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Abstract

This paper investigates the relation between cognitive abilities and

behavior in strategic-form games with the help of a novel experiment.

The design allows us first to measure the cognitive abilities of sub-

jects without confound and then to evaluate their impact on behavior

in strategic-from games. We find that subjects with better cognitive

abilities show more sophisticated behavior and make better use of

information on cognitive abilities and preferences of opponents. Al-

though we do not find evidence for Nash behavior, observed behavior

is remarkably sophisticated, as almost 80% of subjects behave near

optimal and outperform Nash behavior with respect to expected pay-

offs.
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1 Introduction

Most strategic situations require individuals to make complex chains of rea-

soning, especially counter-factual reasoning of the type: “If I were my op-

ponent, I would not play action A because action B gives a strictly higher

payoff regardless of the action I actually choose,” or “If my opponent con-

jectures that I play each of my actions with equal probability, then he would

play A and, thus, I should play B because it is my best-reply to A.” Quite

naturally, we can imagine arbitrarily complex chains of reasoning of this sort.

The cognitive ability of a person, i.e., his ability to make complex chains of

reasoning, is therefore likely to influence his behavior in strategic situations.

This paper addresses this issue. More precisely, the purpose of this paper is

to measure the ability of individuals to perform complex chains of reasoning

and to relate the measured cognitive abilities to behavior in strategic-form

games.

A main motivation for this work is to better understand reasons for hu-

mans deviating from theoretically postulated behavior, such as iterated dele-

tion of strictly dominated strategies or Nash equilibrium. If, for example,

the choice of an individual does not coincide with iterated deletion of strictly

dominated strategies and yet her cognitive abilities suggest that she is able to

draw the necessary logical inferences, then we might conclude that there is a

lack of common beliefs in rationality. After all, a common belief in rationality

implies that choices are consistent with iterated deletion of strictly dominated

strategies. Ultimately, such a finding might call for solution concepts relaxing

the assumption of common (or even mutual) beliefs in rationality.

With this objective in mind, we design a novel series of experiments,

which allow us to address the issues raised above. Our experiments have two

essential components. The first component tests the ability of individuals to

perform complex chains of reasoning, in particular counter-factual reasoning.

We employ a computerized variant of the red-hat puzzle, as introduced in

Bayer and Renou (2007). This computerized variant of the red-hat puzzle
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is ideal to measure the cognitive abilities of individuals as it neatly controls

for confounding factors, such as other-regarding preferences or beliefs about

the cognitive abilities of others. The second component of the experiments

presents the subjects with twelve strategic-form games. Ten of these are

dominance solvable, for which the logic for iterated deletion of strictly dom-

inated strategies closely parallels the logic underlying the red-hat puzzles.

We add two dictator games, which are designed as a control for preferences.

We use the choice made by the subjects in the twelve strategic-form

games to identify different behavioral types. Following recent studies, such

as Stahl and Wilson (1994; 1995), Costa-Gomes et al. (2001), Costa-Gomes

and Weizsäcker (2008), we estimate a mixture density model, where each

subject’s behavior is determined, possibly with errors, by one of a rich set

of possible behavioral types. Although we consider a rich set of fifteen pos-

sible behavioral types, only six of them are of significant importance in the

sample. We now describe these six types. An Altruistic type identifies the

strategy profile that maximizes the sum of his own and the opponent’s pay-

off and chooses the corresponding action. An Optimistic type identifies the

strategy profile that maximizes his payoff and takes the corresponding ac-

tion (i.e., “max max” behavior). An L0 player uniformly randomizes over

his actions. The more sophisticated L1 type (Naive in Stahl and Wilson;

1994 and 1995) best replies to L0. An L2 type is even more sophisticated

and best replies to L1. Lastly, a D1 player does one round of deletion of

strictly dominated strategies and best replies to a uniform distribution over

the opponent’s remaining strategies.

We now summarize the main results of the paper. Firstly, from the red-

hat puzzles, we derive an index of cognitive ability for each subject. The

index ranges from zero to four and can be interpreted as a subject’s depth of

reasoning. In particular, a subject with a cognitive ability of two or more has

the ability to put himself in the position of the opponent (strategic thinking),

while a subject with a cognitive ability of one or less cannot. In the sample

of 154 subjects, the percentage of subjects showing an iteration depth of

2



zero, one, two, three and four is 0%, 52.6%, 24.03%, 5.84% and 17.53%,

respectively. About one-half of the subjects can think strategically.

Secondly, the econometric analysis of behavioral types gives a relatively

simple description of subjects’ behaviors. As already alluded to, the most

informative statistical model identifies six behavioral types, Altruistic, Opti-

mistic, L0, L1, L2 and D1 with percentages of 6.50%, 1.95%, 11.69%, 62.99%,

14.94% and 1.95%, respectively. Most subjects (about 77%) are best classi-

fied as L1 or L2 types. L1 is the modal type. This is in line with a result

from Costa-Gomes and Weizsäcker (2008), who found that L1 was the best

predictor for play in strategic-form games. We find no statistical evidence

for the presence of Sophisticated (rational expectation) or Equilibrium types.

Some previous studies, e.g., Stahl and Wilson (1995), Haruvy et al. (1999)

and Costa-Gomes et al. (2001), found some evidence for a small fraction of

equilibrium types.1 In accordance with most of the studies mentioned above,

we also find some L2, D1 and Optimistic types. Unlike most previous studies,

we find strong evidence for the existence of some Altruistic types.

Finally, we turn our attention to the relation between cognitive abilities

and behavioral types. The general pattern is as follows: the higher the index

of cognitive abilities, the more sophisticated (i.e., L1, L2 or D1) is the be-

havioral type. However, the impact of cognitive abilities is not as extreme as

one might have expected. Even the subjects with very good cognitive ability

are not behaving as L3 or Nash types, which are the most sophisticated

types we looked for. Yet, the observed L1 and L2 types’ expected payoffs

(given the distribution of play observed in the sample) are very high. The

expected payoff of an L2 type is about 99% of that a player with rational

expectations, the ideal of game theory, would achieve. Our most prevalent

type, L1, still achieves 96% of the rational expectation payoff. In contrast, a

1In their econometric analysis with information about search patterns, Costas-Gomez

et al. found no evidences for equilibrium types. In sharp contrast with our study and most

previous studies, Rey-Biel (2009) found that a large fraction of of subjects (70%) played

in agreement with Nash behavior.
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Nash type would achieve less than 90% of the rational expectation payoff.2

In terms of outcomes, the subject’s behavior is quite sophisticated after all.

We also observe that subjects with a cognitive ability of two or more react

to information on their opponent, while subjects with a cognitive ability of

one do not. Moreover, subjects with a cognitive ability of two or more only

behave as Altruistic types if they are informed about opponents’ play in

the dictator games. Also, subjects with a cognitive ability of two or more

are more likely to behave as L2 types if information is provided about the

cognitive abilities of the opponents. Remarkably, all in all, about 80% of

our subjects show quite sophisticated behavior despite of an environment

that is quite unfamiliar to them (our subjects had not participated in prior

experiments).

