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Abstract

This paper proposes a nonlinear panel data model which can generate endogenously
both ‘weak’ and ‘strong’ cross-sectional dependence. The model’s distinguishing char-
acteristic is that a given agent’s behaviour is influenced by an aggregation of the views
or actions of those around them. The model allows for considerable flexibility in terms
of the genesis of this herding or clustering type behaviour. At an econometric level, the
model is shown to nest various extant dynamic panel data models. These include panel
AR models, spatial models, which accommodate weak dependence only, and panel mod-
els where cross-sectional averages or factors exogenously generate strong, but not weak,
cross sectional dependence. An important implication is that the appropriate model
for the aggregate series becomes intrinsically nonlinear, due to the clustering behaviour,
and thus requires the disaggregates to be simultaneously considered with the aggregate.
We provide the associated asymptotic theory for estimation and inference. This is sup-
plemented with Monte Carlo studies and two empirical applications which indicate the
utility of our proposed model as both a structural and reduced form vehicle to model
different types of cross-sectional dependence, including evolving clusters.
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1 Introduction

In many theoretical models economic agents learn from each other. Whether in herding

models, where agents are assumed fully rational but have incomplete information sets (e.g.,

Banerjee (1992) and Bikhchandani, Hirshleifer, and Welch (1992)),1 or in adaptive models

where agents learn or form their expectations based on recent experience (see, e.g., Timmer-

mann (1994) and Chevillon, Massmann, and Mavroeidis (2010)), agents are affected by past

outcomes or the views of groups of other agents. Carroll (2003), for example, sets out a model

whereby agents update their views probabilistically by looking at media reports, as opposed

to forming full-information rational expectations. Similarly, ideas from cognitive psychology

might be used to explain the contagion of views which leads to herd or imitating behaviour

(see, e.g., Jegadeesh and Kim (2010)). See Akerlof and Shiller (2009) for a popular textbook

discussion. More generally, it is widely observed that all kinds of economic unit (firms, con-

sumers or countries, say) are influenced by their peers, and other economic units, in a wide

variety of ways. Therefore, the models, econometric or otherwise, used to model the variables

that measure aspects of the behaviour of economic units, need to take into account these

influences.

In this paper, motivated by these considerations, we develop a general econometric mod-

elling framework, that allows cross-sectional dependence, of many forms, among large numbers

of economic variables, in the form of panels, to arise endogenously. In contrast, popular fac-

tor models, that are used for similar modelling purposes, view cross-sectional dependence as

an exogenous feature of the data. The proposal, discussion and econometric analysis of the

proposed class of models, which is shown to nest many extant models as a special case, forms

the main aim of this paper.

The models proposed in this paper are nonlinear panel data models. The distinguishing

characteristic of this class of models is the use of unit-specific aggregates/summaries of past

values of variables relating to other units that are ‘close’ in some sense to a given unit, to

model that unit. The nature of the models is dynamic, in the sense that the past values of

aggregates determine the present. It is instructive at this point to present a generic form for

the model given by

xi,t =
N∑
j=1

wij (x−i,t−1, xi,t−1; γ)xj,t−1 + εi,t, i = 1, ...N, t = 1, ...T, (1)

where x−i,t = (x1,t, x2,t, ..., xi−1,t, xi+1,t, ..., xNt)
′ and

∑N
j=1wij (x−i,t−1, xi,t−1; γ) = 1. This

form of the model is extremely general and simply signifies that xi,t depends, possibly in a

1Information-driven herding can sometimes be classified as “clustering” to differentiate it from herding due
to extraneous incentive structures (e.g., Trueman (1994) and Hirshleifer and Teoh (2003)).
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nonlinear fashion depending on how wij is parameterised, on weighted averages of past values

of xt = (x1,t, ..., xNt)
′, where the weights depend on xt−1. We split xt−1 into x−i,t−1 and

xi,t−1 to emphasise the potentially special role of the own lag of xi,t in the specification. One

particular motivation for the above model is, in a sense, structural and follows from the claim

that it mimics structural interactions between economic units. Another, more econometric,

justification simply notes that this model can accommodate generic forms of cross-sectional

dependence, including evolving clusters.

The model in (1) is extremely general as it encompasses a wide variety of nonlinear speci-

fications. We consider a number of particular nonlinear specifications for the construction of

the unit specific aggregates. We place particular emphasis on specifications where the weights

depend on xt−1 only through distances of the form |xj,t−1 − xi,t−1|. We choose a particular

specification of this type that is easy to analyse, based on a threshold mechanism, to illustrate

the class of models we focus on. This model nests a variety of dynamic panel data models,

such as panel data AR models and panel models where cross-sectional averages are used to

pick up cross-sectional dependence (e.g., see Pesaran (2006)). Interestingly, it is also closely

related to factor models, that have received considerable attention recently following work by

Bai and Ng (2002), Stock and Watson (2002) and Bai (2003).

Our models provide an intuitive means by which many forms of cross-sectional dependence

can arise in a large panel dataset comprised of variables of a ‘similar’ nature that relate to

different agents/units. These variables might be the disaggregates underlying often studied

macroeconomic or financial aggregates, such as economy-wide inflation or the S&P500 index.

In particular, the model allows these different economic units to cluster; and for these clusters

(including their number) to evolve over time. Such clustering, while of independent interest

when interest rests with understanding the behaviour of the individual units or perhaps fore-

casting them, also has implications when modelling and forecasting the aggregate of these

units. In particular, even if concerned only with modelling and forecasting the aggregate,

the nonlinearity means that the appropriate aggregate model should not be specified only

in terms of aggregated variables; the disaggregate or individual units should be considered

simultaneously too.

The degree of cross-sectional dependence can vary, from a case where it is similar to

standard factor models, for which the largest eigenvalue of the variance covariance matrix

of the data tends to infinity at a rate N , to the case of very weak or no factor structure

where this eigenvalue is bounded as N → ∞. Of course, all intermediate cases can arise as

well. In this sense, our work is closely related to the work of Chudik and Pesaran (2010) and

Chudik, Pesaran, and Tosetti (2009). These papers discuss the concepts of weak and strong

cross-sectional dependence based on the characteristics of the variance-covariance matrix of

the data and are dynamic in nature, being instances of large dimensional VAR models. Our
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work can be viewed as a particular instance of a large dimensional VAR, but for the fact that

our model is intrinsically nonlinear in nature.

Our work has precedents in the system engineering literature. However, all the work in that

literature relates to simple deterministic models whose limit behaviour is a fixed point that

represents clustering. A discussion of the asymptotic behaviour of the deterministic version of

our basic model can be found in Blondel, Hendrickx, and Tsitsiklis (2009), following Krause

(1997). Another literature that is closely related to our work is the ‘similarity’ literature as

exemplified by Gilboa, Lieberman, and Schmeidler (2006); and references therein. This work

relates to univariate processes. It suggests that forecasts for yt, at time T , can be based on a

model which places heavier weights on those past observations of yt, for which a given vector of

variables, xt, is close to xT with respect to some metric. In other words, observations yt, t ≤ T ,

for which ||xt−xT || is small, for some metric ||.||, have a larger weight for constructing forecasts

of yT+1 at time T . Gilboa, Lieberman, and Schmeidler (2006) provide powerful theoretical

economic justifications for this approach. Our work can be thought of as an extension of this

analysis to a multi-agent panel framework, where similarity between agents takes the place of

similarity between circumstances.

We provide a comprehensive analysis of the stochastic version of the model; and allow

for both threshold and smooth transition type nonlinearities. Our model constitutes, to the

best of our knowledge, the first attempt to introduce endogenous cross-sectional dependence

and correlation into a panel modelling framework. From an econometric point of view, we

establish a number of properties of this new model. First, the basic model (introduced in (2)

below) displays the strong form of cross-sectional dependence common to factor models. But,

surprisingly, the cross-sectional average model, obtained as a special case of the basic model,

exhibits a weaker form of cross-section dependence; this contrasts the apparently similar cross-

sectional average augmentation scheme employed by Pesaran (2006). Interestingly, we can also

extend the basic model so that it resembles spatial AR or MA models, where dependence is

again weak. Secondly, we establish the limiting estimation theory for the model. When the

threshold mechanism is used to select which group of units affect a given unit, we use a

grid search to estimate consistently both slope and threshold parameters; but only the slope

estimator follows the normal distribution asymptotically. The asymptotic distribution of the

threshold parameter is non-standard and complex, as in Chan (1993) and Hansen (1999). To

overcome this complexity, we follow Gonzalo and Wolf (2005) and undertake inference about

the threshold parameter using robust subsampling-based methods. These are proven to be

valid for our proposed panel threshold model. When smooth, rather than threshold, transitions

are considered we establish that both slope and transition parameters asymptotically follow

normal distributions. Finally, and importantly, in the presence of unobserved effects commonly

employed in (dynamic) panel data models, we show that the ‘Nickel’ bias (Nickell (1981)),
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familiar to the traditional within-group estimator of a panel data AR model where T (the

number of time periods) is fixed, does not arise in our model specifications. This obviates the

need for less efficient GMM estimators, which rely on taking first-differences.

Monte Carlo studies confirm that the proposed estimators are reliable, even in samples

with small T . We also provide two empirical applications. The first models a panel dataset of

inflationary expectations from the Survey of Professional Forecasters in the U.S.; and sheds

light on how expectations are formed, as well as casting doubt on the validity of traditional

means of extracting a ‘consensus’ forecast from a panel dataset of individual forecasts. The

second application estimates and then forecasts individual stock returns from the S&P500

aggregate index, at a weekly frequency, finding that the proposed nonlinear model offers

superior fit relative to benchmark linear autoregressive models, which are well known to be

tough to beat when examining stock returns. Both applications, therefore, indicate the utility

of our proposed model as both a structural and reduced form vehicle to model cross sectional

dependence.

The structure of the paper is as follows: Section 2 presents the basic specification of

the model and discusses in detail its theoretical properties. Section 3 presents a number of

extensions and discusses their properties. Section 4 discusses the issue of how to test for the

presence of nonlinearity in the data. Section 5 presents extensive Monte Carlo simulation

evidence. Section 6 provides two empirical illustrations for analysing nonlinearity and cross-

section dependence of stock returns and inflation expectations, which demonstrate the utility

of our proposed models. Section 7 concludes. All proofs are relegated to an Appendix.

2 The Theoretical Model

In the introduction, see (1), we proposed a general model, which can be given a behavioural

interpretation, based on the familiar idea that agents consider the views or behaviour of those

around them and aggregate them in some way in order to decide on their own expectations

or behaviour. This interaction or mimicking may be explicit, in the sense that agents know

what the other agents experienced or expect; or it could be implicit, in the sense that groups

of agents happen to behave similarly, even though they do not interact formally. This might

be because they are subject to the same environment and/or have similar loss functions and

information sets when forming expectations. Alternatively, (1) can and will be motivated as

a mechanism for capturing cross-sectional dependence in a reduced form, econometric sense.

So to formalise more clearly the motivating ideas, we propose a particular dynamic panel

model for a multitude of agents. Let xi,t denote the value of the variable of interest, such as

the agent’s income or the agent’s view of the future value of some macroeconomic variable,

at time t, for agent i. We assume a sample of T observations for each of N agents. Then, we
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specify that

xi,t =
ρ

mi,t

N∑
j=1

I (|xi,t−1 − xj,t−1| ≤ r)xj,t−1 + εi,t, t = 2, ..., T, i = 1, ..., N, (2)

where

mi,t =
N∑
j=1

I (|xi,t−1 − xj,t−1| ≤ r) ,

{εi,t}Tt=1 is an error process whose properties will be further discussed below, I (.) is the

indicator function and −1 < ρ < 1. Verbally, the above model states that xi,t is influenced

by the cross-sectional average of a selection of past xj and in particular that the relevant xj

are those that lie closest to xi,t−1. This formalises the intuitive idea that people are affected

more by those with whom they share common views or behaviour. The model may be equally

viewed as a descriptive model of agents’ behaviour, reflecting the fact that ‘similar’ agents are

affected by ‘similar’ effects, or as a structural model of agents’ views whereby agents use the

past views of other agents, similar to them in some respect, to form their own views. The

interaction term in (2) may then be thought to capture the (cross-sectional) local average or

common component of their views. This idea of commonality has various clear, motivating,

concrete examples in a variety of social science disciplines, such as psychology and politics.

In economics and finance, the herding could be rational (imitative herding: see Devenow and

Welch (1996)) or irrational.

A deterministic form of the above model has been analysed previously in the mathematical

and system engineering literature. In particular, Blondel, Hendrickx, and Tsitsiklis (2009)

have analysed a continuous form of the restricted version of (2) given by

xi,t =
1

mi,t

N∑
j=1

I (|xi,t−1 − xj,t−1| ≤ 1)xj,t−1, t = 2, ..., T, i = 1, ..., N, (3)

where mi,t =
∑N

j=1 I (|xi,t−1 − xj,t−1| ≤ 1). To the best of our knowledge, we are the first both

to introduce a stochastic term to this type of model and to allow for an unknown value of the

threshold parameter.

