.26118
(0.00097) (0.00404) (0.04024) (0.67324) (15.59258)

Devroye 0.00000 0.99991 0.58520 16.287548 36.70306 6.42880
(0.00102) (0.00378) (0.04286) (16.85838) (14.99957)

Table 2: Theoretic vs. mean sample moments about the origin for standardised TS distribution.
Emphasized numbers indicate either the smallest (mean) execution time, or the (mean) sample
moment most similar to corresponding theoretic value.
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of θ = 0.3 it performs marginally worse than the mixture representation in terms of execution speed.
This difference would become more evident for smaller θ, when Beaumer and Meerschaert (2010)
algorithm accepts candidate draws more often. All procedures are less reliable in capturing higher
order moments. In case of Algorithms 2 and 3 the reason is that in order to perform numerical
approximation of pdf its support needs to be constrained. Hence pseudo–random numbers above
(or below) certain values will not be generated. In the case of mixture representation the culprit
is auxiliary Algorithm 0 where the left tail of the distribution is trimmed. Therefore extreme values
are returned less often.

Out of the procedures whose precision was investigated in this section, Algorithm 2 has not been
used yet to generate random numbers from TS distribution. Results for random number generation
from Algorithm 3 in case of TS density with α ≥ 1 and |β| 6= 1 have not been reported in the
literature.

4 Conclusions

The proposed algorithm is valid for α ∈ (0, 2) and β ∈ [−1, 1]. It may be written in just one
line of code given that Beaumer and Meerschaert (2010) procedure is already implemented. It is
more accurate than the benchmark and much faster than the alternative approach of Devroye
(1981) for moderately tempered distributions (sufficiently small θ). Although it is less precise than
the procedure based on rejection–squeeze technique, the quality of random numbers thus obtained
should be fully sufficient for most practical applications. It is also worth noting that the performance
of the approximate cdf inversion is surprisingly good.

A Cumulants and moments

After Stuart and Ord (1994) define cumulants of integer order p as

κp =
1

ip

( dp
dup

log ΦX(u)
)∣∣∣
u=0

.

The moments of tempered α–stable random variates are all finite, which implies existence of all the
cumulants, but do not take any convenient form. These cumulants are highly tractable.

When α 6= 1 the cumulants may be elicited from Terdik and Woyczyński (2006). For α = 1
their formulas are no longer valid and the cumulants need to be found directly. Combining both
sets of results yields

Corollary 1 (Cumulants) If random variable X ∼ TSα(β, δ, µ, θ) then its cumulants fulfil

κp =


µ if p = 1,
2δ
π θ

1−p(p− 2)!(Ip + βIp+1) if p 6= 1, α = 1,

α
∏p−1
j=1(j − α)(cos πα2 )−1δαθα−p(Ip + βIp+1) if p 6= 1, α 6= 1,

(3)

where Ip = 2−1(1 + (−1)p).

Proof : To obtain cumulants when α 6= 1 integrate eq. (14) in Terdik and Woyczyński (2006) with
respect to Rosiński measure

R(dx) = Cα(θδ)α[(1 + β)δ(x− 1/θ) + (1− β)δ(x+ 1/θ)] dx,
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where δ(x± 1/θ) stands for Dirac’s delta and constant Cα is equal to

Cα =

{
α(1− α)[2 cos (πα2 )Γ(2− α)]−1 α 6= 1
1
π α = 1.

Definition 1 relies on different parametrization than the one used in Rosiński (2007), it implies that
κ1 = µ while all higher order cumulants remain intact. In case of α = 1 it holds that

d

du
ψX(u) = i

2δ

π

[ +∞∑
j=1

(Ij+1 + βIj)θ
−j(j − 1)!