This paper contributes to the large literature on iterative reasoning in

games e.g., McKelvey and Palfrey (1992), Beard and Beil (1994), Nagel

(1995), Ho et al. (1998), Goeree and Holt (2004), Huyck et al. (2002), Cabr-

era et al. (2007), to name just a few.3 A recurring feature of many of these

studies is the use of games solvable by iterated deletion of strictly or weakly

dominated strategies. In these studies, the ability of individuals to perform

complex chains of reasoning is associated with their ability to iteratively

delete dominated strategies. Centipede games (e.g., McKelvey and Palfrey,

1992) and beauty contest games (introduced to the literature by Nagel, 1995)

are two of the most commonly used games in that literature. Typically, the

use of these games suffers from the lack of control for beliefs about the ra-

tionality of others and for social preferences.4 The main novelty of our ex-

2L0 types achieve even less with about 80%.
3We refer the reader to chapter 5 of Camerer (2003) for a survey of earlier literature

on this topic.
4Gneezy et al. (2010) and Dufwenberg et al. (2010) use a version of the game “Nim” to

study if and how humans learn backward induction. Since players have (weakly) dominant

strategies, this zero-sum game can be used to measure the depth of iterative reasoning in

humans if one accepts the auxiliary hypothesis that it is common knowledge that players

do not play weakly dominated strategies.
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periment is that we are able to provide these controls. The second strand

of literature our paper is related to is that on behavioral types and behavior

in strategic-form games (see, among others, Stahl and Wilson, 1994; 1995;

Costa-Gomes et al., 2001; Camerer et al., 2004; Costa-Gomes and Craw-

ford, 2006; Rey-Biel, 2009; Arad and Rubinstein, 2010 and Burchardi and

Penczynski, 2010).5

To summarize, the main objective of the paper is to understand how the

ability to perform complex chains of reasoning relates to behavior in strategic-

form games, controlling for other-regarding preferences. The experimental

design consists of three distinct stages. The first stage provides a measure

of the ability of subjects to perform counter-factual reasoning. We use a

variant of the red-hat puzzle to obtain such a measure. The second stage

controls for other-regarding preferences by presenting the subjects with dic-

tator games. Finally, the last stage consists of twelve strategic-form games.

The paper is organized around these three stages. After briefly describing

our subject sample in Section 2, Section 3 presents the red-hat puzzles, its

computerized experimental design and initial results. Section 4 describes

the dictator games. Section 5 presents the twelve strategic-form games, the

postulated behavioral types and our econometric analysis. Section 6 relates

the estimated behavioral types to cognitive abilities and preferences, while

Section 7 concludes.

2 Subject sample and procedure

The experiment was conducted at AdLab, the Adelaide Laboratory for Ex-

perimental Economics at the University of Adelaide in Australia. We used

Urs Fischbacher’s (2007) experimental software Z-tree. A total of 154 sub-

jects participated in eight sessions; all sessions took place over three days:

5Beyond the types typically considered, we also included types that capture other-

regarding preference (e.g., Fehr and Schmidt (1999) or Charness and Rabin (2002)) and

others we deemed promising.
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26, 27 and 28 of November 2008. For each of our four treatments (which

we will explain later), we conducted two sessions resulting in between 36

and 42 subjects per treatment. A session lasted for about 90 minutes and

on average subjects earned about 20.4 Australian Dollars. Earnings ranged

from AUD 8 to AUD 36. The 154 participants were mostly students from the

University of Adelaide and the University of South Australia. All subjects

had no previous experience with participation in economic experiments. The

experimental instructions used are available on the author’s webpage.

3 Measuring cognitive abilities

This section presents the first stage of our experiment, the red-hat puzzles,

and describes our measure of the ability of subjects to perform complex

chains of reasoning (for short, cognitive ability). Along with a measure of

“social preferences,” this measure of cognitive ability is at the heart of our

analysis of behavior in strategic-form games.

3.1 Experimental design

We first present a simple puzzle, which is the basis for the first stage of

our experiment. Each of N individuals has either a red hat or a white hat,

observes the hat color of others, but cannot observe the color of his own hat.

Along comes a trusted referee, who declares that “at least one individual has

a red hat on the head.” The referee then asks the following question: “What

is your hat color?” All individuals simultaneously choose an answer out of

“I can’t possibly know,” “I have a red hat,” or “I have a white hat.” Players

then learn the answers of the other players and are asked again what their

hat color is. This process is repeated until all individuals have inferred their

hat color. This problem is known as the red-hat puzzle (henceforth, RHP).6

6The same problem is also known as the “Dirty Faces Game.” For an alternative

exposition see Fudenberg and Tirole (1991, pp. 544-548) or Osbourne and Rubinstein

(1994, p. 71).
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Suppose that an individual, say Bob, sees that no one else has a red

hat. Since it is commonly known that there is at least one red hat, he must

conclude that he has a red had. Now suppose that Bob sees one red hat, say

on Ann’s head. He should answer “I cannot possibly know” the first time

the question is asked, as he sees another red hat. However, if Bob can iterate

his reasoning further, he can infer his hat color from Ann’s answer. If Ann

says “I cannot possibly know,” Bob must realize that he has a red hat. For

otherwise, Ann would have known that she has a red hat right away and

should have answered “I have a red hat.” In general, the greater the number

of red hats an individual observes, the more complex is the reasoning needed

to logically infer the color of one’s own hat. An individual needs m + 1

iteration steps to figure out his hat color, where m denotes the number of

red hats this individual observes.

It is important to note that the above logic for an individual correctly

inferring his hat color relies on some crucial assumptions. Firstly, even if an

individual has unlimited cognitive abilities, he also needs to know that the

answers of the other individuals are logically correct. To see this, suppose

that there is a unique red hat and Bob observes this red hat. Bob can

only correctly infer his hat color (white) if the individual, who wears the

red hat, answers the first question accurately with “I have a red hat.” It

follows that any experimental design using the red-hat puzzle to measure the

cognitive ability of humans has to make sure that each subject knows that the

answers of other subjects are logically correct. Secondly, the event “There

is at least one red hat” must be common knowledge. Thirdly, subjects must

have incentives to correctly infer their hat color and to truthfully report their

logical inferences.

We now describe our experimental protocol, and how it addresses the

difficulties discussed above. In our experiment, a human subject was paired

with three computers, which were acting as “players.” Pairing a subject

with computers has several advantages given our objective. Firstly, we can

reasonably assume that subjects have no concerns for the eventual “pay-
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offs” of computers. Secondly, we can ensure that a subject knows that the

computers’ answers are logically correct by a) programming the computer-

players to choose the logically correct answers and b) communicating this

credibly to the subject. Accordingly, computers were programmed to choose

the logically correct answers in each round of questions (see below), and the

instructions emphasized this point heavily. Additionally, subjects were told

(and constantly reminded with an on-screen message) that there was at least

one red hat.

Subjects were asked to infer their hat color from the information given to

them. At any point when they were asked, they had three possible answers to

choose from: “I have a WHITE hat with certainty,” “I have a RED hat with

certainty,” and “I cannot possibly know.” The first time a subject had to

choose an answer within a puzzle the information a subject had was the hat

color of the three computer-players (along with the fact that there was at least

one red hat). In any subsequent round within the puzzle, the information

a subject had was the complete history of all answers of all players (the

computers’ and his) in all previous rounds. Similarly, the initial information

a computer-player had was the hat color of the two other computers and the

human subject and, subsequently, the complete history of answers. Whenever

a computer had to answer, the computer’s answer was the (unique) logically

correct answer inferred from their information and history. Before subjects

started the experiment, they had to answer some control questions testing

their understanding of the instructions.