(2) bears considerable resemblance to threshold autoregressive (TAR) models analysed

in the time-series literature. However, unlike straightforward extensions of TAR models to

a panel setting, whereby individual units/agents would not interact through the nonlinear

specification, the nonlinearity in (2) is inherently cross-sectional in nature; this provides for

the development of a dynamic network effect. In deterministic contexts this has been shown

to generate interesting behaviour, such as clustering.

Before concluding the introduction to the first of the particular instances of the generic

model (1) that we analyse, it is worth addressing a point of statistical importance. Both (1)
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and (2) are modelling instances of conditional means of
{
{xi,t}∞i=1

}∞
t=1

. But
{
{xi,t}∞i=1

}∞
t=1

is

a two-dimensional random field. Random fields are multidimensional extensions of stochastic

processes that are indexed by vectors of the form (i, t), rather than scalars. Such fields are

considerably more complex to analyse than simple stochastic processes. While the formal

analysis of random fields has not been considered in panel data analysis, we note that con-

cepts such as the existence and uniqueness of random fields that follow particular conditional

distributions have been the topic of an extensive literature in statistics. For now, it is suffi-

cient to note the work of Durlauf (1992), who discusses in detail issues arising in the analysis

of random fields. Further, by Theorem 1 of Dobruschin (1968), it is obvious that there exist

random fields that follow (1) and therefore all particular instances of (1) analysed in the rest

of the paper. However, proving uniqueness of random fields that satisfy (1) is much more

complicated, as noted in Dobruschin (1968), and is beyond the scope of this paper.

2.1 Clustering

To appreciate more concretely the dynamic behaviour that can be captured by the model,

(2), we report some graphical results. We start by showing the dynamic behaviour of the

deterministic model (i.e., setting εi,t = 0). In particular we set N = 100, T = 20. We set the

initial conditions to xi,0 ∼ N(0, 25) and report the evolution of the system for ρ = 1, r = 0.5

and r = 3, in Figure 1. As we see, the system settles quickly to a steady state with a number

of clusters. The number of clusters declines with the size of the threshold parameter, as one

would intuitively expect. Obviously, for a large value of r, only one cluster will arise.

Of course, the dynamic behaviour of the stochastic model is expected to be quite different.

To explore this, we simulate realisations from the stochastic system. We set N = 100, T = 500,

with the initial conditions set as before. For the remaining parameters, we set r = 0.5,

ρ = 0.999, and εi,t ∼ N(0, 0.1). As we shall discuss below, the model is stationary when

|ρ| < 1. But nonstationarity is of interest, too, and has been explored extensively in the

factor model literature. The most interesting behaviour of the model can be obtained when

ρ is high enough for the model to be quite persistent. We report two sets of realisation from

this model in Figure 2. The first realisation shows emerging cluster structures in the first

100 observations. Then, there are clearly two clusters that persist throughout the rest of the

sample. A number of units are outlying and do not join any cluster for the whole sample.

The second realisation has one dominant cluster. There is a second cluster which starts at

the beginning of the sample and fizzles out by observation 250. At that point a new cluster

emerges and by the end of the sample becomes as dominant as the original major cluster.

Clearly the model (2) can model flexibly all sorts of clustering behaviour. It is tempting to

attempt to characterise the behaviour of the model as a function of the parameters; it is clear
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that for persistent ρ, the interplay of r and the variance of εi,t is crucial. For instance, a small

variance for εi,t relative to r implies that units do not escape clusters easily. Similarly, ceteris

paribus, a larger r leads to fewer clusters and dynamically to faster consolidation towards

clusters. This needs to be tempered with the finding, discussed in detail later, that when the

value of r tends to infinity the model has a smaller degree of cross-sectional dependence. So,

overall, it seems that the model can behave in distinct ways depending sensitively on all its

parameters, including higher moments of εi,t, as we discuss below.

Next, we allow for fat tails in the distribution of εi,t. We set εi,t ∼ t3, and subsequently

normalise εi,t to have variance equal to 0.1. We report a realisation of this model in Figure 3.

Here, it is clear that more clusters arise. There is cluster consolidation but at the same time

cluster bifurcation (see the cluster made up of units with high values that bifurcates around

observation 400 only to re-emerge as a single cluster by the end of the sample). Overall, it is

clear that the new model can generate complex dynamic behaviour across units.

2.2 Special cases

It is interesting to note the nature of restricted versions of the above model, obtained by

taking extreme values of the threshold parameter. By setting r = 0, we obtain a simple panel

autoregressive model of the form

xi,t = ρxi,t−1 + εi,t (4)

On the other hand letting r →∞, we obtain the model

xi,t =
ρ

N

N∑
j=1

xj,t−1 + εi,t (5)

where past cross-sectional averages of opinions inform, in similar fashions, current opinions.

Recently, the use of such cross-sectional averages has been advocated by Pesaran (2006),

Chudik and Pesaran (2010) and Chudik, Pesaran, and Tosetti (2009) as a means of modelling

cross-sectional dependence in the form of unobserved factors. However, unlike these models

where the use of cross-sectional averages is an approximation to the unknown model, in our

case this is a limiting case of a structural nonlinear model.

A graphical comparison of these restricted versions of the nonlinear model is also instruc-

tive. In Figure 4, we report comparable realisations to those in Figure 1; but setting r = 0 in

the upper panel and r = ∞ in the lower panel. These are, of course, just single realisations;

but repeated realisations suggest a very similar picture. While the upper panel depicts inde-

pendent and very persistent series evolving with little regard to other series in the panel, the

lower panel depicts a closely linked set of series behaving similarly. It is interesting to note

that this similarity, reminiscent of factor structures, can be proven to arise only for finite N
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when |ρ| < 1, as we will discuss in more detail below. Neither of these pictures compares in

terms of complexity and flexibility to the realisations of the nonlinear model seen in Figures

2-3. It is clear that neither of these two restricted versions of the model can accommodate

clustering or evolving herding behaviour.

It is important to investigate the statistical properties of our model. A number of results,

stated and proved in the appendix, provide help in this respect. Intuitively, as we show in

Lemma 1, (2) is geometrically ergodic, and therefore asymptotically stationary, if |ρ| < 1.

This allows for the analysis of estimators along traditional lines, as discussed below.

2.3 Cross-sectional dependence and factor models

It is of interest to examine the cross-sectional dependence properties of the model. This is

slightly complicated by the need to define cross-sectional dependence in our context. We

choose to follow an approach which is used in the analysis of factor models. In the factor

literature, the behaviour of the covariance matrix of xt = (x1,t, ..., xN,t)
′ is considered. Factor

models have the property that both the maximum eigenvalue and the row/column sum norm

of the covariance matrix tend to infinity at rate N , as N →∞. In contrast, for other models of

cross-sectional dependence such as, for example, spatial AR or MA models, these quantities

are bounded, implying that they exhibit much lower degrees of cross-sectional dependence

than factor models.2 It is useful to see where our model fits in this nomenclature. Lemma

4 shows that the column sum norm of the variance covariance matrix of xt when xt follows

(2) is O(N). Thus, the model is much more similar to factor models than spatial AR or MA

models. Interestingly, as we will see in the next section that discusses extensions to the basic

model (2), there are versions of (2) that resemble spatial models, more than factor models.

Another interesting finding is that (5) implies a variance covariance matrix for xt with a

column sum norm that is O(1). This is surprising, given the similarity that cross-sectional

average schemes have with factor models as detailed in Pesaran (2006). However, this result

and the analysis of Pesaran (2006) are not directly comparable. Pesaran (2006) assumes the

prior existence of factors and uses cross-sectional averages to approximate them. These pre-

existing exogenous factors generate high cross-sectional dependence and herding. In our case

no exogenous factors exist and the cross-sectional average is a primitive term that exists in

the structure of the model. Our surprising result is proven in Lemma 3.3

2A useful discussion of the various concepts of cross-sectional dependence can be found in Chudik and
Pesaran (2010)

3Further interesting interactions arise if we let ρ = 1. This unit root behaviour counteracts the tendency of
the cross-sectional average to disappear asymptotically as N →∞. The behaviour of both the variances and
the covariances of xt, depends on the limit of T

N , as both N and T →∞. For example, as long as T
N remains

bounded, so do the variances of xt, despite the unit root structure of the model. We feel that a detailed
investigation of this issue is beyond the scope of the present paper.
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Given the above, it is of interest to examine the analogy with factor models in more

detail. We do this by simulating data using (2) and the parametrisation used to construct

the realisations in Figure 2. Using the simulated dataset we then extract factor estimates

using principal components. We extract 8 principal components and subsequently examine

the proportion of the variance of the dataset explained by these principal components. Our

previous pictorial analysis suggests that factor like behaviour emerges in the form of clusters of

series moving together. The first column of Table 1 presents the average cumulative proportion

of the dataset variance explained by successive principal components, over 100 replications.

As we can see there is behaviour reminiscent of factor analysis. The first factor explains about

40% of the total dataset variance, rising to about 77% when all 8 factors are considered.

For comparability, we also consider simulations from the same model but setting r = ∞.

Results are reported in the second column of Table 1. As we see, while the first factor explains

roughly the same proportion of the variance in the two parametrisations, the rest of the factors

explain little further. This is reasonable. In this case there is only one cluster arising around

the cross-sectional mean. As we noted above, there is a crucial difference between (2) and (5).

This relates to the fact that while the column sum norm of xt for (2) is O(N), it is O(1) for

(5). This result is asymptotic with respect to N and as noted in footnote 3, the distinction can

be difficult to discern for values of ρ close to 1. As a result, we consider a further simulation

along the same lines but setting higher values for N (N = 100, 200, 400, 800, 1000 and 1500)

and a lower value for ρ (ρ = 0.8). Results on the average cumulative proportion of the dataset

variance explained by successive principal components, over 100 replications, are reported in

Tables 2 and 3. It is clear that data from (2) are more cross-sectionally dependent than data

from (5). More pertinently, while it is clear that as N increases principal components can

explain a decreasing proportion of the data variance for (5), the proportion remains constant

for (2).

It is important to restate here differences between our model and a factor model. When

a dataset has pronounced cross-sectional dependence exhibited by, say, exploding eigenvalues

or the column sum norm associated with its covariance matrix, then a factor model should

offer some fit, irrespective of the structural form giving rise to this cross-sectional dependence.

Principal components, in particular, nonparametrically construct linear combinations of the

variables that capture (strong) cross-sectional dependence, whatever its genesis. But when

the data generating process resembles our structural model, such that clusters emerge endoge-

nously and their number varies over time, a large number of factors may be required; and the

number needed may also have to change over time. Factor models are intrinsically reduced

form; they focus on modelling cross-sectional dependence using an exogenously given number

of unobserved factors. Since our model nests (5), it is not surprising that it can approxi-

mate a factor model when r → ∞; cf. Pesaran (2006). On the other hand, our model has a
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clear parametric structure, such that the slope parameters can be given a structural/economic

interpretation; this is a feature shared by some classes of dynamic spatial model; see, e.g.,

Korniotis (2010). But our models are more general than spatial models, in the sense that the

weighting schemes are estimated endogenously, rather than assumed ex ante. Furthermore, it

is worth noting that the factor model cannot accommodate the weak cross-sectional depen-

dence seen in spatial models, in contrast to the extensions of our nonlinear model described

in Section 3 below. These extensions demonstrate that the nonlinear model can, in general,

be seen to lie between the two extremes characterised by weakly cross-sectionally dependent

spatial models and strongly cross-sectionally dependent factor models.

2.4 Estimation

In this section we explore estimation of the nonlinear model in (2). We consider the standard

estimation procedure for a threshold model, whereby a grid of values for r is constructed. Then

for all values on that grid the model is estimated by least squares to obtain estimates of the au-

toregressive parameter, ρ. More specifically, denoting x̃i,t = 1
mi,t

∑N
j=1 I (|xi,t−1 − xj,t−1| ≤ r)xj,t−1,

x̃i = (x̃i,1, ..., x̃i,T−1)′, x̃ = (x̃′1, ..., x̃
′
N)′, xi = (xi,2, ..., xT )′ and x = (x′1, ..., x

′
N)′, x is regressed

on x̃ using OLS to give an estimate for ρ, for a given value of r in the grid. The value of r

that minimises the sum of squared residuals, 1
NT

∑N
i=1

∑T
t=1 ε̂

2
i,t(ρ, r), where

ε̂i,t(ρ, r) = xi,t −
ρ

mi,t

N∑
j=1

I (|xi,t−1 − xj,t−1| ≤ r)xj,t−1

is the estimator of r. We denote the least squares estimator of (ρ, r) by (ρ̂, r̂). We make the

following assumption about the error term, εi,t.

Assumption 1 εi,t is i.i.d. across t and independent across i. E(ε2i,t) = σ2
εi

. E(ε4i,t) < ∞.

For all i, the density of εi,t is bounded and positive over all compact subsets of R.

Then, we have the following theorems:

Theorem 1 Let Assumption 1 hold for εi,t in (2). Then, as long as |ρ| < 1, the least squares

estimator of (ρ, r) is consistent as N, T →∞.

Theorem 2 Let Assumption 1 hold for εi,t in (2). Let (ρ0, r0) denote the true value of (ρ, r).