(iu)j

j!
− β(1 + log θ)

]
,

so κ1 = (µ− µX)− iψ′X(0) = µ and κp = (−i)pψ(p)
X (0) = 2δ

π (Ip + βIp+1)θ
1−p(p− 2)! for p ≥ 2. �

Let SkwX stand for skewness, KurX denote excess kurtosis of random variable X. For α 6= 1
formulas (3.89–3.90) from Stuart and Ord (1994) combined with Corollary 1 imply

EX = µ, VarX = α(1− α)
(

cos
πα

2

)−1
δαθα−2,

SkwX = (2− α)β

√
cos πα2

α(1− α)(δθ)α
, KurX =

(2− α)(3− α) cos πα2
α(1− α)(δθ)α

.

If α = 1 it holds that

EX = µ, VarX =
2δ

πθ
, SkwX =

β√
δθ

√
π

2
, KurX =

π

δθ
.

It is possible to guarantee that the resulting distribution has unit variance by setting appropriate
δ > 0. If the density is standardised, skewness and excess kurtosis are its third and fourth cumulant.

By µ′p and µp denote, respectively, moments about the origin and about the mean. Given the
cumulants, recursion formula from p. 88–91 in Stuart and Ord (1994) yields moments

µ
′
p = κp +

p−1∑
j=1

(
p− 1

j − 1

)
κjµ

′
p−j .

Moments about the origin of order p are polynomials of order p of the first p cumulants

µ
′
1 = κ1, µ

′
2 = κ2 + κ21, µ

′
3 = κ3 + 3κ2κ1 + κ31,

µ
′
4 = κ4 + 4κ3κ1 + 3κ22 + 6κ2κ

2
1 + κ41,

µ
′
5 = κ5 + 5κ4κ1 + 10κ3κ2 + 10κ3κ

2
1 + 15κ22κ1 + 10κ2κ

3
1 + κ51, . . . .

The central moments fulfil the similar set of equations with κ1 = 0.

B Inverse FT on asymmetric domain

Assume set [a, b] is divided it into N disjoint sections of equal length. The aim of the algorithm
presented in this appendix is to evaluate pdf of random variable with known characteristic function
ΦX(u) in the lower bounds of these sections.

10



For k = 0, . . . , N−1 set xk = a+hk with h = (b−a)N−1. For N sufficiently large (h sufficiently
small) constant c = π/h is also large and

f(xk) =
1

2π

∫ +∞

−∞
e−iuxk · ΦX(u) du ≈ 1

2π

∫ c

−c
e−iuxk · ΦX(u) du =

=

∫ N/2(b−a)

−N/2(b−a)
e−2πi·ωxk · ΦX(2πω) dω.

Set ωn = (n−N/2)s for n = 0, . . . , N − 1 with s = (hN)−1 = (b− a)−1 to obtain∫ N/2(b−a)

−N/2(b−a)
e−2πi·ωxk · ΦX(2πω) dω =

∫ Ns/2

−Ns/2
e−2πi·ωxk · ΦX(2πω) dω ≈

≈ s
N−1∑
n=0

ΦX(2πωn) · e−2πi·ωnxk = s

N−1∑
n=0

ΦX

(
2πs(n− N

2
)
)
· e−2πi·(

a
h
+k)(n−N

2
)hs.

As eπi = −1, it follows that

e−2πi·(
a
h
+k)(n−N

2
)hs = (−1)

a
b−aN+k · (−1)−

2a
b−an · e−2πi·k

n
N .

Finally

f(xk) ≈
1

b− a
(−1)

a
b−aN+k

N−1∑
n=0

(−1)−
2a
b−an · ΦX

( 2π

b− a
(n− N

2
)
)
· e−2πi·k

n
N .

The sought result may be computed by evaluation of Inverse Fourier Transformation

N−1∑
n=0

yn · e−2πi·k
n
N , k = 0, 1, . . . , N − 1

via Fast Fourier Transform (FFT) algorithm applied to the sequence

yn = (−1)−
2a
b−an · ΦX

( 2π

b− a
(n− N

2
)
)
, n = 0, 1, . . . , N − 1.

An output of FFT procedure is a vector. In order to obtain it in MATLAB run fft procedure on
(y0, . . . , yN−1). To get valid pdf values multiply the entries thus obtained by 1

b−a(−1)
a
b−aN+k.
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