A RHP was stopped after either a wrong answer by the human or a correct

announcement of the hat color.7 This stopping procedure is necessary to

avoid logical inconsistencies. Suppose there is only one red hat, which is worn

by the human subject. The subject initially observes three white hats. Now,

if the subject (wrongly) answers “I cannot possibly know,” then computers

should logically infer and, if allowed, answer “I have a red hat.” However, this

7In a given round, announcing a hat color was correct only if it was actually possible

to infer the hat color at this given round.
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contradicts what the subject observes. Although the computers in this case

would chose the logically correct answers, we would have lost control over how

a subject interprets this inconsistency. We believe that the observation of

contradicting computer announcements and physical reality would have led

subjects to believe that the computers were not properly programmed or that

our claim that the computers are logically correct was based on deception.

Since each individual was paired with three computers, we had seven

possible distinct logical situations. A logical situation was determined by

the number of red hats a subject saw and whether the subject had a red or

white hat herself. The more red hats a subject was observing, the more steps

(iterations) were required to correctly infer the hat color.

Subjects played all seven situations in increasing order of difficulty and

without any feedback in between. For any mistake, we deducted 2.5 Aus-

tralian Dollars (AUD) from the subjects start-up amount of AUD 20.00. As

any mistake immediately terminates a RHP, subjects payout from the first

stage of the experiment could be calculated as AUD 2.5 for the show-up fee

plus AUD 2.5 per puzzle correctly solved. We used the frame of “deduction

per mistake” in order to make the incentive to think hard at every step of

the game as strong as possible (given our financial means).8

3.2 A measure of cognitive ability

This section briefly examines the determinants to correctly infer one’s hat

color in red-hat puzzles. All our results are consistent with a prior experi-

ment we ran and thus refer the reader to our companion paper, Bayer and

Renou (2009), for an in-depth analysis. Table 1 reports the percentage of

subjects over the entire sample who correctly solved a puzzle (as a function

of the number of steps needed to solve it). Some remarks are worth mak-

8For our subjects losing AUD 2.5 with a single wrong decision is quite a strong incentive.

A student job pays about ten Dollars per hour (the median hourly wage in South Australia

is about AUD 20). We also conjecture that the loss frame increases effort through loss-

aversion.
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ing. Firstly, as expected, the more iterations are required to correctly infer

ones hat color, the lower is the percentage of correct answers. Secondly,

and somewhat surprisingly, there is almost no difference between solving a

puzzle requiring three iterations and one requiring four iterations (26.6% vs.

26.3%), while there is a significant difference between solving a puzzle requir-

ing two iterations and one requiring three or four. This suggests that if an

individual can perform three steps of iterative reasoning, then she can also

do four steps. Our econometric analysis confirms this empirical observation.

Thirdly, and reassuringly, all subjects were able to solve the easiest puzzle,

i.e., to state that they had a red hat when they were observing three white

hats.

steps 1 2 3 4

solved in % 100.00 55.5 26.6 26.3

Table 1: Correctly solved puzzles by iteration steps required

We now consider the determinants of correctly inferring ones hat color.

The dependent variable is “correct,” a dichotomous variable indicating whether

a subject had correctly inferred his hat color in a given puzzle. Our econo-

metric model is a probit model with subject specific random effects. Table 2

reports the marginal effects averaged over the whole sample.

Our regression confirms our initial observation: the more steps required

to solve a puzzle, the less likely it is that an individual solves it (p < 0.01,

Wald test). The probability of solving a puzzle requiring three steps is 0.358

lower than the probability of solving puzzles requiring two steps (the ref-

erence). Moreover, as already suggested, there is no statistical difference

between solving a puzzle requiring three steps and a puzzle requiring four

steps. We also note that the probability of correctly solving puzzles of dif-

ferent difficulties is highly correlated within subjects (ρ = 0.62). The high

correlation within subjects testifies of a large heterogeneity in cognitive abil-

ities across subjects, which cannot be explained by demographics. This also

10



Probability of solving puzzle (estimated baseline) 0.251

Dependent variables Marginal effect SE

Iteration steps necessary (baseline: 2 steps)

3 steps −0.358∗∗ (0.048)

4 steps −0.362∗∗ (0.048)

High school maths −0.016 (0.109)

Control questions ok 0.204∗∗ (0.072)

Age dummies not sig.

Male 0.166 (0.202)

Session dummies not sig.

Course dummies (baseline: Arts)

Commerce and Finance 0.103 (0.204)

Economics −0.177 (0.117)

Engineering 0.219 (0.208)

Law −0.047 (0.192)

Medicine 0.060 (0.235)

Science 0.479∗ (0.229)

Other 0.080 (0.218)

Not studying −0.118 (0.201)

N 924

Log Likelihood −435.646

χ2
22, Wald test 105.12∗∗

ρ 0.615∗∗ (0.052)

** p<0.01, * p<0.05

Table 2: Random-effect panel estimation of the probability of a correct

solution

indicates that there is some consistency within subjects: correctly solving a

certain puzzle increases the likelihood of solving another puzzle.

We now construct a simple measure of cognitive ability so as to quantify

the number of steps of iterative reasoning an individual is able to perform.

Each puzzle can be parameterized by a pair (m, n), where m is the number of

red hats a subject observes and n is the actual number of red hats (n = m+1

or n = m). Remember that if a subject observes m red hats, m+1 iterations
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are required to correctly infer his hat color: the higher m is, the more complex

is the chain of reasoning. In our experiment, we had seven possible situations:

(0, 1), (1, 1), (1, 2), (2, 2), (2, 3), (3, 3) and (3, 4).

A perfect measure would obtain if a subject solving a puzzle requiring

m iterations had actually solved all puzzles requiring m′ ≤ m iterations. In

this idealized situation, the measure of cognitive ability of a subject would

be given by the number of iterations required to solve the most difficult

puzzle the subject can solve. For instance, if a subject had correctly solved

the puzzles (0, 1), (1, 1), (1, 2) and failed the puzzles (2, 2), (2, 3), (3, 3) and

(3, 4), his measure of cognitive ability would be 2. Such a measure is called a

perfect Guttman scale (Guttman 1944; 1950) in the psychological literature.

It is, however, unreasonable to expect all subjects to exhibit a consistent

pattern of answers.9 For instance, a subject might fail to solve a puzzle of a

given complexity for reasons (e.g., trembles, mistakes, inattention) unrelated

to his ability to perform chains of reasoning. Alternatively, a subject might

correctly solve a puzzle by sheer luck. Quite surprisingly, 78.6% of the sub-

jects nonetheless exhibit a consistent pattern in our sample. Still, we have

to deal with the inconsistent patterns of answers.

The measure we adopt has the following features. First, it is an integer

ranging from 0 (all puzzles incorrectly solved) to 4 (all puzzles correctly

solved). Moreover, it makes a unique prediction about the puzzles a subject

can solve. For instance, if the measure of cognitive ability of an individual

is 2, it predicts that the individual solves the puzzles (0, 1), (1, 1) and (1, 2)

and fails all others. Second, it maximizes the number of correct predictions.