Then, as long as |ρ| < 1, NT (r̂ − r0) = Op(1). Further, as long as |ρ| < 1, (NT )1/2(ρ̂ − ρ0)

has the same asymptotic distribution as if r0 was known.

These theorems are intuitive, as they accord with the work and theoretical analysis of

Chan (1993) who was the first to analyse, theoretically, the estimator for the univariate
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threshold autoregressive model. There exist a number of possible theoretical extensions of

this estimation problem. One obvious one relates to the fact that the asymptotic distribution

of NT (r̂ − r0) is non-normal and depends on unknown parameters, as discussed in Chan

(1993). The work of Hansen (2000) is of great use here, since by assuming that the model

asymptotically is linear, a tractable distributional theory can be obtained for r̂. We feel that

it is perhaps more appropriate to allow for the nonlinearity to persist asymptotically and,

therefore, we do not pursue further this interesting avenue of research.

2.5 Unbalanced panels

The model, (1) can be adjusted to allow for unbalanced panels. In this case (2) takes the form

xi,t = ρx̃upi,t + εi,t, t = 2, ..., T, i = 1, ..., Nt, (6)

as long as both xi,t and x̃upi,t are observable, where Nt is the number of observable pairs,(
xi,t, x̃

up
i,t

)
, at time t. The definition of x̃upi,t depends on the application at hand. An obvious

definition is

x̃upi,t =
ρ

mi,t

Nt−1∑
j=1

I (|xi,t−1 − xj,t−1| ≤ r)xj,t−1 (7)

where mi,t =
∑Nt−1

j=1 I (|xi,t−1 − xj,t−1| ≤ r) and (xi,t, xi,t−1) is observable.

Alternative specifications can be used to increase the number of available observations.

For example, if xi,t−1 is not observed, the latest available observation for the i-th unit prior

to time t could be used. More specifically, letting si,t denote the latest time period, prior to

t, in which x is observable for unit i, we can define x̃upi,t as either

x̃upi,t =
ρ

mi,t

Nt−1∑
j=1

I
(∣∣xi,si,t

− xj,t−1

∣∣ ≤ r
)
xj,t−1 (8)

where mi,t =
∑Nt−1

j=1 I
(∣∣xi,si,t

− xj,t−1

∣∣ ≤ r
)

or

x̃upi,t =
ρ

mi,t

Nsi,t∑
j=1

I
(∣∣xi,si,t

− xj,si,t

∣∣ ≤ r
)
xj,si,t

(9)

where mi,t =
∑Nsi,t

j=1 I
(∣∣xi,si,t

− xj,si,t

∣∣ ≤ r
)
, respectively. The specifications in (8) and (9)

allow for a larger set of available observations to be used than in (7). Estimation of this

model can then be carried out similarly to the case where the number of cross-sectional units

is fixed over time. In this case, the effective number of observations is equal to the number of

observable pairs of
(
xi,t, x̃

up
i,t

)
over i and t, rather than NT , and the statements of Theorems

1 and 2 need to be amended accordingly.

Model (2) can be extended in a large variety of ways. We explore a number of extensions

in the next section.
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3 Extensions

The model given in (2), while interesting from the perspective of analysing cross-sectional

dependence or studying phenomena, such as herding, in an empirical context is quite restrictive

in a number of senses. This section therefore provides some extensions. Given that our

benchmark model is a panel model it is natural to include constant terms. The basic model

then becomes

xi,t = νi +
ρ

mi,t

N∑
j=1

I (|xi,t−1 − xj,t−1| ≤ r)xj,t−1 + εi,t (10)

where νi ∼ i.i.d.(0, σν). Of course, more general versions of the above model can be accom-

modated, such as

xi,t = νiζt +
ρ

mi,t

N∑
j=1

I (|xi,t−1 − xj,t−1| ≤ r)xj,t−1 + εi,t (11)

for an r × 1 vector of observable variables, ζt.

We now examine the properties of the least squares estimator for (10). As is well known, the

presence of νi induces endogeneity in standard panel AR models, leading to biased estimation

of the autoregressive parameter for finite T , when standard panel least squares estimators,

such as the within group estimator, are used. It is easiest to see the problem for standard

AR models, and its relation to our model, by noting that the endogeneity arises because

unbiasedness, for least squares estimators, requires that

E

(
xi,t−1

(
εi,t −

1

T

T∑
t=1

εi,t

))
= 0 (12)

Obviously, the expectation in (12) is not zero but O
(

1
T

)
. One would expect a similar problem

to arise for (10). However, surprisingly, this is not the case. As is shown in Lemma 9 in the

Appendix

E

((
1

mi,t

N∑
j=1

I (|xi,t−1 − xj,t−1| ≤ r)xj,t−1

)(
εi,t −

1

T

T∑
t=1

εi,t

))
= O

(
1

NT

)
(13)

which implies that Theorems 1 and 2 hold for (10). As a result the standard within group

estimator can be used for (10), thus removing the need for less efficient GMM estimation as

is usually the case.

It is straightforward to allow for higher order, say p, lags in (2), such that

xi,t =

p∑
s=1

[
ρs
mi,t,s

N∑
j=1

I (|xi,t−s − xj,t−s| ≤ r)xj,t−s

]
+ εi,t (14)
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where mi,t,s =
∑N

j=1 I (|xi,t−s − xj,t−s| ≤ r). Alternatively, and more importantly, we can

introduce multiple, say q, ‘regimes’, such that

xi,t =

q∑
s=1

[
ρs
mi,t,s

N∑
j=1

I (rs ≤ |xi,t−1 − xj,t−1| < rs+1)xj,t−s

]
+ εi,t (15)

where mi,t,s =
∑N

j=1 I (rs ≤ |xi,t−1 − xj,t−1| < rs+1). Both (14) and (15) can be estimated

similarly to (2). However, sufficient conditions for their geometric ergodicity are different to

those for (2), and are given in Lemmas 10 and 11, respectively. Suppose that q = 1 in (15),

then we have two regimes:

xi,t = ρ1x̃i,t−1 + ρ2x
c
i,t−1 + εi,t, (16)

where x̃i,t−1 = 1
mi,t

∑N
j=1 I (|xi,t−1 − xj,t−1| ≤ r)xj,t−1, xci,t−1 = 1

N−mi,t

∑N
j=1 I (|xi,t−1 − xj,t−1| > r)xj,t−1

are the cross-section averages associated with the group of neighbours and non-neighbours,

respectively. This model may be more relevant when modelling heterogeneous interactions,

since it is more general than (2), where the restriction, ρ2 = 0, is imposed in (2).

Furthermore, another important issue is how best to modify the basic model to decompose

the slope parameter, ρ, into the own effect and a neighbour effect. One obvious candidate is

to consider the following extension:4

xi,t = ρ0xi,t−1 + ρ1x
∗
i,t−1 + εi,t (17)

where x∗i,t−1 = 1
mi,t−1

∑N
j=1,j 6=i I (|xi,t−1 − xj,t−1| ≤ r)xj,t−1, and more generally

xi,t = ρ0xi,t−1 + ρ1x
∗
i,t−1 + ρ2x

c
i,t−1 + εi,t (18)

Notice that the model, (17), is similar to the time-space recursive model considered in Korni-

otis (2010) for investigating the issue of internal versus external consumption habit formation

xi,t = ρ0xi,t−1 + ρ1

N∑
j=1,j 6=i

wijxj,t−1 + εi,t, (19)

where ρ0 captures the time-series dependence in xit and ρ1 captures time-space autoregressive

dependence. The crucial difference between our model, (17), and the time-space recursive

model, (19), is that the selection mechanism for the distance is endogenous in our model;

whilst the spatial weights, wij, in (19) are given exogenously in essentially an ad hoc manner.

More generally, we can allow the individual weights to be inversely proportional to the

distance, |xi,t−1 − xi,t−1|, in which case we consider the following extension

xi,t =
ρ

mi,t

N∑
j=1

I (dij ≤ r)wijxj,t−1 + εi,t (20)

4Another potentially interesting approach is to modify the approach of Sias (2004) to an analysis of herding;
and find an efficient way to decompose ρ = ρown + ρneighbour.
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where the weights are given by

wij =
d−2
ij∑N

j=1 d
−2
ij

, dij = |xi,t−1 − xj,t−1| with wii = 1. (21)

The estimation of (20) can be conducted practically in two steps. First, the consistent estimate

of r is obtained from (2); then construct the weights using (21) and estimate the model, (20),

by least squares.

Up until now we have considered only threshold mechanisms for constructing the unit-

specific cross-sectional averages. But, as we discussed in the introduction, the class of models

we wish to propose is much more general. In particular, we next envisage models of the form

xi,t = ρ

N∑
j=1

w(|xi,t−1 − xj,t−1| ; γ)xj,t−1∑N
j=1w(|xi,t−1 − xj,t−1| ; γ)

+ εi,t (22)

where w(x; γ) is a positive twice differentiable integrable function such as, e.g., the exponential

function exp(−γx2) or the normal cdf, Φ(x). By now, the properties of this model should be

reasonably clear. Lemma 6 shows that the model is geometrically ergodic if |ρ| < 1 and

similarly to model (2), the column sum norm of the covariance matrix of xt, when xt follows

(22) is O(N), as shown in Lemma 7. The model in its simple form given by (22) can be

estimated by nonlinear least squares; and we have the following Theorem concerning the

asymptotic properties of this estimator.

Theorem 3 Let Assumption 1 hold for εi,t in (22). Then, as long as |ρ| < 1, the nonlinear

least squares estimator of (ρ, γ) is (NT )1/2-consistent and asymptotically normal as N, T →
∞.

Similarly to Lemma 9, it can also be shown that

E

((
N∑
j=1

w(|xi,t−1 − xj,t−1| ; γ)xj,t−1∑N
j=1w(|xi,t−1 − xj,t−1| ; γ)

)(
εi,t −

1

T

T∑
t=1

εi,t

))
= O

(
1

NT

)
(23)

which implies that a ‘within’ estimator is valid for estimating (22), when fixed effects are

incorporated in (22).

Another obvious extension to the set of models we have been developing is to introduce

other variables to the model, either linearly as in

xi,t =
ρ

mi,t

N∑
j=1

I (|xi,t−1 − xj,t−1| ≤ r)xj,t−1 + βzi,t + εi,t (24)

or nonlinearly as in, e.g.,

xi,t =
ρ

mi,t

N∑
j=1

I (|xi,t−1 − xj,t−1| ≤ r)xj,t−1 +
β

mi,t

N∑
j=1

I (|xi,t−1 − xj,t−1| ≤ r) zj,t−1 + εi,t; (25)
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or indeed to introduce other switch variables, giving rise to a model of the form

xi,t =
ρ

mi,t

N∑
j=1

I (|xi,t−1 − xj,t−1| ≤ r1)xj,t−1 +
β

mz,i,t

N∑
j=1

I (|zi,t−1 − zj,t−1| ≤ r2)xj,t−1 + εi,t

(26)

where mz,i,t =
∑N

j=1 I (|zi,t−1 − zj,t−1| ≤ r2). It is also clear from the work of Kapetanios

(2001) that information criteria can be used to choose the switch variables. The theoretical

properties of the models in (24)-(26) should be obvious from the preceding analysis. For

example, geometric ergodicity of (26) holds if |ρ+ β| < 1.

The extension presented in (26) is very important. While it is intuitive that it is likely

that there exists some variable which can be used to order units (denoted by zi,t in (26)), it

is not clear why one would want to set zi,t = xi,t as we did in the first version of the model

we presented in (2). A main reason for doing so, in the first instance, was because then the

model was self-contained and could be analysed along the lines seen in Section 2. But there is

another reason why one may wish to focus on (2), rather than the more general model (26).

To see why, let us provide a simple analogy in terms of an univariate time series model, before

analysing the case at hand. Let

xt = st + ut

where

st = γst−1 + vt

and ut and vt are serially uncorrelated. It is well known that this model has a univariate

ARMA(1, 1) representation. Therefore, it is straightforward to see that a good approximation

for this model can be provided by fitting an AR(1) model to xt. Similarly, let the true model

for xi,t be given by a slight variation of (26) of the form

xi,t = si,t + εi,t (27)

where

si,t =
β

mz,i,t

N∑
j=1

I (|zi,t−1 − zj,t−1| ≤ r2) qj,t−1 (28)

and let

zi,t = γzi,t−1 + vi,t and qi,t = δqi,t−1 + ξi,t

By the fact that the zi,t and qi,t are serially correlated, it follows that the si,t are serially

correlated; since units which cluster together along the z dimension at time t will be more

likely to cluster together along the z dimension at time t+ 1. Therefore, the serial correlation

in qi,t will be transmitted onto si,t. Furthermore, units which cluster along the z dimension

will tend to have more correlated si,t over i. But, of course, this means that units that cluster
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along the z dimension will also cluster along the x dimension, in the same order as across the

z dimension, since they will have si,t that are more correlated across i than units which do

not cluster along the z dimension. The ensuing clustering along the x dimension then implies

that a term of the form ρ
mz,i,t

∑N
j=1 I (|xi,t−1 − xj,t−1| ≤ r2) qj,t−1 will have explanatory power

for xi,t, justifying the use of model (2). So, just as (27) can be approximated by an AR(1),

xi,t =
β

mi,t

N∑
j=1

I (|zi,t−1 − zj,t−1| ≤ r)xj,t−1 + εi,t, (29)

can be approximated by (2), which has an ‘AR’ structure in the distance/trigger variable.

