News and events archive 2004 - 2013

NEWS - PRESS RELEASES

Engineer to spearhead research into cell metabolism and medical injuries

Dr Declan Bates, a senior lecturer in the Department of Engineering and co-recipient of two grants for research into Systems Biology.

Engineer to spearhead research into cell metabolism and medical injuries

Grants totalling over £1m for engineering-biology collaboration

Issued 9 May

A University of Leicester engineer has won a share of grants totalling over £1m to target lung injury and cancer.

In an unusual move, Dr. Declan Bates, a senior lecturer in the Department of Engineering at the University of Leicester, is co-recipient of £1,068,000 in the form of just two research grants: one from the Engineering and Physical Sciences Research Council (EPSRC) and the other from the Biotechnology and Biological Sciences Research Council (BBSRC).

The grants are shared between academics at Leicester and Nottingham and Aberdeen.

The first will be used to examine how lung injury can be prevented in patients who are on ventilators; the second, to investigate a potential target for future cancer treatments.

“These may seem worlds apart -especially for an engineer, but they’re united by a common factor – feedback control theory – which of course is a science in its own right,” said Dr Bates.

He added: “It might seem odd that a life-support machine can cause injury, but this is actually not uncommon. The majority of critically ill patients in Intensive Therapy Units (ITU) spend some time with their lungs ventilated using a mechanical ventilator or “life-support machine”. However, mechanical ventilation exposes patients’ lungs to potentially damaging positive pressures, and as a result, ventilator-associated lung injury (VALI) is a common and significant occurrence. Prolonged stays in the ITU may be generated, pneumonia may be precipitated and lifelong lung scarring may result. The scale of the problem is such that 2.9% of people receiving mechanical ventilation suffer VALI each year, which represents several thousand individuals in the UK each year.

Dr Bates will be looking at these problems in terms of feedback control in order to find ways to optimally adjust the ventilators to allow them to do their job better while minimising injury. This is highly complicated, and previous attempts have had to rely on ‘idealised’ subjects. Dr Bates will perform population modelling, making his findings applicable to real patients.

With the second grant, Dr Bates will investigate how biochemical pathways are regulated in human cells, which could lead to improved anti-cancer drugs.

A class of molecules called polyamines are crucial to the health of the cells in your body. Cells normally regulate polyamine levels very tightly as changes in their concentrations can cause the cells to die, become cancerous, or give rise to other diseases.

Understanding how various biological control processes interact to keep everything on an even keel is a tall order, and one that can only be addressed with the new field of Systems Biology.

Dr Bates will draw on the expertise of biologists and control engineers to mathematically model the pathways involved. This will teach us how the control systems operate and how cells stay healthy, but should ultimately lead to therapies specific to the problems that arise when they go wrong.

Dr. Bates says:

“This interdisciplinary approach is required as a direct response to the complexity of the mechanisms being studied, which renders standard biological approaches inadequate.”

\Ends

Notes

Grants from the Engineering and Physical Sciences Research Council (EPSRC) of £432,000 (Full Economic Cost) awarded to Dr. D. G. Bates and Dr. J. Hardman of the University of Nottingham.

Grants from the Biotechnology and Biological Sciences Research Council (BBSRC) of £586,000 (Full Economic Cost) awarded to Dr. D. G. Bates and Drs. I. Stansfield and H. Wallace of the University of Aberdeen.

Both grants will be taken by the recently set up Systems Biology Lab (www.sblab.org), an engineering/biology collaboration at the University of Leicester.

For further information, please contact Dr Declan Bates: +44-116-2525642 dgb3@le.ac.uk

[University Home]. [eBulletin]. [University Index A-Z]. [University Search]. [University Help]
Managed by Press Office
[Copyright] and [Disclaimer]