To clarify this last point, consider the following situation (“Y” stands for

“correctly solved” and “N” for “failed”):

(0, 1) (1, 1) (1, 2) (2, 2) (2, 3) (3, 3) (3, 4)

Y Y N Y Y Y Y

9A pattern of answers is consistent if there exists a threshold m∗ such that a subject

correctly solves all puzzles requiring m ≤ m∗ iterations and fails all other puzzles.
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The subject has correctly solved all puzzles but (1, 2). If we ascribe the

measure 4 to the individual, we predict that he can solve all puzzles and thus

make one prediction error. If, however, we ascribe any other number, we

make at least two wrong predictions since we would predict that he cannot

solve puzzles (3, 3) and (3, 4). Thus, we attribute the failure to solve puzzle

(1, 2) to a mistake. Alternatively, if an individual had solved puzzles (0, 1)

and (3, 4) and failed all others, his measure would be one. The fact that the

individual has solved the puzzle (3, 4) would be attributed to sheer luck.

Two additional remarks are worth making. First, if an individual has

a consistent pattern of answers, then our measure coincides with a perfect

Guttman scale. Second, two different numbers can correctly predict the

same number of outcomes. In all such situations, we decided to follow the

more conservative approach of assigning the lowest number maximizing the

number of correct predictions. Nonetheless, all our results are robust to this

choice. The two resulting measures are highly correlated (ρ > 0.86). A

standard criterion for a good measure and the existence of a one-dimensional

hierarchical scale is that the coefficient of reproducibility (i.e. the fraction of

correctly predicted outcomes) is above 0.9, Guttmann (1950). Our measure

satisfies this criterion, as it predicts 91.5 percent of the outcomes correctly.

Figure 1 shows the distribution of our measure across subjects.

4 Social preferences

In the second stage of the experiment, subjects were presented with a dictator

game, designed to provide a crude measure of social preferences. The dictator

could implement three different allocations: A = (4.5, 4.5), B = (6.0, 1.5) and

C = (3.0, 9.0), expressed in Australian Dollar and with the first coordinate

representing the monetary payoff of the dictator. Subjects had to choose be-

tween A, B or C and then to confirm their choices, so as to minimize the rate

of possible mistakes. We divided the subjects into two equal groups, G1 and

G2. Initially, subjects from G1 were anonymously and randomly paired with
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Figure 1: Empirical distribution of the measure of cognitive ability

subjects from G2 and assigned the role of dictators. Subsequently, subjects

from G2 were assigned the role of dictators and anonymously paired with a

member of G1 different from the initial match. No feedback was provided.

A selfish dictator would choose option B. For a person to choose A or

C, other-regarding preferences are necessary. For a subject to choose A over

B, the concern for the other subject must be large enough such that the

increase in the payoff of the other subjects compensates for the loss in one’s

own payoff. For a player to prefer C over the other two options, the concern

for the other subjects must be even greater. Also, note that the total surplus

increases from B to A and from A to C.

Our choice of allocations was guided by the idea that a person who prefers

C is keen on social efficiency and has strong social preferences. A person

who chooses A tends to dislike inequity, whereas a person who chooses B is

relatively selfish. For our purpose, such an admittedly crude classification of

subjects is sufficient.

In our sample of 154 subjects, 27% have chosen alternative A, 50% alter-

native B, and 23%, alternative C.
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5 Behavior in games

The last stage of our experiments consisted of twelve strategic-form games.

Each player had three pure strategies in each game. All but two games

were dominance solvable and each game has a unique Nash equilibrium in

pure strategies.10 More precisely, in three games, one round of deletion led to

the subject’s equilibrium strategy (i.e., the subject had a dominant strategy).

Two and three rounds of deletion were required in three games each, whereas

there was one game requiring four rounds. The games are presented in the

Appendix.

Six games and their respective transposed constitutes our twelve games;

most of them taken from Costa-Gomes and Weizsäcker (2008). Moreover,

all games were presented to the subjects as if they were row players. Thus,

subjects were actually playing the same twelve games and had the same

view of each game, i.e., the view of a row player. We randomized the order

of the games so as to control for possible order effects. We had four different

sequences of games, in which a subject never played a game and its transposed

in succession.11

A subject was initially seeing his own payoff, but not the payoff of his

opponent. He had to wait for 15 seconds before being able to see the payoff

of his opponent; he had to click on a button to do so.12

The monetary payoff from the second and third stage of the experiment

consisted of the payoff obtained in two randomly chosen games out of the

fourteen games played in phases two and three (twelve strategic-form games,

10In all dominance solvable games, a strictly dominated strategy was dominated by a

pure strategy.
11We found no order effects.
12We included the delay and the option to view the payoff of one’s opponent to gather

some additional information. For instance, a selfish player who has a dominant strategy

does not have to view the payoff of his opponent. Yet, mere curiosity might induce a

player to view the payoff of his opponent even if it is not needed; the delay was included

to discourage curious subjects to view the payoff of their opponents. Unfortunately, this

did not help us.
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one dictator game as the dictator and one as the receiver). Subjects were

informed about this in the instructions.

5.1 Treatments, matching and information.

To summarize, we obtain a measure of the ability to perform complex chains

of reasoning with the red-hat puzzle. To control for social preferences, we

use dictator games. We randomly rematched subjects in between stage two

and three of the experiment and informed subjects of that procedure. No

feedback was provided during stage three (i.e., the strategic-form games).

The experiment consist of four different treatments, which differ in the

level of information given to subjects in stage three. In the fullinfo treatment,

subjects were told which option the opponent had chosen in the dictator

game and how many RHPs the opponent had correctly solved. The number

of RHPs solved is a signal about the depth of reasoning of the opponent,

whereas the choice in the dictator game is a signal about the opponent’s

preferences. In the red-hat treatment, only the number of correctly solved

RHPs is provided. In the dictator treatment, the subjects were only told

the opponent’s choice in the dictator game, while in the noinfo treatment no

information was provided.

5.2 Nash behavior

This section briefly comments on the overall compliance with the concept of

Nash equilibrium. To be precise, let G be one of the twelve strategic-form

games subjects were presented with. (Remember that all games had a unique

Nash equilibrium in pure strategies.) We say that a subject plays according

to the concept of Nash equilibrium if he plays the equilibrium strategy of

G.13

13We need to be cautious here. Let G be one of the twelve strategic-form games of

the experiment and ui : ×Ai → R the payoff function in game G. The “experimen-

tally postulated” preferences for player i is <i, where (ai, a−i) <i (a′
i, a

′
−i) if and only if

ui(ai, a−i) ≥ ui(a
′
i, a

′
−i). However, if player i’s true preferences <∗

i differ from the “exper-
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Solvable in 1 round 2 rounds 3 rounds 4 rounds ∞ rounds

Nash behavior 66.67% 36.80% 32.03% 32.47% 15.58%

Table 3: Fraction of Nash behavior as a function of rounds of deletion

Table 3 reports the percentage of subjects’ behavior consistent with the

concept of Nash equilibrium, as a function of number of rounds of iterated

deletion of strictly dominated strategies required. The percentages are sur-

prisingly low. In games with a strictly dominant strategy, subjects chose the

Nash strategy about two-thirds of the time, but the fraction drops to only

about one-third for games where two, three or four rounds of iteration are

necessary. In games that are not dominance solvable, the percentage drops

even further. Tests of proportions reveal that the fraction of Nash behavior

is higher in games with a strictly dominant strategy than in all other games

(p < 0.01 for all pairwise comparisons) and lower in games, which are not

dominance solvable, than in all other games (p < 0.01 for all comparisons).