Of course, all the above observations remain valid if we replace qi,t with xi,t, resulting in a

model whose form is closer to our original specification (2). The utility of this approximation

becomes more apparent if one notes the possibility of having cross-sectional averages defined

through intersections of triggering events with more than one trigger variables, such as

xi,t =
β

mz,i,t

N∑
j=1

I
(
∩ps=1

{∣∣∣z(s)
i,t−1 − z

(s)
j,t−1

∣∣∣ ≤ rs

})
xj,t−1 + εi,t (30)

where
(
z

(1)
i,t−1, ..., z

(p)
i,t−1

)′
is a vector of trigger variables and I

(
∩ps=1

{∣∣∣z(s)
i,t−1 − z

(s)
j,t−1

∣∣∣ ≤ rs

})
=

1 if and only if I
(∣∣∣z(s)

i,t−1 − z
(s)
j,t−1

∣∣∣ ≤ rs

)
= 1 for all s. Further, it is also clear that even if

there is structural change, whereby the identity of the trigger variables changes over time, the

model with the ‘AR’ structure in the distance/trigger variable, can still approximate the true

unknown and changing model.

It is reasonable to expect that there are further sources of cross-sectional dependence in the

panel. For example, the endogenously determined cross-sectional dependence exemplified by

model (2) can be coupled with exogenous cross-sectional dependence, such as common shocks

arising in the macroeconomy. Such exogenous cross-sectional dependence can be modelled

by linear factor structures. Further cross-sectional dependence, of the factor variety, can be

introduced by considering the following extension of (2)

xi,t =
ρ

mi,t

N∑
j=1

I (|xi,t−1 − xj,t−1| ≤ r)xj,t−1 + ηi,t (31)

where

ηi,t = λ′ift + εi,t (32)

and ft is an unobserved factor. The estimation of (31) is of particular interest. If the factor

is serially uncorrelated, estimation of this model along the lines suggested for estimation of

(2) is possible. However, if the factor is serially correlated, it is clear that ηi,t and x̃i,t =∑N
j=1 I (|xi,t−1 − xj,t−1| ≤ r)xj,t−1 are correlated. Then, we suggest estimating a parametric
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factor model, whereby the factor is modelled as a VAR process

x̄i,t = xi,t − x̃i,t = λ′ift + εi,t

ft = Aft−1 + vt

The resulting state space model is then estimated by pseudo-MLE using the Kalman filter.

If one entertains (22) as the chosen model, then estimation may be carried out by nonlinear

least squares.

It is interesting to consider the behaviour of this extended model. Therefore, we reconsider

the model underlying the realisations reported in Figure 2, but allow for a factor which is i.i.d.

and distributed as ft ∼ t1. The loadings are given by λi ∼ U(0, 1). We are explicitly aiming

to introduce extreme behaviour through the factor. We consider two values of ρ, given by

0.9 and 0.999. The realisations from these two different values of r are reported in Figure

5. In the first case, there is clearly a single cluster but, as expected, the factor can generate

abrupt shifts in all units. We see this around observation 130; and again around observation

170. Moving onto the very persistent case, yet more interesting behaviour arises. Here it is

clear that big shocks attributed to the factor can lead to the destruction or creation of new

clusters. For example, a shock around observation 260 leads to consolidation of three clusters

into two. Conversely, the shock at observation 325 leads to the emergence of three clusters

from the two which existed before the shock.

While our main focus is on the dynamic characteristics of the model, (2), it is also in-

teresting to simultaneously capture contemporaneous cross-sectional dependence effects that

might be very important in fields such as financial asset pricing, where dynamics may be less

prevalent, at least when modelling the conditional mean. For example, the CAPM specifies

that individual asset excess returns depend contemporaneously on a market excess return in-

dex which can be viewed as an aggregate of individual excess returns. Alternatively, one can

think of opinions (e.g., fund manager opinions) on variables such as asset return prospects,

as being determined contemporaneously by agents considering the opinions of similar agents.

This motivates us to consider the following extension of the basic model, (2):

xi,t =
ρ0

m0,i,t

N∑
j=1,j 6=i

I (|xi,t − xj,t| ≤ r0)xj,t+
ρ1

m1,i,t

N∑
j=1

I (|xi,t−1 − xj,t−1| ≤ r1)xj,t−1+εi,t, (33)

where m0,i,t and m1,i,t are defined in an obvious way. This extended model incorporates a

complex mechanism for the determination of xt since each xi,t depends in a complicated way

on every other xj,t. The complex nature of this extension can be best understood by noting

that simulating (33) involves solving N nonlinear simultaneous equations at each point in time,

where the nonlinearity has discontinuities arising from the threshold nature of the relevant
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functions. This is a non-trivial mathematical problem. A linear simplification may help clarify

further the issue. A simplified linear version of (33) is given by

xi,t =
ρ0

N

N∑
j=1

xj,t +
ρ1

N

N∑
j=1

xj,t−1 + εi,t

In the case where ρ1 = 0, the model decouples temporally and the solution at each point in

time is given by

xt =
(
I − ρ

N
ιι′
)−1

εt

where xt = (x1,t, ..., xN,t)
′, εt = (ε1,t, ..., εN,t)

′ and ι = (1, ..., 1)′. It is worth noting that(
I − ρ

N
ιι′
)−1

does not exist when ρ = 1.

The final extension generalises further the gamut of weighted averages that can inform the

evolution of agent opinion formation or agent actions to a very general class of models which

take the form

xi,t =
ρ

mSi,t

N∑
j=1

I (j ∈ Si,t−1)xj,t + εi,t, (34)

where Si,t−1 denotes a set of unit indices for unit i at time t−1 and mSi,t =
∑N

j=1 I (j ∈ Si,t−1).

This opens up a wide variety of modelling options, such as the existence of a leader unit or

set of units whose behaviour is mimicked by other units. For example, a specific instance of

(34), where

Si,t−1 = St−1 = arg max
j=1,...,N

p∑
s=1

qj,t−s (35)

might be used to model fund managers that follow the best performing manager in the near

past. In this case xi,t would denote the holdings of a given asset by manager i at time t,

while qi,t would denote a performance measure of manager i at time t. Of course, multivariate

extensions to describe the evolution of holdings for multiple assets are obvious. Similarly

Si,t−1 = St−1 = median

(
p∑
s=1

qj,t−s

)
(36)

might be used to proxy the behaviour of fund managers that conforms to forms of bench-

marking. Obviously schemes such as (35) or (36) imply a factor like covariance matrix for

xi,t. Note that specifications such as (35) or (36) are significantly different to schemes that

a priori specify units that are dominant such as, e.g., macroeconometric panel models that

give a leading status to U.S. variables. The present specifications describe a mechanism that

allocates leader status to a given unit or set of units endogenously.

Alternatively, we modify the selection mechanism as follows

xi,t =
ρ

mi,t

N∑
j=1

I
(∣∣xmax

t−1 − xj,t−1

∣∣ ≤ r
)
xj,t−1 + εi,t (37)
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where xmax
t−1 = maxj xj,t−1, such that the distance is measured with respect to the best per-

former rather than unit i. Alternative functional forms, based on the median or mean, might

also be considered.

This extension completes the set of extensions that we think are both interesting and

relevant for the effects we attempt to capture through our basic model (2). In section 5

we report Monte Carlo results to assess the performance of the estimators proposed in this

section.

4 Testing Linearity

In this section, we discuss how to test if the data support the nonlinear representation con-

tained in the proposed models. We start by recalling what parameter values imply linearity

both for the basic model, (2), and the leading case of the smooth version of the model given

by (22), where w(x; γ) = exp(−γx2).

As we noted in section 2, setting r = 0 reduces (2) to the panel autoregression (4), while

setting r =∞ gives the model (5). Both are linear models. We also see that these two linear

models are nested in (22). Setting γ = 0, gives (5); whereas setting γ = ∞, gives (4). As a

result, and unlike standard time series models, there is no unique test of linearity. Which test

one carries out very much depends on the null hypothesis of interest.

The differences with linearity tests for standard nonlinear time series models do not stop

here. A well-known problem with linearity testing in time series relates to the fact that

because there invariably exist underidentified nuisance parameters, the test statistics do not

have standard distributions. For example, when two regime threshold (TAR) models are

considered, the specifications usually include two autoregressive parameters and the threshold.

Linearity is obtained by setting the two autoregressive parameters equal to each other, in which

case the threshold parameter is not identified under the null. Further, in the case of threshold

models, the problem is compounded by the fact that the threshold parameter does not, in any

case, have a standard asymptotic distribution.

A cursory analysis of the panel threshold model suggests that no underidentified parameter

problem arises here. Both linear models nested by the nonlinear models, (2) and (22), have

the same number of parameters as the nonlinear models, apart from the actual parameter

being restricted by the null hypothesis. As a result, testing in the context of the panel model

is considerably easier. In the case of (22) and using Theorem 3, one can use the normal

asymptotic approximation to carry out tests on γ.

Inference in the threshold model is more difficult due to the nonstandard distribution of

r̂. Although we have not established this distribution formally, the results in Chan (1993)

and Hansen (1999) suggest that it should be nonstandard and very difficult to use in practice.

20



Note that for standard time series TAR models the standard bootstrap was shown by Yu

(2009) to be invalid for inference on the threshold parameter; while the parametric bootstrap

was shown to be valid by Yu (2007). Since our model is likely to suffer from a number of

potential misspecification issues, which would invalidate the use of the parametric bootstrap,

we suggest a simulation approach for conducting inference on this parameter; namely the use of

subsampling approach. Gonzalo and Wolf (2005) consider the use of subsampling methods for

inference in time series threshold models. Subsampling, as advanced by Politis and Romano

(1994), is similar in a number of respects to bootstrapping, and is based on resamples of a

smaller dimension than the original sample. Subsampling is more robust, in the sense that

subsampling is valid for the overwhelming majority of cases where the bootstrap is invalid, as

discussed in Politis, Romano, and Wolf (1999).

In our case, the application of subsampling carries added complications, because the sample

grows in two dimensions. Following Politis, Romano, and Wolf (1999) and Kapetanios (2010),

we suggest the following algorithm. Set the temporal and cross-sectional subsample sizes to

bT = T ζ and bN = N ζ , respectively, for some 0 < ζ < 1. Construct initial subsamples by

sampling blocks of data temporally. These are given by {x̃1,bT , x̃2,bT +1, ..., x̃T−bT +1,T} where

x̃t1,t2 = (xt1 , ..., xt2)
′. Then, for each x̃t1,t2 , select bN cross-sectional units randomly to construct

the B-th subsample, xt1,t2 , t1 = 1, .., T − bT + 1, t2 = bT , ..., T , B = 1, .., T − bT + 1. Notice

that the cross-sectional units can be different across subsamples. Although this is of no

importance theoretically, it makes sense to employ information contained in as many cross-

sectional units as possible. ζ is a tuning parameter related to block size. There exists no

theory on its determination, but usual values range between 0.7 and 0.8. Then, r is estimated

for each subsample created. The empirical distribution of the set of estimates, denoted by

r̂∗,(i), i− 1, ...B, can be used for inference with the empirical distribution given by

LbT ,bN (x) =
1

B

B∑
s=1

1
{
bNbT

(
r̂∗,(s) − r̂

)
≤ x

}
. (38)

The following theorem justifies the use of subsampling for the nonlinear panel threshold model.

Theorem 4 Let Assumption 1 hold for εi,t in (2). Then, as long as |ρ| < 1, LbT ,bN (x) is a

consistent estimate of PrP (NT (r̂ − r0) ≤ x) where P denotes the unknown joint probability

distribution of the idiosyncratic errors εi,t.

As a final point it is worth noting some cases where the need for testing arises for reasons

that are specific to the panel nature of the model. One leading case is when one wishes to

use this model to draw inference about aggregate variables. Let x̄t = 1
N

∑N
j=1 xj,t denote the

aggregate. Further, consider the case where the model is of the form (4) but with the presence

of an exogenous factor. This model is given by

xi,t = ρxi,t−1 + ηi,t (39)
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where ηi,t is given by (32). Then, it follows that

x̄t = ρx̄t−1 +
1

N

N∑
j=1

ηi,t = ρx̄t−1 +

(
1

N

N∑
j=1

λ′i

)
ft +

1

N

N∑
j=1

εi,t (40)

Assuming that λi does not have zero mean and that εi,t are zero mean and i.i.d. across i, the

above implies that x̄t follows a linear AR(1) representation whose error tends to ft as N →∞.