Comparing the percentage of Nash behavior to one third, i.e., as if sub-

jects play each of their actions with equal probability (L0 type), shows that

for games with a strictly dominant strategy, the percentage is significantly

higher (p < 0.01, binomial distribution test). Strikingly, for games that are

not dominance solvable, the percentage of Nash behavior is significantly lower

than one-third (p < 0.01). For the remaining games, the percentages of Nash

behavior are not significantly different from one-third.

Overall, the low agreement with Nash behavior and the fact that the

percentage of Nash behavior is significantly lower than one-third in the most

difficult games suggest the following. Firstly, Nash behavior seems to be a

poor predictor for the behavior of the subjects. Secondly, subjects are likely

to use other heuristics than Nash behavior. In what follows, we consider a

imentally postulated” preferences <i, he might still play an equilibrium strategy of the

game induced by his true preferences and yet would appear to us, the experimentalists, as

if he is not playing according to the concept of Nash equilibrium.
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rich set of behaviors, including Nash behavior, and estimate the likelihood

for the observed play to be consistent with our behavioral types.

5.3 Behavioral types

So far, we have devoted our analysis to the solution concept of Nash equi-

librium. As already alluded to, a subject’s preferences can coincide with

the “experimentally postulated” preferences, have unlimited cognitive abil-

ities and yet not play a Nash equilibrium. For instance, the subject might

be doubtful about the rationality of his opponent or might have specific

conjectures about his opponent, so that deviations from Nash behavior do

not imply bounded rationality or other-regarding preferences. After all, if

a subject expects his opponent to play a certain action, even if it is strictly

dominated, it is optimal to best-reply to it.

To address this issue, we postulate that a subject can be one of fifteen

possible behavioral types, labeled Altruistic, Pessimistic, Optimistic, L0, L1,

L2, L3, D1, D2, Equilibrium, Sophisticated, Regret, Best-reply to Altruistic,

Inequity Aversion, and Efficiency. Altruistic takes the decision corresponding

to the profile of decisions that maximizes the sum of his own and opponent’s

payoffs. Pessimistic takes the decision that maximizes his minimal payoff

over his opponent’s decision. Optimistic takes the decision that maximizes

his maximal payoff over his opponent’s decision. L0 uniformly randomizes

over his actions. L1 conjectures that his opponent plays each of his actions

with equal probability and best-replies to this conjecture, i.e., L1 best replies

to L0. L2 best replies to L1, i.e., he conjectures that his opponent plays ac-

cording to L1 and best replies to this conjecture. Similarly, L3 best replies

to L2. D1 does one round of deletion of strictly dominated strategies, con-

jectures that his opponent plays each of the remaining strategies with equal

probability, and best replies to this conjectures. D2 does two rounds of

deletion of strictly dominated strategies, conjectures that his opponent plays

each of the strategies remaining with equal probability, and best replies to his

conjectures. Equilibrium conjectures that the opponent plays a Nash equilib-
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rium strategy and best replies to this conjecture. Sophisticated best replies

to the empirical distribution of played actions in each game. The ten behav-

ioral types we have described so far are borrowed from Nagel (1995), Stahl

and Wilson (1995) and Costas-Gomez et al. (2001). We have also considered

three additional types that we ex-ante deemed promising. Regret minimizes

his maximal regret over the decision of his opponent. Best-reply to Altruistic

best replies to Altruistic. Inequity Aversion and Efficiency take equilibrium

decisions, but with other-regarding preferences à la Fehr and Schmidt (1999)

for inequity aversion and à la Charness and Rabin (2002) for efficiency.14

5.3.1 The statistical model

This section presents the statistical model adopted for the estimation of

types. For each subject i ∈ {1, . . . , n}, the vector of observables xi consists

of the play in the twelve different games, i.e., xi := (x1
i
, . . . , x12

i
) where xk

i
∈

{A, B, C} is the action played by player i in game k. Furthermore, as already

explained, we hypothesize that each subject i has a behavioral type θ ∈ Θ,

independently and identically drawn from the distribution p ∈ ∆(Θ): each

behavioral type determines a particular play in all games. For instance, in

game 3, Pessimistic plays B, while Altruistic plays A. The aims of our

statistical model is two-fold. Firstly, we want to estimate the distribution p

from the observables. Secondly, we want to assign to each subject his most

likely type (so that we can relate the type of a subject to his measure of

cognitive ability and social preferences).

We assume that in each game k, subject i of type θ plays the action

xk

i
(θ) consistent with his type with probability (1 − eθ) and plays any one

of the remaining two actions with probability eθ/2. Note that eθ is type-

specific, but it does neither depend on the game played nor on the identity

14For inequity aversion, we have used the payoff function ui(ai, aj)−1/2 max(uj(ai, aj)−

ui(ai, aj), 0)−1/4 max(ui(ai, aj)−uj(ai, aj), 0) where u is the material/experimental pay-

off, while for efficiency, we have used ui(ai, aj) +0.5uj(ai, aj) if uj(ai, aj) > ui(ai, aj) and

0.5ui(ai, aj) + 0.5uj(ai, aj) if ui(ai, aj) ≥ uj(ai, aj).
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of a subject. It is also worth noting that if eθ = 2/3, a subject uniformly

randomizes over his three actions. This simple observation makes it possible

to identify the L0 type.

Denote xi(θ) the number of actions consistent with type θ out of subject

i’s profile of actions xi, i.e., xi(θ) := |{k : xk

i
= xk

i
(θ)}|. It follows that the

probability that subject i of type θ plays the sequence xi of actions is:

Pr(xi|eθ, θ) = (1 − eθ)
xi(θ)(eθ/2)12−xi(θ).

Thus, the probability that subjects play the profile x := (x1, . . . , xn) is:

Pr(x|e, p) =
∏

i

(

∑

θ

p(θ)(1 − eθ)
xi(θ)(eθ/2)12−xi(θ)

)

,

where e is the profile of error rates (eθ)θ. The log-likelihood l((p, e)) of (p, e)

is thus given by:

∑

i

ln

(

∑

θ

p(θ)(1 − eθ)
xi(θ)(eθ/2)12−xi(θ)

)

.

To maximize the log-likelihood l((·, ·)) with respect to (p, e), we implement

the EM algorithm of Dempster et al. (1977) (see also Redner and Walker,

1984; Little and Rubin, 1987; El-Gamal and Grether, 1995). More precisely,

the t-th iteration of the algorithm is as follows. Given the current estimate

pt

i
of the distribution of player i’s type, the M(aximization) step produces

the estimates

(et

θ
)θ ∈ arg max

(eθ)θ

n
∑

i

∑

θ

pt

i
(θ) ln((1 − eθ)

xi(θ)(eθ/2)12−xi(θ)).

After some algebra, we obtain that the estimate et

θ
for type θ is

et

θ
:=

∑

i
pt

i
(θ)[12 − xi(θ)]

12
∑

i
pt

i
(θ)

.

Then, the E(xpectation) step defines the consistent estimator for the type

distribution pt as pt := (1/n)
∑

n

i=1 pt

i
and computes pt+1

i
as the Bayesian

posterior of pt given the estimated error terms (et

θ
)θ:
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pt+1
i

(θ) =
(1 − et

θ
)xi(θ)(et

θ
/2)12−xi(θ)pt(θ)

∑

θ∈Θ(1 − et

θ
)xi(θ)(et

θ
/2)12−xi(θ)pt(θ)

.

Lastly, to initialize the algorithm, fix p1 in the interior of ∆(Θ).15 The

procedure is repeated until convergence. We refer the reader to Redner and

Walker (1984) for more details about the EM algorithm and mixture density

models (as ours).

The confidence intervals are obtained by bootstrapping, as analytical

standard errors are not available.16 For model selection, we use three dif-

ferent criteria for fit and discriminatory power: the Akaike Information Cri-

terion (AIC) adjusted for small samples, the Bayesian Information Criterion

(BIC) and the Average Normalized Entropy (ANE). The lower AIK and BIC

are, the better is the model.

Let pi ∈ ∆(Θ) be the estimated distribution over subject i’s type. Clearly,

if pi is close to the uniform distribution, the estimation is not very informative

about the “true” type of subject i. Alternatively, if pi assigns probability 1

to a particular type, the estimation is very informative. A good measure of

the informativeness of pi is its entropy. More precisely, we use the Average

Normalized Entropy (proposed by El-Gamal and Grether, 1995) as a measure

of the informativeness of our estimated model. It is given by:

ANE = −
1

N

N
∑

i=1

|Θ|
∑

θ=1

pi(θ) log|Θ| (pi(θ)) .

The ANE takes on values between zero and one. The ANE is zero if

all subjects have an estimated probability of one for one type (a perfect

15We chose the uniform distribution as the initial prior. Yet, our results are robust to

this choice.
16For the bootstrap, we re-sampled the original data with replacement, with the number

of observations equal to the number of observations in the original data, and re-performed

the estimation. After 1000 re-samplings, we used the resulting distributions of estimates

to determine the bootstrap confidence intervals.
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classification) and is one if each subject has an estimated distribution that

is uniform. The higher the entropy, the less informative is the model.17

5.3.2 Econometric results

Table 4 reports our estimation results for different models. We started with

the full model containing all our types and then eliminated the types with

inconsistent error estimates.18 After removing the inconsistent types, we ar-

rive at Model 1, which includes the same types as in Costa-Gomes et al.

(2001). For model selection, we now proceed in two steps. First, we remove

the types with estimated error rates of close to two-thirds (i.e., Nash, Pes-

simistic, and L3) and replace these types by the type L0.19 A test of whether

this procedure is valid involves the resulting error rate for the L0 type in the

new model (Model 2, second column in table 4). An error rate of close to

two-thirds is required for the new model, Model 2, to pass the test. Since

the error rate for the new type is indeed close to two-thirds, we are confident

that we successfully identify the L0 types in the sample.

Second, starting from Model 2, we check if reducing the model further

can improve parsimony without worsening the fit. No other reduced model

improves the values of both BIC and AIC. Yet, removing Sophisticated

and D2 (Model 3) improves the BIC score but worsens the AIC score. If,

furthermore, we consider the average normalized entropy ANE, Model 3 out-

performs Model 2 in two of our three criteria for fit and discriminatory power.

All other combinations of the types in Model 1 are dominated in all crite-

ria. Accordingly, we choose Model 3 as our preferred model and use it for

17El-Gamal and Grether (1995) regard values below .38, which was the highest value

they observed in their study, as good.
18Estimated error rates of well above two-thirds imply that subjects played the strategies

consistent with their behavioral types with a lower probability than any of the other two

alternatives.
19Concretely, we created a pseudo-type L0 that plays B with the error rate e. Whenever

e is equal to two-thirds, this pseudo-type is nothing else than the true type L0.
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Type Model 1 Model 2 Model 3

p e p e p e

Nash 0.008 0.767

[0.00; 0.14] [0.32; 0.87]

Altruist 0.068 0.212 0.071 0.219 0.070 0.214

[0.03; 0.16] [0.06; 0.45] [0.03; 0.15] [0.06; 0.45] [0.02; 0.16] [0.06; 0.42]

Optimist 0.018 0.182 0.020 0.195 0.020 0.196

[0.01; 0.08] [0.09; 0.98] [0.01; 0.10] [0.09; 1.00] [0.01; 0.12] [0.09; 1.00]

Pessimist 0.132 0.722

[0.00, 0.18] [0.45; 0.84]

L1 0.582 0.247 0.581 0.247 0.599 0.249

[0.44; 0.68] [0.20; 0.29] [0.45; 0.68] [0.21; 0.29] [0.49; 0.70] [0.22; 0.28]

L2 0.147 0.250 0.146 0.249 0.154 0.249

[0.07; 0.22] [0.17; 0.32] [0.07; 0.23] [0.17; 0.33] [0.08; 0.24] [0.18; 0.33]

L3 0.006 0.616

[0.00; 0.13] [0.09; 0.69]

D1 0.015 0.109 0.015 0.109 0.016 0.111

[0.00, 0.06] [0.09; 0.74] [0.00; 0.09] [0.09; 0.75] [0.00; 0.07] [0.09; 0.75]

D2 0.004 0.154 0.004 0.152

[0.00; 0.16] [0.11; 0.79] [0.00; 0.16] [0.11; 0.77]

Sophist. 0.019 0.229 0.020 0.233

[0.00; 0.09] [0.16; 0.89] [0.00; 0.11] [0.16; 0.91]

L0 0.143 0.685 0.142 0.678

[0.01; 0.18] [0.50; 0.91] [0.01; 0.20] [0.51; 0.84]

ln(L) −1423.627 −1425.704 −1431.824

AIC 2888.090 2883.146 2886.577

BIC 2942.957 2926.962 2919.053

ANE 0.201 0.203 0.200

Table 4: EM estimation of types
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Figure 2: Posterior probabilities for subjects being of a certain type

Figure 2 demonstrates further that Model 3 gives a crisp separation of

types. Figure 2 plots the empirical distribution across subjects of the esti-

mated posterior probability p(θ|xi) of type θ for the six types in Model 3. We

observe that for most types, the empirical distribution is concentrated around

0 or 1, which confirms the excellent discriminatory power of our model. This

is further corroborated by the relatively low ANE.

Lastly, we assign to each subject the behavioral type with the highest

estimated posterior probability. More than 73% of subjects have a maximum

20All subsequent findings are robust to this choice. In fact, only one subject’s type

classification changes (from Sophisticated to L2) when we switch from Model 2 to Model

3.
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posterior probability of at least 0.75 and still half of the subjects have a

maximum posterior of more than 0.9. Figure 3 shows the resulting type

distribution.
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Figure 3: Distribution of behavioral types

We first note that no subject is best described as the Nash type. This

is largely consistent with the observations made in Section 5.2. Moreover,

the distribution over types in our sample is roughly consistent with existing

findings. Some of the games in our experiments were first used by Costa-

Gomes and Weizsäcker (2008), who concluded that their subjects typically

behaved as L1 types. Our results are consistent with this finding: the most

prevalent type in our sample is the L1 type (roughly 63% of the subjects).