Similarly, letting the model be of the form (5), but allowing for factors, gives

xi,t = ρ
1

N

N∑
j=1

xj,t−1 + ηi,t (41)

where again ηi,t is given by (32). Then,

x̄t = ρ
1

N

N∑
j=1

(
1

N

N∑
j=1

xj,t−1

)
+

1

N

N∑
j=1

ηi,t = ρx̄t−1 +

(
1

N

N∑
j=1

λ′i

)
ft +

1

N

N∑
j=1

εi,t

which, under the same assumptions as for (40), again implies that x̄t accepts a linear AR(1)

representation whose error term tends to ft as N →∞. This appears to justify the widespread

use of autoregressive models for aggregate variables. But, if the basic model for xi,t is given

by (2), and there is endogenous rather than exogenous cross-sectional dependence, there is

no justification for a linear AR model for the aggregate variable. Further, and this has more

general and important implications for the modelling of the aggregate variable, if (2) holds

then the aggregate variable cannot be modelled in terms of lags of the aggregate variable

alone. The constituents of the aggregate variable enter the aggregate equation in complicated

ways which imply that the appropriate model for the aggregate variable is based on a model

for the whole panel, even if one only cares about the aggregate variable. Therefore, a test of

linearity is crucial in determining the model which should be used with aggregated variables.

5 Monte Carlo Study

In this section we undertake a detailed Monte Carlo study of the new model and a number of

its extensions. The Monte Carlo study focuses on the small sample properties of the estimators

of the nonlinear model.

5.1 Monte Carlo setup

We consider three different sets of Monte Carlo experiment. The first focuses on the main

model given by (2); the second considers (10); while the third uses (22). Of course, given the

number of extensions considered in the previous section, additional Monte Carlo experiments

could be considered, but we feel that these three give a crucial and informative impression of
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the performance of the estimators. They enable one to have some confidence in the fact that

estimation of the model can be carried out effectively with relatively small samples.

The first set of experiments uses (2), where we set ρ = 0.9, r = 0.5 and σ2
εi

= 0.5;

εi,t ∼ N.I.I.D.(0, σ2
εi

). We let N, T = 5, 10, 20, 50, 100, 200. The grid for determining r

is 0.10, 0.11, 0.12, ..., 1.09, 1.10. The second set of experiments is like the first, but we set

ηi ∼ N.I.I.D.(0, 1) and use within group estimation, which simply involves demeaning both

RHS and LHS variables prior to applying least squares. Finally, the third set of experiments

uses the model given by (22) where w(x, γ) = e−γx
2

and γ = 0.5. The rest of the settings are

as with the first set of experiments. The estimation method used is nonlinear least squares.

We carry out 1000 replications for all experiments. The bias and variance of the estimators

over the Monte Carlo replications (multiplied by 100) are reported in Tables 4-6.

5.2 Monte Carlo results

Results make interesting reading. We start by examining the results for the first set of experi-

ments, reported in Table 4. We look at the estimator for ρ first. The biases for this estimator

are extremely small, at less than 0.01 even for N, T = 5. Given the very small size of the bias

it is not surprising to note that there is not really a clear pattern as the number of observations

increases. The bias does not reduce further as N increases, for small values of T , but it does

reduce as either T increases or N increases, for moderate and large values of T . Overall, for

the largest sample size (N, T = 200), the bias is negligible. The variance of ρ̂ is reduced at

equal rates when either N or T increases, as we should expect from Theorem 2. Moving on to

r̂, we note that the biases are much larger for very small sample sizes, but reduce very rapidly,

again consistent with our expectations given Theorem 2. The most rapid declines occur as

N, T increase from their smallest values. Both biases and variances are reduced with either N

or T increasing. Overall, it is clear that even when N, T = 10 one can be reasonably confident

that reliable estimation of (2) can be carried out.

Next, we consider results for the second set of experiments, reported in Table 5. Here, the

biases related to ρ̂ are considerably larger. The biases are reduced as both N and T rise; but

they are reduced much faster with T . The variances for ρ̂ are again much larger compared

to the first set of experiments, but are reduced quite quickly as the number of observations

increases. Moving on to r̂, we note that unlike ρ̂, the estimation of r is hardly affected by the

presence of individual effects. If anything, the performance of the estimator is better. This

is a surprising result, but as there is little work on the small sample properties of estimators

of nonlinear panel models with individual effects, our prior about the performance of this

estimator was not very strong.

Finally, we consider the third set of experiments; results are reported in Table 6. The
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biases and variances for ρ̂ are comparable but slightly larger than those for the first set of

experiments. However, the absolute performance for this estimator is very good even for very

small samples, such as N, T = 5. Estimation of γ in very small samples is problematic. But,

as long as both N and T equal or exceed 10, estimation improves greatly. The size of the bias

and variance becomes comparable to that seen for r in the first two sets of experiments.

Overall, we conclude that estimators of both the autoregressive coefficient and the pa-

rameters of the nonlinear terms are quite reliable, in terms of bias and variance. The time

dimension does not have to be large for reliable inference, in contrast to when linear time

series models are estimated. This is helpful given that many panel datasets, to which this

model might be applied, have a short time dimension.

6 Empirical Illustrations

In this section, we provide two empirical applications that illustrate the potential utility of

the proposed modelling approach.

6.1 Inflation Expectations

In this section we consider a widely exploited dataset that can be usefully analysed with the

new nonlinear panel model. This is the Survey of Professional Forecasters (SPF) carried out

from 1968 to 1990 by the American Statistical Association and the NBER and, since 1990, by

the Federal Reserve Bank of Philadelphia. We should expect macroeconomic forecasts, such

as those from the SPF, to be correlated among forecasters and estimation of the new nonlinear

panel model is instructive in determining empirically the nature of the cross-sectional depen-

dence. In turn, this is helpful in understanding further the nature of expectation formation.

As Carroll (2003) stressed, there have been few attempts to model actual expectations data.

Moreover, there have been even fewer studies of expectational data at the micro-economic

level. Souleles (2004), who found considerable heterogeneity across individuals, is a notable

exception. Other work, more interested in the forecasting properties of these expectational

data than in testing alternative models of expectation formation, has restricted attention to

modelling any dependence among the agents using factor models (see Gregory, Smith, and

Yetman (2001)). Therefore it does not admit the possibility of alternative ways to model

dependence, such as our nonlinear model, that may offer an insight into the nature of the

dependence. Determining the nature of the dependence among a panel of forecasters also has

a practical importance given that Gregory, Smith, and Yetman (2001) motivate use of the

mean (across forecasters) forecast as a summary statistic, to be used for policymaking etc.,

when there is forecast “consensus”. Forecast consensus is defined as when individual forecasts

are both determined by a latent variable (a factor) subject to an idiosyncratic mean zero error,
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and when each forecaster places the same weight on the common component. But the (linear)

mean forecast is not a valid measure of consensus under the nonlinear model (see, e.g., Manski

(2010)).

In our application we focus on the one-quarter ahead CPI inflation rate forecasts from the

SPF. While our model, as discussed in Section 2.5, can accommodate missing data, given there

is so much in the SPF we conduct our analysis on a subsample of regular SPF respondents.

This is common practice with the SPF and indeed any forecaster panel given that respondents

come and go from the survey, for various reasons, so frequently. We focus on responses for

the period 1990Q1-2010Q1, a total of 81 quarters. Over this period we have records of 18

professional forecasters, giving a total of 1458 potential observations. However, there remain

significant gaps in the dataset which leave a total of 1079 actual observations. We consider the

simple model given by (10), with includes constant terms, in this case. This model generalises

the model of Gregory, Smith, and Yetman (2001).

The current application provides a number of practical challenges. First, we have to deal

with the considerable number of missing observations; we assume that the pattern of missing

observations is random. Secondly, we wish to allow for the joint presence of a nonlinear

herding mechanism of the form we advocate, as well as the possibility of a factor structure

similar to that of Gregory, Smith, and Yetman (2001). To handle missing observations we use

the formulation given in (8).

Noting that the inflation rate data are expressed as annualised quarter-over-quarter per-

centage points, the threshold is estimated to be 0.99 while the estimated autoregressive coef-

ficient is estimated to be 0.5303, with an associated t-statistic of 18.44. If we fit a panel AR

model of the form of (4) with constant terms, we get an AR coefficient of 0.4589; whereas if we

fit a cross-sectional average model, (5), the coefficient becomes 0.6154. The strongest lagged

(inertia) effect is therefore observed in the cross-sectional average model, while the weakest

persistence is found in the panel AR model. This suggests that inflation forecasters react to

the lagged opinion of the group average (as herding behaviour implies) more strongly than to

their own personal opinion in the previous period. This is consistent with the view that indi-

viduals may set their forecasts close to the previous averaged opinion, in the hope that if their

forecasts are wrong then they are not the only forecaster to make a mistake. Interestingly,

the results for the nonlinear panel model lie between these two bounds. Inflation forecasters

prefer to set their current forecast close to the average lagged forecast from an endogenously

selected peer group, with this peer group identified as those forecasters whose lagged forecast

lay within 1% point of their own previous forecast.

Use of this model also has implications when modelling the aggregate forecast. As noted

in Section 4, it is not appropriate to assume a linear model for the aggregate forecast given

these results. This supports the use of nonlinear models for the conditional mean, perhaps in
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conjunction with ARCH structures for the conditional variance. For example, the volatility

associated with the spread of forecasts is often used as an important source of information at

the aggregate level.

Next, we consider an extension in which the model is augmented by an exogenous factor

structure such as (31)-(32). Due to the missing data, we consider a different estimation

approach to that suggested when the factor extension was discussed earlier. An additional

advantage of the estimation method described below is that we do not need to specify a

parametric model for the unobserved factor.

Specifically, we consider an EM type algorithm, whereby we initialise estimation by ob-

taining some factor estimate and using it as an observed variable in a model of the form

xi,t =
ρ

mi,t

N∑
j=1

I (|xi,t−1 − xj,t−1| ≤ r)xj,t−1 + λ′ift + εi,t (42)

which is estimated as if the factor were observed, and then the residuals, given by

ε̂i,t = xi,t −
ρ̂

mi,t

N∑
j=1

I (|xi,t−1 − xj,t−1| ≤ r̂)xj,t−1

are used to extract a new estimate of the factor. The whole approach is iterated to convergence.

The actual factor is estimated, accommodating missing observations, by introducing a second

estimation loop where for a given set of observed residuals and a given pattern of missing

residuals, both the factor and the missing residuals are estimated. This is done by conditioning

on a factor estimate to get estimated missing residuals using the factor and estimated loadings

λ̂′i. Once these estimates are obtained one can estimate a new factor estimate. This two step

estimation is again iterated to convergence.

When this estimation is carried out we find minimal changes in the parameter estimates

for the nonlinear model. The threshold is again estimated to be 0.99, while the estimated

autoregressive coefficient is also again given by 0.5305, with an associated t-statistic of 18.46.

This suggests that a factor structure is redundant in the presence of the nonlinear cross-

sectional average.

One alternative way to see this, that is of independent interest, is to compute both a

measure and test of cross-sectional dependence. We use the following statistic, which is a

slight modification of the sphericity test statistic of Ledoit and Wolf (2002)

cd(x) =
1

N
tr ((C(x)− I) (C(x)− I))

where C(x) denotes the estimated correlation matrix of a given dataset, x. When the SPF

data xi,t are used to compute cd, cd(x) = 14.69, while if the residuals from the nonlinear cross-

sectional average model, without factors, are used the statistic is 1.76. The statistic obtained
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when residuals, from the nonlinear cross-sectional average model with factors, are used, is

1.75. Once again the difference is minimal suggesting that our model is capable of capturing

the cross-sectional dependence of the data quite adequately. As a final check, we consider

the statistic associated with using only a factor model without a nonlinear structure. The

associated statistic is then larger at 3.30, further illustrating the superior fit of the nonlinear

model.

6.2 Stock Returns and Realised Volatilities

Perhaps surprisingly, given that our model is one that models the dynamics of the conditional

mean, for our second application we consider a dataset of stock returns. We motivate this

as follows. Firstly, market returns are important for individual stock returns, albeit con-

temporaneously, in a number of theoretical models. Our model, with its emphasis on forms

of cross-sectional averages, provides a useful vehicle to model them. Second, an autoregres-

sive specification, which is a special case of our model, is used routinely as a benchmark

for modelling, and especially forecasting, stock returns. Thirdly, although a linear dynamic

specification has a poor track record for modelling stock returns, a common finding in the

literature is that nonlinearity has a role to play in this respect (e.g., Guidolin, Hyde, McMil-

lan, and Ono (2009)). This is a common finding when stock return indices are analysed.

Given our discussion at the end of section 4, on aggregating processes that follow our model,

which implies that the aggregate has a nonlinear structure, our model can offer interesting

insights. Finally, as noted in Section 3, a model of the form of (2), which uses the own lag

of the dependent variable to define the dimension along which the cross-sectional averaging

is carried out, can approximate models which have other variables defining distance. So, in

the case of returns, the model we use approximates models that may define distance in terms

of industrial sector, profitability or other characteristics. As noted earlier the approximation

properties of this model are likely to be retained to a certain extent even if the identity of the

variables that regulate the distance undergoes structural change over time. In this sense our

model is a ‘reduced form’ approximation for more structural explanations for cross-sectional

correlations in returns.

We consider constituent stock return data from the S&P500 at a weekly frequency. The

data are from 1993W1 through 2007W52. In our dataset, only 364 companies are present

throughout the period and these are the ones that we analyse.