Additionally, in an earlier study, Costa-Gomes et al. (2001) equally found

L1 to be the most prevalent type in their econometric analysis of behavioral

types with information about search patterns. The next largest group of

subjects (15%) are subjects classified as type L2.21 Note that behaving as

an L2 type is near optimal in our sample, as L1 is the most prevalent type

and L2 best replies to L1.22 We will return to this point in the next section.

21In their econometric analysis of behavioral types without information about search

patterns, Costa-Gomes et al. (2001) found L2 to be most prevalent type.
22A Sophisticated type would certainly do better; but according to Model 3 we did not
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Next, we need to mention that we found a large number of subjects (almost

12%) exhibiting L0 behavior. The remaining subjects were classified as either

Altruistic (about 6%) or Optimistic (1%).

6 Cognitive ability, preferences and behavior

This final section combines our previous results in order to analyze the rela-

tionships between cognitive abilities, preferences and behavior in strategic-

form games.

We first analyze the relationships between cognitive ability and behavior.

Prima facie, we would expect subjects with a higher measure of cognitive

ability to display a more sophisticated behavior (e.g., L2) in games. Figure 4

plots the distribution of cognitive abilities per behavioral type. About 70%

of the L2 types have a measure of cognitive ability of two or above and 72%

percent of L0 types have a measure of one. This observation is reassuring as

L0 behavior does not require to put oneself in the position of the opponent,

which subjects with a cognitive ability of one cannot do. On the contrary, L2

behavior does require to put oneself in the position of the opponent, which

subjects with a cognitive ability of two or more can do. Mann Whitney

U-Tests confirm the observation that more sophisticated types have better

cognitive abilities. An L2 type tends to score higher on our cognitive ability

measure than an L1 type and an L0 type (p < 0.01 vs. L0, p < 0.02 vs. L1;

one-sided tests). Also, an L1 type tends to have a slightly better cognitive

ability than an L0 type (p < 0.09).

An additional piece of evidence for the impact of cognitive abilities on

behaviors in strategic-form games is the fact that all Optimistic subjects

have a measure of cognitive ability of one.

Finding 1 There is a positive relationship between cognitive abilities and the

level of strategic sophistication in strategic-form games.

find this type in the sample.
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Figure 4: Cognitive abilities of different types

We now turn our attention to the relationship between the “revealed”

preferences in the dictator game and behavior in strategic-form games. Fig-

ure 5 plots the distributions of behavioral types as a function of the alterna-

tive chosen in the dictator game and cognitive abilities.

Independently of the cognitive ability, the distribution of behavioral types

differs with the alternative chosen in the dictator game (likelihood-ratio χ2-

tests, p < 0.01 and p < 0.02). In particular, the large majority (more than

80%) of Altruistic types have chosen alternative C in the dictator game, the

alternative associated with a taste for social efficiency. Moreover, for the

subjects with a cognitive ability of one, this constitutes the main difference.

Altruistic contributes more than 50% to the χ2 statistic. However, for sub-

jects with a cognitive ability of two or more, the distributional differences are
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Figure 5: Choices in dictator games and behavioral types

driven by both Altruistic and L2 types. These two types contribute more

than 55% to the χ2 statistic. A switch from alternative A or C to alter-

native B in the dictator game increases the relative frequency of L2 types

considerably.

Finding 2 Subjects who have chosen the efficient alternative C in the dicta-

tor game are more likely to behave as Altruistic. Conditional on a cognitive

ability of two or more, subjects who have chosen the (selfish) alternative B in

the dictator game are more likely to behave as L2 type than their non-selfish

counterparts.

To understand this last finding, recall that Lk types are defined with

respect to “selfish” preferences, i.e., assuming that the monetary payoffs
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coincide with a subject’s preferences. Also, subjects with a cognitive ability

of two or more have the ability to perform counter-factual reasoning, as the

behavior of an L2 type requires. Both observations explain why the relative

frequency of L2 types is greater among subjects with a cognitive ability of

two or more, who have chosen the (selfish) alternative B in the dictator game.

We now investigate whether there are some treatment effects, i.e., if and

how subjects react to information provided to them. We hypothesize that

subjects with a cognitive ability of one do not react to information about ei-

ther the cognitive ability (red-hat treatment ) or preferences (dictator treat-

ment) or both (fullinfo treatment ) of their opponents, while subjects with a

cognitive ability of two or more do react. Intuitively, the information about

the number of red-hat puzzles the opponent has solved or about the choice

in the dictator game is a signal about the cognitive ability and preferences

of the opponent and, thus, about the opponent’s view of the strategic situa-

tion. To make use of this information, however, requires to be able to think

through the opponent’s eyes, which subjects with a cognitive ability of two

or more can do, while subjects with a cognitive ability of one cannot. Figure

6 shows the distribution of behavioral types per treatment for the subjects

with a cognitive ability of one.

A likelihood ratio χ2-test shows that there is no significant association

between the treatment and the type frequencies (p > 0.28). Inspecting the

graph and the contribution to the χ2 statistic reveal that if there is an effect

at all, which is not significant though, then it is the near disappearance

of Altruistic and the increase in the frequency of L0 types in the dictator

treatment.

Finding 3 Subjects with a cognitive ability of one do not significantly react

to information. If at all, information about the dictator games decreases the

fraction of Altruistic types and increases the fraction of L0 types.

We now turn to the subjects with a cognitive ability of two or more.
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Figure 6: Treatments and behavioral types (subjects with a cognitive ability

of one)

Figure 6 shows the distribution of behavioral types per treatment for these

subjects. Visual inspection suggests that there is an association between the

treatments and the distribution of types. A likelihood ratio χ2-test confirms

this (p < 0.065).

A closer analysis of the types that contribute the most to the likelihood ra-

tio χ2 score shows that these are L2 and Altruistic. The Altruistic score con-

tribution in the dictator treatment is about 40% of the total score, whereas

the contribution of the L2 types across all treatments is close to 30%. This

implies that the differences in type distributions across treatments are largely

driven by the changes in relative frequencies of these two types.

A closer look at Figure 6 is revealing: there is no Altruistic type in the
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Figure 7: Treatments and behavioral types (subjects with a cognitive ability

of two or more)

noinfo and red-hat treatments, i.e., the treatments with no information about

the choice in the dictator game, while there are Altruistic types in the two

other treatments. Moreover, in the treatments where information about the

dictator games was revealed, three-quarters of the subjects behaving as Al-

truistic have observed their opponents choosing alternative A or C in the

dictator game, i.e., a “non-selfish” alternative. This provides some evidence

that Altruistic type chose the socially efficient allocation after strategic con-

siderations.23

Finding 4 A subject with a cognitive ability of two or more is more likely

23All the subjects with higher cognitive ability classified as Altruists had chosen a

non-selfish option.
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to behave as Altruistic if he is informed that his opponent did not choose the

“selfish” alternative in the dictator game.