We first estimate the simple nonlinear model given by (10). We estimate ρ̂ = −0.0995,

r̂ = 0.08. The t-test associated with ρ̂ is -39.37, which is extremely significant given Theorem

2. The panel R2 associated with the model is 0.0058, which is of course extremely low, but

expected, given that we analyse stock returns. The average R2 across the cross-sectional
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equations is 0.0063. Next, we introduce two comparator models: a panel data AR and a

model where the lagged cross-sectional average is used as an explanatory variable, i.e., the

nonlinear model for r =∞. For the panel data AR, ρ̂ = −0.066 with t-test given by 37.08, the

panel R2 = 0.0052 and the average R2 = 0.0053, while for the cross-sectional average model

the respective numbers are: -0.107, -28.40, 0.0033 and 0.0036. The nonlinear model has better

fit, as measured by the R2, than the comparator models. Of course, the nonlinear model has

an extra parameter (the threshold) which needs to be penalised. A multivariate information

criterion is not possible since the dimension of the model is so large that the determinant

of the covariance matrix of the residuals, needed to construct the information criterion, is

found to be numerically indistinguishable from zero. We choose to construct information

criteria for each cross-sectional equation, where the penalty parameter is set to 1/N since the

threshold parameter is shared by all cross-sectional equations. Table 7 reports the proportion

of companies for which each criterion chooses the nonlinear model over the two comparator

models. Again we see that the nonlinear model is preferred over its comparators.

Next, we carry out a variety of tests on the residuals of the models. In particular, for ev-

ery stock return series, we obtain its residuals, from the nonlinear model and the comparator

models, and test them for the following: normality (Jarque-Bera test), residual serial corre-

lation (LM test with 1 and 4 lags), ARCH effects (LM test with 1 and 4 lags) and neglected

dynamic nonlinearity (Teräsvirta, Lin, and Granger (1993) RESET type test with a third

order polynomial approximation and one lag). We report the number of rejections, at the 5%

significance level, in Table 8. It seems that all residuals are non-normal, as one would expect.

There is some limited evidence of further serial correlation. There is significant evidence of

ARCH effects. There is considerable evidence of neglected nonlinearity. It seems that the

cross-sectional model displays considerably more evidence of further serial correlation com-

pared to the other models. The most interesting finding relates to neglected nonlinearity. The

nonlinear model has about 10% fewer cases of rejection than the other models. This supports

the case for the presence of the effect our model is designed to pick up.

Next, we add idiosyncratic AR(1) components to every cross-sectional equation. This

makes the specification more flexible and allows for an own-lag effect whose inclusion has a

compelling rationale given the existing literature. We do not consider the panel AR model

in this case for obvious reasons. In this case, ρ̂ = −0.083 with t-test given by -14.81, the

panel R2 = 0.0098 and the average R2 = 0.0103 while for the cross-sectional average model

the respective numbers are: -0.049, -11.12, 0.0095 and 0.0098. Tables 9 and 10 report the

respective information criteria and test results. These again make clear that the nonlinear

model is preferred. In particular, the favourable evidence from the neglected nonlinearity test

is, if anything, even stronger.

As a further extension we add to the model a set of macroeconomic variables commonly

28



used in the existing literature to model stock returns. Specifically we consider: a set of US

T-bill yields (3-month, 6-month, 1-year, 2-year and 10-year), oil prices (Brent crude), effective

exchange rates, industrial production, unemployment rate and CPI inflation. We consider our

model augmented with these macroeconomic regressors, and the two restricted versions of the

model (the panel AR model and the cross-sectional average model) which, in turn, are both

augmented with the set of macroeconomic variables. Estimation then reveals ρ̂ = −0.1106

and r̂ = 0.06. The t-test associated with ρ̂ is -47.96, which is again very significant given

Theorem 2. The panel R2 associated with the model is 0.02429, which is considerably higher

than previously. The average R2 for the nonlinear model, across cross-sectional equations, is

0.02495. Looking at the two comparator models, for the panel AR ρ̂ = −0.083 with t-test

given by 45.87, the panel R2 = 0.02366 and the average R2 = 0.02385. These results suggest

that in-sample the nonlinear model improves fit by at least 4% compared to the linear panel

AR model. For the cross-sectional average model the respective numbers are: -0.134, -34.39,

0.0207 and 0.021. Clearly, the nonlinear model has better fit as measured by the R2 compared

to this model as well. Finally, we note that, once again, nonlinearity is less prevalent in the

residuals of the nonlinear model, with the nonlinearity test rejecting 138 times, while the

equivalent number for the panel AR is 153 and, for the cross-sectional average model, 148.

We undertake a final and crucial test of the stock return nonlinear model. We carry

out an extensive out-of-sample forecasting exercise. We focus on the simple nonlinear model

given by (10), augmented with idiosyncratic AR components. We compare the one-step-ahead

forecasting performance of this model to that of individual AR(1) models fitted to every stock

return. We use the relative root mean square error (RMSFE) as our performance criterion and

consider the last three years of the data as the forecast evaluation period. We also consider the

Diebold-Mariano test of equal predictive ability to evaluate the significance of our findings.

The results are supportive of the nonlinear model. Out of 364 stock return series, the nonlinear

model outperforms the simple AR models in 206 cases. We have 32 stock returns for which the

nonlinear model gives a relative RMSFE compared to the simple AR(1) models of 0.98 or less,

with a minimum RMSFE of 0.961. The equivalent numbers for the simple AR(1) models are 6

and 0.972. The Diebold-Mariano tests indicate that the test rejects in favour of the nonlinear

model in 24 cases, at a significance level of 5%; the number of rejections in favour of the simple

AR(1) model is 4. The equivalent numbers for a 10% significance level are 52 and 18. It is

clear that these results suggest that the nonlinear model has a significant advantage in terms

of forecasting performance compared to a time series model which is commonly believed to

provide a good benchmark when forecasting.

Given the aforementioned fact, that stock returns do not have a large dynamic conditional

mean component, we also consider data on realised volatility. The data used in this paper

are extracted and compiled from the Trade and Quote (TAQ) database provided by Wharton
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Research Data Services. Thirty stocks from the S&P500 components are used; to select the

stocks, we rank the 500 component stocks of the S&P500 Index by market capitalization as

of March, 2011. The sample period covers almost 18,976 data points, starting from early

January 2010 and ending in March 2011. The data record the last price observed during every

five minute interval within each working day. Following the literature, we clean the data as

follows. First, trades before 9:30 AM or after 4:00 PM are removed to deal with the jumps and

days that contain long strings of zero or constant returns (caused by data feed problems) are

also eliminated. Finally, any trade that has a 137 price increase (decrease) of more than 5%

followed by a price decrease (increase) of more than 5% is removed. We use the previous-tick

interpolation method, in order to obtain a regularly spaced sequence of mid-quotes, which

are thus sampled at the 5-minute and daily frequency, from which 5-minute and daily log

returns are computed. Thus we obtain for each day a total of 78 intra-day observations which

are used to compute the realised volatility series.5 We fit the simple nonlinear model given

by (10), augmented with idiosyncratic AR components. Again results suggest the presence

of the nonlinear term in our model. Our results indicate that ρ̂ = 0.401, r̂ = 0.33 and a

t-test associated with ρ̂ of 3.27, which is significant, once again. Finally, looking at the t-test

associated with the cross-sectional average model augmented with AR components, we get

a value of 1.47, associated with the coefficient of the lagged cross-sectional average, which is

insignificant providing some further final support for our nonlinear model.

7 Conclusions

In economics and finance fundamental modelling assumptions, such as full-information rational

expectations, are increasingly being questioned in favour of bounded forms of rationality and

learning, whereby agents interact and form their own views by looking at other agents’ views.

This groupthink can explain herding or clustering, as commonly observed in financial markets,

for example; but this type of clustering can also be expected when modelling many types of

disaggregate variables. While the theoretical analysis of these forms of rationality has become

relatively commonplace, econometric studies and empirical models that complement these

theoretical advances are rather less developed. Therefore, in this paper, we propose and

analyse a nonlinear dynamic panel data model that in an intuitive manner, that might also

be given a structural interpretation, accommodates endogenous cross sectional dependence,

whereby agents react to the average view of an endogenously determined group of ‘similar’

agents.

From an economic point of view, the local cross-sectional averages that appear in the

proposed dynamic panel regressions might be interpreted as ‘shortcuts’ that agents take to

5We thank Alev Atak for carrying out the requisite data manipulations.
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form views and expectations (cf. Carroll (2003)). This type of interpretation relates our

work to the extensive literature on bounded rationality and behavioural explanations for

economic behaviour. From an econometric point of view, our model provides, to the best

of our knowledge, the first attempt to introduce endogenous cross-sectional correlation into

a dynamic panel framework, where units share commonalities in terms of parameters but

typically remain stochastically uncorrelated. We link our model to a variety of existing models,

such as nonlinear time series models, factor models and dynamic spatial panel data models.

We also propose numerous extensions, which indicate the flexibility of our model and its

ability to model various types of interaction within the panel, including both strong and weak

cross-sectional dependence.

We should hope that the proposed model, given its ability to model evolving clusters

among the cross-sectional units, will be useful in various applications in economics and fi-

nance; both when modelling and forecasting the disaggregate time-series themselves as well

as the aggregated variable. Endogenous cross-sectional dependence, as accommodated by our

model, implies that even if interest rests with the aggregate variable the appropriate model

for the aggregate is intrinsically nonlinear and requires the disaggregates to be simultaneously

considered. The increasing availability and use of micro or disaggregate datasets in economics

and finance, where we might expect the micro units to interact whether implicitly or explicitly

and thereby cluster, means that we hope that our model will be a useful tool when modelling

and forecasting with panels.

Finally, in future research, one might render the model yet more flexible, in terms of cap-

turing interactions among agents, by employing neural-network type selection mechanisms in

conjunction with the local cross-sectional averages proposed in this paper. Future applications

might use these models to identify the possibly asymmetric effect of ‘differences of opinion’

on stock prices and volumes (e.g., Banerjee, Kaniel, and Kremer (2009) and Banerjee and

Kremer (2010)).
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Appendix

Lemmas

In what follows, we develop some theoretical results that form the basis of our analysis. As

noted earlier, we aim to analyse the general case where both N and T tend to infinity. There-

fore, without loss of generality we let N(T ) be an unspecified function of T . For notational

convenience we suppress the dependence of N on T . We have the following Lemmas.

Lemma 1 Let
{
{xi,t}Ni=1

}T
t=1

follow (2). Then, for all N0 ≤ N , there exists T0 such that for

all T > T0,
{
{xi,t}N0

i=1

}T
t=T0

is geometrically ergodic and asymptotically stationary, as long as

|ρ| < 1. Further, if supi≤N0
E
(
ε4i,t
)
<∞, then supi≤N0

E
(
x4
i,t

)
<∞.

Proof: We can write the part of (2) relevant for {xi,t}N0

i=1, as

x
(N0)
t = Φ

(N0)
t x

(N0)
t−1 + εt (43)

where x
(N0)
t = (x1,t, ..., xN0,t)

′, ε
(N0)
t = (ε1,t, ..., εN0,t) and Φ

(N0)
t = [Φi,j,t] where

Φi,j,t =
ρ

mi,t

I (|xi,t−1 − xj,t−1| ≤ r) .

Then, by Theorem A1.5 of Tong (1995), using the work of Tweedie (1975), the Lemma follows if

supt λmax(Φ
(N0)
t ) < 1, where λmax(Φ

(N0)
t ) denotes the maximum eigenvalue of Φ

(N0)
t in absolute

value. By Schwarz, Rutishauser, and Stiefel (1973), supt λmax(Φ
(N0)
t ) is bounded from above

by the supremum over t of the row sum norm of Φ
(N0)
t . But, by the definition of mi,t this row

sum norm is equal to ρ for all t. Therefore, the result for the first part of the Lemma follows.

The second part of the Lemma, follows by the discussions in Remark B of Chan (1993), Chan

and Tong (1985) and Chan (1989).

Lemma 2 Let
{
{xi,t}Ni=1

}T
t=1

be given by

xi,t = qi,t−1 + εi,t

such that the column sum norm of the variance covariance matrix of ε
(N)
t is O(1) as N →∞.

The column sum norm of the variance covariance matrix of x
(N)
t is O(N) if (i) qi,t−1 is

stationary, (ii) there is δ > 0 such that for all N , there exist units i, j = 1, ..., δN such

that (a) 0 < limN→∞ supi=1,...,δN V ar (qi,t−1) and (b) limN→∞ supi=1,...,δN V ar (qi,t−1) < ∞
and (iii) there is δ > 0 such that for all N , there exist units i, j = 1, ..., δN , such that

Cov (qi,t−1, qj,t−1) 6= 0. If (ii)(a) does not hold then the column sum norm of the variance

covariance matrix of x
(N)
t is O(1).
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Proof: The proof is immediate once the definition of the column sum norm is taken into

account.

Lemma 3 Let
{
{xi,t}Ni=1

}T
t=1

follow (5). The column sum norm of the variance covariance

matrix of x
(N)
t is O(1).

Proof: To prove this theorem we will use the second part of Lemma 2. (5) can be written

as

xt = ν + ριx̄t−1 + εt = ν + ρΦxt−1 + εt (44)

where ν = (ν1, ..., νN)′, x̄t−1 = 1
N

∑N
j=1 xj,t−1, Φ = 1

N
ιι′ and ι = (1, ..., 1)′. Note that Φ is

idempotent. This implies that

xt =
(1− ρt−1)

(1− ρ)
Φν + ρtΦx0 + εt + Φ

t−1∑
i=1

ρiεt−i = ρtΦx0 + εt + ι

[
1

N

N∑
j=1

ξj,t

]
(45)

where

ξj,t =
t−1∑
i=1

ρiεj,t−i

But, it is straightforward to show that

lim
N→∞

V ar

(
1

N

N∑
j=1

ξj,t

)
= 0

this proving the Lemma.

Lemma 4 Let
{
{xi,t}Ni=1

}T
t=1

follow (2). The column sum norm of the variance covariance

matrix of x
(N)
t is O(N).

Proof: We use Lemma 2. The model can be written as

xi,t = qi,t−1 + εi,t

where

qi,t−1 =
ρ

mi,t

N∑
j=1

I (|xi,t−1 − xj,t−1| ≤ r)xj,t−1.

We need to verify the three conditions of Lemma 2. Condition (i) follows from Lemma 1.

Next, we establish Condition (ii). By Lemma 1 it follows that it is sufficient to show that

0 < lim
N→∞

V ar

(
ρ

mi,t

N∑
j=1

I (|xi,t−1 − xj,t−1| ≤ r)xj,t−1

)
, for all j. (46)
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By Assumption 1, we know that

Pr (|εi,t − εi,t−1| > r) > 0

for all j and r <∞. This implies that

Pr (|xi,t − xi,t−1| > r) > 0

for all j and r <∞. From this it follows that there exists ε > 0 such that

Pr

(∣∣∣∣∣ ρmi,t

N∑
j=1

I (|xi,t − xj,t| ≤ r)xj,t −
ρ

mi,t

N∑
j=1

I (|xi,t−1 − xj,t−1| ≤ r)xj,t−1

∣∣∣∣∣ > ε

)
> 0 (47)

But since by Markov’s inequality

Pr

(∣∣∣∣∣ ρmi,t

N∑
j=1

I (|xi,t − xj,t| ≤ r)xj,t −
ρ

mi,t

N∑
j=1

I (|xi,t−1 − xj,t−1| ≤ r)xj,t−1

∣∣∣∣∣ > ε

)
<

1

ε2
E

∣∣∣∣∣ ρmi,t

N∑
j=1

I (|xi,t − xj,t| ≤ r)xj,t −
ρ

mi,t

N∑
j=1

I (|xi,t−1 − xj,t−1| ≤ r)xj,t−1

∣∣∣∣∣
2

(47) implies (46). The final condition to be checked is Condition (iii) of Lemma 2. We need

to show that there is δ > 0 such that for all N , there exist units i, j = 1, ..., δN , such that

E

[(
ρ

mi,t

N∑
s=1

I (|xi,t − xs,t| ≤ r)xs,t

)(
ρ

mj,t

N∑
s=1

I (|xj,t − xs,t| ≤ r)xs,t

)]
6= 0 (48)

LetMj,t denote the set of j such that I (|xi,t − xj,t| ≤ r) = 1. By the geometric ergodicity of

x
(N0)
t for all N0, established in Lemma 1, and the fact that the stationary density of x

(N0)
t is

strictly positive over all compact sets in RN0 for all N0, which is implied by our assumption

that the density of ε
(N0)
t is strictly positive over all compact sets in RN0 for all N0, we have that

there is a non-zero proportion of units, that lie in bothMi,t andMj,t for a non-zero proportion

of j,k = 1, ..., N . This implies that (48) holds for some δ > 0 and units i, j = 1, ..., δN, proving

the result of the Lemma.

Lemma 5 Let
{
{xi,t}Ni=1

}T
t=1

follow (2). Then,

sup
i
V ar

(
ρ

mi,t

N∑
j=1

I (|xi,t−1 − xj,t−1| ≤ r)xj,t−1

)
= O(1) (49)

and

inf
i
V ar

(
ρ

mi,t

N∑
j=1

I (|xi,t−1 − xj,t−1| ≤ r)xj,t−1

)
= O(1) (50)
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Proof: We examine (49) which involves simply a form of cross-sectional averaging. (50)

can be analysed similarly. It is easy to see that

V ar

 1

mi,t

∑
j∈Mi,t

xj,t−1

 ∼ 1

m2
i,t

 ∑
j∈Mi,t

σ2
xj

+ 2
∑
j∈Mi,t

∑
k∈Mi,t

σxj ,xk


where ∼ denotes equality in order of magnitude and σ2

xj
and σxj ,xk

denote the variance of

xj,t−1 and the covariance of xj,t−1 and xk,t−1 respectively. The result of the Lemma follows

immediately by Lemma 2.

Lemma 6 Let
{
{xi,t}Ni=1

}T
t=1

follow (22). Then, for every N0 ≤ N , there exists T0 such that

for all T > T0,
{
{xi,t}N0

i=1

}T
t=T0

is geometrically ergodic and asymptotically stationary, as long

as |ρ| < 1.

Proof: Proceeding as in the proof of Lemma 1, we can write part of (22) relevant for

{xi,t}N0

i=1, as

xt = Φ
w,(N0)
t xt−1 + εt (51)

where Φ
w,(N0)
t = [Φw

i,j,t] where

Φw
i,j,t =

ρw(|xi,t−1 − xj,t−1| ; γ)∑N
j=1w(|xi,t−1 − xj,t−1| ; γ)

.

Then, the result follows along very similar lines to the proof of Lemma 1.

Lemma 7 Let
{
{xi,t}Ni=1

}T
t=1

follow (22). The column sum norm of the variance covariance

matrix of x
(N)
t is O(N).

Proof: Let xt = x
(N)
t and Φw

t = Φ
w,(N)
t . We have the following MA representation of xt.

xt =

(
t∏

j=1

Φw
t−j

)
x0 + εt +

t−1∑
i=1

(
i−1∏
j=1

Φw
t−j

)
εt−i (52)

By Lemma 6, ∥∥∥∥∥
t∏

j=1

Φw
t−j

∥∥∥∥∥ = Oa.s.

(
ρt
)

(53)

Noting that εt is a i.i.d. sequence gives,

E (xtx
′
t) = Σε +

t−1∑
i=1

E

((
i−1∏
j=1

Φw
t−j

)
εt−iε

′
t−i

(
i−1∏
j=1

Φw
t−j

)′)
(54)
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It is sufficient to show that ∥∥E (Φw
t εt−1ε

′
t−1Φw′

t

)∥∥
c

= O(N)

where ||.||c denotes column sum norm. We have that

Φtεt−1 =

(
ρ

N∑
j=1

w(|x1,t−1 − xj,t−1| ; γ)∑N
j=1w(|xi,t−1 − xj,t−1| ; γ)

εj,t−1, ..., ρ

N∑
j=1

w(|xN,t−1 − xj,t−1| ; γ)∑N
j=1w(|xi,t−1 − xj,t−1| ; γ)

εj,t−1

)′

and it follows that every element of Φw
t εt−1ε

′
t−1Φw′

t has nonzero expectation by the geometric

ergodicity of x
(N0)
t established in Lemma 6. As a result,

∥∥E (Φtεt−1ε
′
t−1Φ′t

)∥∥
c

= O(N), thus

establishing the result of the Lemma. It can again be similarly established that for any

ordering of the units and any choice of N0, the Lemma holds for x
(N0)
t .

Lemma 8 Let
{
{xi,t}Ni=1

}T
t=1

follow (22). Then,

sup
i
V ar

(
N∑
j=1

ρw(|xi,t−1 − xj,t−1| ; γ)xj,t−1∑N
j=1 w(|xi,t−1 − xj,t−1| ; γ)

)
= O(1)

and

inf
i
V ar

(
N∑
j=1

ρw(|xi,t−1 − xj,t−1| ; γ)xj,t−1∑N
j=1w(|xi,t−1 − xj,t−1| ; γ)

)
= O(1)

Proof: The proof follows very similarly to that of Lemma 3.

Lemma 9 Let
{
{xi,t}Ni=1

}T
t=1

follow (10).Let ε̄i,t = εi,t− ε̄i, where ε̄i = 1
T

∑T
j=1 εj,t Then, there

exists T0 such that for all T > T0,

E

([
ρ

mi,t

N∑
j=1

I (|xi,t−1 − xj,t−1| ≤ r)xj,t−1

]
(εi,t − ε̄i)

)
= O

(
1

NT

)
.

Proof: We establish the result for r = ∞ (i.e. the linear model given by (5)). Then,

the result follows by Lemma 1 and the assumption that the stationary density of {xi,t}N0

i=1 is

positive uniformly over N0, since this implies that there exists T0 such that for all T > T0,

and uniformly over i, the number of j such that I (|xi,t−1 − xj,t−1| ≤ r) = 1 for any t, is a

non-zero proportion of N0, for all N0.

To show the result for the linear model, let, as before, xt = x
(N)
t . As before, (5) can be

written as

xt = ν + ριx̄t−1 + εt = ν + ρΦxt−1 + εt (55)
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where ν = (ν1, ..., νN)′, x̄t−1 = 1
N

∑N
j=1 xj,t−1, Φ = 1

N
ιι′ and ι = (1, ..., 1)′. Note that Φ is

idempotent. This implies that

xt =
(1− ρt−1)

(1− ρ)
Φν + ρtΦx0 + εt + Φ

t−1∑
i=1

ρiεt−i = ρtΦx0 + εt + ι

t−1∑
i=1

ρi

(
1

N

N∑
j=1

εj,t−i

)
(56)

For simplicity, we assume that x0 = ν = 0. We need to show that

E

([
ρ

N

N∑
j=1

xj,t−1

]
(εi,t − ε̄i)

)
= E (ρx̄t−1 (εi,t − ε̄i)) = O

(
1

NT

)
.

We have that

x̄t−1 =
1

N

N∑
j=1

εj,t−1 +
t−2∑
i=1

ρi

(
1

N

N∑
j=1

εj,t−i−1

)
Then,

x̄t−1 (εi,t − ε̄i) =

(
1

N

N∑
j=1

εj,t−1

)
(εi,t − ε̄i) +

t−2∑
i=1

ρi

(
1

N

N∑
j=1

εj,t−i−1

)
(εi,t − ε̄i) (57)

Looking at the expectation of the first term on the RHS of (57), we have

E

((
1

N

N∑
j=1

εj,t−1

)(
εi,t −

1

T

T∑
j=1

εj,t

))
=

1

NT
σ2
ε (58)

For the expectation of the second term on the RHS of (57), using (58), we have

E

(
t−2∑
i=1

ρi

(
1

N

N∑
j=1

εj,t−i−1

)(
εi,t −

1

T

T∑
j=1

εj,t

))
=

1

NT

t−2∑
i=1

ρiσ2
ε =

(1− ρt−1)σ2
ε

(1− ρ)NT

which proves the result.

Lemma 10 Let
{
{xi,t}Ni=1

}T
t=1

follow (14). Then, for all N0 ≤ N , there exists T0 such that

for all T > T0,
{
{xi,t}N0

i=1

}T
t=T0

is geometrically ergodic and asymptotically stationary, as long

as p
∑p

i=1 |ρs| < 1.

Proof: As is usual for autoregressive models with more than one lag, we write the model

in companion form. So, we can write the part of (14) relevant for {xi,t}N0

i=1, as

x
(p,N0)
t = Φ

(p,N0)
t x

(p,N0)
t−1 + ε

(p,N0)
t (59)

where x
(p,N0)
t = (x1,t, ..., xN0,t, ..., x1,t−p, ..., xN0,t−p)

′, ε
(N0)
t = (ε1,t, ..., εN0,t, 0, ..., 0)′,

Φ
(p,N0)
t =


Φ̃

(1,N0)
t Φ̃

(2,N0)
t ... Φ̃

(p,N0)
t

I 0 ... 0
... ... ... ...
0 ... I 0

 ,
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Φ̃
(s,N0)
t = [Φ̃

(s)
i,j,t], s = 1, ..., p, and

Φ̃
(s)
i,j,t =

ρs
mi,t,s

I (|xi,t−s − xj,t−s| ≤ r)xj,t−s.

Then, similarly to the proof of Lemma 1 it is sufficient that the row sum norm of
(

Φ̃
(1,N0)
t Φ̃

(2,N0)
t ... Φ̃

(p,N0)
t

)
is bounded from above by one. But for this, it sufficient that p

∑p
i=1 |ρs| < 1 proving the result.

Lemma 11 Let
{
{xi,t}Ni=1

}T
t=1

follow (15). Then, for all N0 ≤ N , there exists T0 such that

for all T > T0,
{
{xi,t}N0

i=1

}T
t=T0

is geometrically ergodic and asymptotically stationary, as long

as q
∑q

i=1 |ρs| < 1.

Proof: The proof follows along very similar lines to that of Lemma 10.