Lastly, we consider the differences between treatments noinfo, red-hat and

fullinfo. See Figure 7. From the noinfo treatment to the red-hat treatment,

the fraction of L2 types increases by about 130%, whereas the increase is

even greater from the dictator treatment to the fullinfo treatment (more

than 250%). The increase of the fraction of L2 types comes at the expense

of L1 types (and also the L0 types in the red-hat treatment). Furthermore,

it is illuminating to consider the sub-sample of subjects who have chosen the

selfish alternative in the dictator game. In that sub-sample, we are only left

with k-level types plus a few D1 types; Altruistic and Optimistic disappear.

The fraction of L2 types doubles: from 0.25 to 0.5 from the noinfo treatment

to the red-hat treatment and from 0.22 to 0.44 from the dictator treatment

to the fullinfo treatment. A Mann-Whitney U-test confirms that “selfish”

subjects with a cognitive ability of two or more behave more sophisticatedly

in treatments where information about the cognitive abilities of opponents

is provided (p < 0.05, one-tailed).

Finding 5 Subjects with a cognitive ability of two or more behave more so-

phisticatedly when information about the cognitive abilities of opponents is

provided.

A simple explanation for the shift towards more sophisticated behavior

when information about the cognitive abilities of others is given is as fol-

lows. Without information, subjects with a cognitive ability of two or more

are overconfident about their own cognitive abilities and expect most other

subjects to have worse cognitive abilities. With information, however, sub-

jects have to revise their expectation upwards. This explains the significant

increase of the number of L2-types at the expense of L1-types. Moreover,

since L2 best replies to L1 and L1 is the most prevalent type in the sample,

L2 is nearly optimal. In fact, compared to Sophisticated, the ideal of game

theory, L2’s loss in payoff (in our sample) is only 1.15%. In other words, L2
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types make almost 99% of the payoff a Sophisticated type would have made,

and L2 is a substantially simpler heuristic. In sharp contrast, behaving as

a Nash type would have guaranteed no more than 90% of the payoff of a

Sophisticated type. In our experiment, behaving as an L2 type proved to be

an extremely sophisticated behavior.

7 Conclusion

This paper has analyzed the relation between cognitive abilities and behavior

in strategic-form games. To this end, we first measured subjects’ cognitive

abilities with the help of a computerized version of the red-hat puzzle. A

large fraction (47.4% according to our conservative measure) of subjects were

able to perform counter-factual reasoning and showed the cognitive ability

required to put themselves in the position of their opponents. These subjects

satisfied one of the most essential idea of Game Theory, strategic thinking.

In a second step, we estimated behavioral types from the choices made

by the subjects in the twelve strategic-form games and related it to the

subjects’ cognitive abilities. Prima facie, the behavior of our subjects did not

seem very sophisticated, since we did not find evidence for Equilibrium or

Rational expectation types. Closer inspection revealed that subjects showed

a remarkable level of sophistication though. Comparing the subjects without

the ability to perform counter-factual reasoning with the subjects with this

ability revealed a large shift from L0 and L1 types towards L2 and D1. Most

remarkably, types L2 and D1 behaved near optimal. The expected payoff for

these types (given the empirical distribution of choices in the sample) totaled

about 99% of the payoff a subject with rational expectations would have

been able to achieve. For comparison, playing according to Nash equilibrium

would have resulted in a much lower expected payoff of about 88% of the

rational expectation payoff.

Subjects, who were able to perform counter-factual reasoning, also made

use of information on the opponents’ in a sophisticated and profitable man-
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ner. Providing these subjects with information on the opponents’ cognitive

abilities further shifted the type distribution towards the near optimal types

of L2 and D1. This is good news for theories on learning in games. Over

all, the level of strategic sophistication of the subjects with the capacity for

counter-factual reasoning is well beyond our initial expectation.
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A Games

This section presents the 12 games that each subject played. For any i > 1

even, game i is the transposed of the game i − 1. Games 5 and 7 are taken

from Costa-Gomes and v. Weizsäcker (2008), while game 9 is adapted from

Costa-Gomes and v. Weizsäcker. In parentheses, we indicate the number of

rounds of deletion of strictly dominated strategies required to reach the Nash

equilibrium, while we indicate in bold the Nash payoff. Iteration n consists in

deleting all pure strategies that are strictly dominated when the opponent’s

strategy space is given by the strategies not deleted at iteration n − 1.

A B C

A (47,56) (13,68) (17,17)

B (62,37) (35,45) (19,21)

C (46,21) (20,22) (12,19)

Game 1 :(1,1)

A B C

A (82,63) (44,37) (14,72)

B (92,21) (26,29) (48,36)

C (36,17) (71,41) (16,63)

Game 3 :(2,1)

A B C

A (73,80) (20,85) (91,12)

B (45,48) (64,71) (27,59)

C (40,76) (53,17) (14,98)

Game 5 :(3,2)

A B C

A (74,38) (78,71) (26,43)

B (96,12) (10,89) (37,25)

C (15,51) (83,18) (39,62)

Game 7 :(2,3)

A B C

A (30,59) (34,91) (96,43)

B (36,48) (85,33) (39,18)

C (49,86) (43,14) (25,55)

Game 9 :(4,3)

A B C

A (92,41) (36,26) (24,22)

B (43,17) (70,50) (40,87)

C (75,16) (49,75) (57,35)

Game 11 :(∞,∞)
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B Behavioral types

Table B compactly presents the predicted play of an individual of type θ in

any of our twelve games. In each cell of the table, the vector (·, ·) represents

the predicted play of the row player and the column player (the first element

corresponds to the row player). For instance, an Altruistic type is predicted

to play A in game G7 as a row player and B as a column player. To obtain

the predicted play in game Gn for n > 1 even, it suffices to consider the

play in game G(n− 1) and to permute the vector. For instance, in game G4,

pessimistic is predicted to play C as a row player and B as a column player.

Types G1 G3 G5 G7 G9 G11

Altruistic (A,A) (A,A) (A,A) (A,B) (A,C) (A,A)

Pessimistic (B,B) (B,C) (B,B) (C,A) (B,A) (C,B)

Optimistic (B,B) (B,C) (A,C) (B,B) (A,B) (A,C)

L1 (B,B) (B,C) (A,A) (A,B) (A or B,A) (C,B)

L2 (B,B) (B,C) (A,B) (C,A) (C, A or B) (B,B)

D1 (B,B) (B,C) (A,B) (C,B) (B, A) (C,B)

D2 (B,B) (B,C) (B,B) (C,B) (B, A) (C,B)

Sophisticated (B,B) (B,C) (A,B) (A,B) (B, B) (B,B)

Minimax regret (B,B) (A,B) (A,A) (A,B) (A,A) (B or C,B)

Best reply to altruistic (B,B) (B,C) (A,B) (C,B) (A,B) (A,A)

Taste for efficiency (B,B) (C,B) (A,A) (A,B) (C,A) (No pure,No pure)

Inequity aversion (B,B) (C,B) (A,A) (A,B) (C,A) (No pure,No pure)

L3 (B,B) (B,C) (B,B) (C,C) (B or C, A) (B,C)

NE (B,B) (B,C) (B,B) (C,C) (C, A) (A,A)

Table 5: Predicted behaviors in all games
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