Proof of Theorem 1

We prove consistency of the least squares estimator of ρ and r. We define xij,t−s = |xi,t−s − xj,t−s|
and Ft−1 = σ(x1,t−1, ..., xN,t−1, x1,t−2, ..., xN,t−2, ...). Recall that ρ0 and r0 denote the true value

of ρ and r, and denote the respective expectation conditional on Ft−1 by Eρ,r(.|t − 1). We

proceed as in Chan (1993). Following the proof of consistency of the threshold parameter

estimates by Chan (1993), we see that three conditions need to be satisfied for consistency.

Firstly, we need to show that the data xi,t are geometrically ergodic and hence asymptotically

covariance stationary (Condition C1). Secondly, we need to show that (Condition C2)

E (xi,t − Eρ0,r0(xi,t|t− 1))2 < E (xi,t − Eρ,r(xi,t|t− 1))2 ∀ρ 6= ρ0, ∀r 6= r0, i = 1, .., N ,

(60)

is satisfied and, thirdly, we need to show that (Condition C3)

lim
δ→0

E

(
sup

(ρ,r)∈B((ρ0,r0),δ)

|Eρ0,r0(xi,t|t− 1)− Eρ,r(xi,t|t− 1)|

)
= 0, (61)

where B(a, b) is an open ball of radius b centered around a, is satisfied. These three conditions

together imply the uniform convergence of the objective function given

S(ρ, r) =
1

NT

N∑
i=1

T∑
t=1

(
xi,t −

ρ

mi,t

N∑
j=1

I (|xi,t−1 − xj,t−1| ≤ r)xj,t−1

)2

to the limit objective function which is the key to establishing consistency. C1 is needed for

obtaining a law of large numbers needed for Claim 1 of Chan (1993), and hence for convergence

of the objective function. C3 is needed for uniformity of the convergence and, finally, C2 is

needed to show that the limiting objective function is minimized at the true parameter values.

C1 can be seen to follow from Lemma 1. We establish C2 and C3.
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For C2 we have that

E (xi,t − Eρ0,r0(xi,t|t− 1))2 = σ2
εi

(62)

Letting m0
i,t =

∑N
j=1 I (|xi,t−1 − xj,t−1| ≤ r0), and assuming, without loss of generality, that

r ≥ r0, we also have

E (xi,t − Eρ,r(xi,t|t− 1)) = εi,t +
ρ0

m0
i,t

N∑
j=1

I
(
|xi,t−1 − xj,t−1| ≤ r0

)
xj,t−1− (63)

ρ

mi,t

N∑
j=1

I (|xi,t−1 − xj,t−1| ≤ r)xj,t−1 =

εi,t +
(ρ0 − ρ)

mi,t

N∑
j=1

I
(
|xi,t−1 − xj,t−1| ≤ r0

)
xj,t−1−

ρ

mi,t

N∑
j=1

(
I (|xi,t−1 − xj,t−1| ≤ r)− I

(
|xi,t−1 − xj,t−1| ≤ r0

))
xj,t−1 = εi,t + hi,t−1

But, under our assumption that εi,t is i.i.d. across i and t, E(εi,thi,t−1) = 0, thus implying

that

E (εi,t + hi,t−1)2 > σ2
εi

and thereby establishing C2. For C3, we have, using (63),

Eρ0,r0(xi,t|t− 1)− Eρ,r(xi,t|t− 1) =
(ρ0 − ρ)

mi,t

N∑
j=1

I
(
|xi,t−1 − xj,t−1| ≤ r0

)
xj,t−1− (64)

ρ

mi,t

N∑
j=1

(
I (|xi,t−1 − xj,t−1| ≤ r)− I

(
|xi,t−1 − xj,t−1| ≤ r0

))
xj,t−1

We examine the first term of the RHS of (64). By Lemma 3,

1

mi,t

N∑
j=1

I
(
|xi,t−1 − xj,t−1| ≤ r0

)
xj,t−1 = Om.s.(1)

and so

lim
δ→0

E

(
sup

(ρ,r)∈B((ρ0,r0),δ)

∣∣∣∣∣(ρ0 − ρ)

mi,t

N∑
j=1

I
(
|xi,t−1 − xj,t−1| ≤ r0

)
xj,t−1

∣∣∣∣∣
)

= 0

Moving to the second term on the RHS of (64), we have, using the fact that the stationary

density of {xi,t}N0

i=1 is positive and bounded, uniformly over N0, which follows from Assumption

1 on the density of {εi,t}N0

i=1, that

lim
δ→0

E

(
sup

(ρ,r)∈B((ρ0,r0),δ)

∣∣∣∣∣ ρmi,t

N∑
j=1

(
I (|xi,t−1 − xj,t−1| ≤ r)− I

(
|xi,t−1 − xj,t−1| ≤ r0

))
xj,t−1

∣∣∣∣∣
)
≤

lim
δ→0

sup
i,j

sup
(ρ,r)∈B((ρ0,r0),δ)

Pr(|xi,t−1 − xj,t−1| ∈ (r, r0)) = 0

proving the result.
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Proof of Theorem 2

We prove the rate of convergence of r̂ to r0. We focus on the pooled least squares estimator.

Since we know that (ρ̂, r̂) is consistent, we restrict the parameter space to a neighborhood of

(ρ0, r0), given by

ϑ(∆) =
{

(ρ, r) ∈ Ω,
∣∣ρ− ρ0

∣∣ < ∆;
∣∣r − r0

∣∣ < ∆, 0 < ∆ < 1
}

It is sufficient to prove that for any ε, there exists K, such that for (ρ, r) ∈ ϑ(∆), and

r > K/(NT ),

Pr
(
S(ρ, r)− S(ρ, r0) > 0

)
> 1− ε. (65)

Recall that xij,t−s = |xi,t−s − xj,t−s|. Define Qij(r) = E (I (xij,t < r)). By Claim 1 of Propo-

sition 1 of Chan (1993), it follows that (65) holds if for any ε > 0, η > 0, there exists K > 0

such that for all N, T

inf
1≤i,j≤N

Pr

(
sup

∆≥r>K/(NT )

∣∣∣∣∣
N∑
j=1

T∑
t=2

I (xij,t−1 < r)

NTQij(r)
− 1

∣∣∣∣∣ < η

)
> 1− ε, (66)

inf
1≤i,j≤N

Pr

(
sup

∆≥r>K/(NT )

∣∣∣∣∣
N∑
j=1

T∑
t=2

εi,tI (xij,t−1 < r)

NTQij(r)

∣∣∣∣∣ < η

)
> 1− ε (67)

and

inf
1≤i,j≤N

Pr

(
sup

∆≥r>K/(NT )

∣∣∣∣∣
N∑
j=1

T∑
t=2

xj,t−1εi,tI (xij,t−1 < r)

NTQij(r)

∣∣∣∣∣ < η

)
> 1− ε (68)

By Claim 2 of Proposition 1 of Chan (1993), (66)- (68) hold if there exists H <∞, such that

sup
1≤i,j≤N

V ar

(
N∑
j=1

T∑
t=2

I (xij,t−1 < r)

)
≤ NTH sup

1≤i,j≤N
Qij(r), (69)

sup
1≤i,j≤N

V ar

(
N∑
j=1

T∑
t=2

|xj,t−1εi,t| I (r1 < xij,t−1 < r2)

)
≤ NTH sup

1≤i,j≤N
(Qij(r2)−Qij(r1))

(70)

and

sup
1≤i,j≤N

V ar

(
N∑
j=1

T∑
t=2

xj,t−1εi,tI (xij,t−1 < r)

)
≤ NTH sup

1≤i,j≤N
Qij(r) (71)

But, by Lemma 1and the boundedness of the indicator function, it follows that there exists

0 < m < M <∞ such that

mr ≤ sup
1≤i,j≤N

Qij(r) ≤Mr (72)

Then, by (72), the uniform boundedness of the indicator function and the second part of

Lemma 1, (69)-(71) follow, thus proving the result for the rate of convergence. The second

part of the theorem follows similarly to the proof of Theorem 2 and (4.11) of Chan (1993).
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Proof of Theorem 3

We wish to prove that the NLS estimator of (ρ0, γ0), denoted by (ρ̂, γ̂) is consistent and

asymptotically normal. For consistency, we need to establish conditions (60) and (61) but

for the model given by (22). These follow along very similar lines to those for the threshold

model and are therefore omitted. These conditions together with geometric ergodicity imply

consistency.

Let

Q (ρ, γ) =
1

NT

N∑
i=1

T∑
t=2

(
xi,t − ρ

N∑
j=1

w(|xi,t−1 − xj,t−1| ; γ)xj,t−1∑N
j=1w(|xi,t−1 − xj,t−1| ; γ)

)2

For asymptotic normality, we note that using, e.g., Proposition 7.8 of Hayashi (2000), and

noting that, under our assumptions, (ρ0, γ0) lies in the interior of the parameter space and

w(.; .) is twice differentiable and integrable, it is sufficient to show that

1√
NT

N∑
i=1

T∑
t=2

(
N∑
j=1

ρ0 ∂w
∂γ

(|xi,t−1 − xj,t−1| ; γ0)xj,t−1εi,t∑N
j=1w(|xi,t−1 − xj,t−1| ; γ0)

)
d→ N (0,W1) , (73)

1√
NT

N∑
i=1

T∑
t=2

(
N∑
j=1

w(|xi,t−1 − xj,t−1| ; γ0)xj,t−1εi,t∑N
j=1w(|xi,t−1 − xj,t−1| ; γ0)

)
d→ N (0,W2) . (74)

where

W1 = lim
N→∞

E

( 1√
N

N∑
i=1

(
N∑
j=1

ρ0 ∂w
∂γ

(|xi,t−1 − xj,t−1| ; γ0)xj,t−1εi,t∑N
j=1w(|xi,t−1 − xj,t−1| ; γ0)

))2
 ,

W2 = lim
N→∞

E

( 1√
N

N∑
i=1

(
N∑
j=1

w(|xi,t−1 − xj,t−1| ; γ0)xj,t−1εi,t∑N
j=1w(|xi,t−1 − xj,t−1| ; γ0)

))2


and that

p lim
N,T→∞

(
∇2Q (ρ, γ)

)−1
(75)

exists, where

∇2Q (ρ, γ) =

 ∂2Q
∂ρ2

∂2Q
∂ρ∂γ(

∂2Q
∂ρ∂γ

)′
∂2Q
∂γ′∂γ

 .

We prove (73). (74) and (75) follow similarly. We examine wi,tεi,t where

wi,t =
N∑
j=1

ρ0 ∂w
∂γ

(|xi,t−1 − xj,t−1| ; γ0)xj,t−1∑N
j=1w(|xi,t−1 − xj,t−1| ; γ0)

.

By Lemma 8 which implies that wi,t has finite variance, uniformly over i, the fact that wi,t and

εi,t are independent, and the fact that εi,t has finite variance, uniformly over i, by assumption,

it follows that {wi,tεi,t}Ni=1 is a martingale difference with finite second moments. Therefore,
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wt = 1√
N

∑N
i=1wi,tεi,t has zero mean and finite second moments for all N . By the independence

of εi,t across t, it follows that {wt}Tt=1 is a martingale difference sequence. Hence, a martingale

difference CLT holds for wt proving (73).

Proof of Theorem 4

Define

JT,N(x, P ) = PrP
{
NT

(
r̂ − r0

)
≤ x

}
. (76)

Denote by J(x, P ) the limit of JT,N(x, P ) as N, T → ∞.The subsampling approximation to

J(x, P ) is given by LbT ,bN (x). For xα, where J(xα, P ) = α, we need to prove that

LbT ,bN (xα)→ J(xα, P )

for the theorem to hold. But,

E(LbT ,bN (xα)) = JT,N(x, P )

because as discussed in Section 4, the subsample is a sample from the true model, retaining the

temporal ordering of the original sample. Hence, it suffices to show that V ar(LbT ,bN (xα))→ 0

as N, T →∞. Let

1bT ,bN ,s = 1
{
bNbT

(
r̂∗,(s) − r̂

)
≤ xα

}
, (77)

vB,h =
1

B

B∑
s=1

Cov (1bT ,bN ,s, 1bT ,bN ,s+h) . (78)

Then,

V ar (LbT ,bN (xα)) =
1

B

(
vB,0 + 2

B∑
h=1

vB,h

)
= (79)

1

B

(
vB,0 + 2

CbT−1∑
h=1

vB,h

)
+

2

B

B∑
h=CbT

vB,h = V1 + V2.

for some C > 1. We first determine the order of magnitude of V1. By the boundedness of

1bT ,bN ,s, it follows that vB,h is uniformly bounded across h. Hence, |V1| ≤ CbT
B

maxh |vB,h|,
from which it follows that V1 = O(CbT/B) = o(1). We next examine V2. For this we have

that

|V2| ≤
2

B

B−1∑
h=CbT

|vB,h|, (80)

But, by Lemma 1, it follows that

vB,h = o(1), uniformly across h. (81)
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Note that this follows by the geometric ergodicity and, hence β-mixing of the process. Further,

note that (81) follows for any random selection of cross sectional units undertaken to construct

the subsamples. Hence,

2

B

B−1∑
h=CbT

|vB,h| = o(1),

proving the convergence of LbT ,bN (xα) to J(xα, P ).
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