Chromosome Analysis and Molecular Cytogenetics

Pat Heslop-Harrison phh4@le.ac.uk www.molcyt.com Including talk slides! www.molecularcytogenetics.com **UserID/PW** 'visitor' **Blog: AoBBlog.com Twitter: pathh1**

March 2011

University of

Leicester

- The parents look similar, sharing many genes
- Total genomic DNA as a probe labels the parental genomes differentially

The parents look similar, sharing many genes

- Total genomic DNA as a probe labels the parental genomes differentially
- Farah Badakshi, John Bailey, Trude Schwarzacher, Marian Orgaard

'Golden Yellow' triploid 2n=3x=14 *C. flavus* 2n=2x=8 (8 yellow) *C. angustifolius* 2n=2x=12 (6 green)

Orgaard, Jacobsen & HH

Metaphase I in triploid Golden Yellow Crocus

In many metaphase I cells of this triploid, we see four bivalents from pairing of the four pairs of *C. flavus* (2n=2x=8)-origin chromosomes, with the six chromosomes from *C. angustifolius* (2n=2x=12) present as univalents.

Alternative meiotic configurations were also identified: eg 3 bivalents and 8 univalents.

Metaphase I in tripiold Sattron (*L. sativus*)

Saffron, the world's most expensive spice, consists of the stigmus of *Crocus* sativus, a sterile triploid (21=3x=24). One wild ancestor is *C.* cartwrightianus (2n=2x=16), but the other is unknown.

Metaphase I cells of this triploid (2n=3x=24) showed as few as 8 structures, a mixture of trivalents, quadrivalents and univalents.

Meiotic prophase in triploid Saffron (*C. sativus*) an object (France and String) how the page side of lateral element formation

and pairing

TOITORIAL OFFICES IN US AUSTRALIA, CANADA, CHINA, JAPAN AND

Genlisea aurea 1C = 63·6 Mb

Genome Sites

Volume 107

Number 3 March 2011

WWW.30

Fa

Arabidopsis

Human

Pine

Genome sizes: reading them out

For HIV type 1 Virus
Bacteria (E. coli)
Yeast

- r Genlisea
- Arabidopsis
- 🖉 Man
- Wheat
- *r* Paris

base-by-base 2hr 40 min 53 days 138 days 2 years 5 years 100 years 5 centuries 4 millennia

A special report on feeding the world

The 9 billion-people question

1841

256

The world's population will grow from almost 7 billion now to over 9 billion in 2050. John Parker asks if there will be enough food to go round

Feb 24th 2011 | from the print edition

The Economist

Global food demand, 1961=100

Molecular Cytogenetics

- Part I: Chromosomes
 - Genomes and their sizes
 - DNA components of a chromosome
 - Retroelements
 - Chromosomes and sources of genetic markers
- - Polyploids and cereal chromosome evolution
 - Plant breeding and aliens

OBJECTIVES Fundamental and Practical

- Explain major structures and features of the DNA in genomes
- Understand the structure of chromosomes and genomes
- Explain the nature and origin of molecular markers
- Understand key events in evolution and generation of diversity including induced mutations

OBJECTIVES Fundamental and Practical

- Understand how genomes and diversity can be manipulated and exploited
- Relate genome information and models to the applications in the genome of particular species
- Control Con
- Introduce the concept of superdomestication into breeding programmes and consider solutions to major problems facing breeders and farmers
- Use the literature relating to genomics, genetics and plant breeding and communicate it in writing

Molecular Cytogenetics

- Lecture10.05-11.00
 - 11.10-12.00

Microscopy (Adrian 264 near computer room)
Three slots: 3.00 - 3.30 - 4.00

 Nothing in Biology Makes Sense
 Except in the
 Light of Evolution

Theodosius Dobzhansky (1900-1975)

The American Biology Teacher, March 1973 (35:125-129).

Darwin: The final paragraph of "The Origin"

It is interesting to contemplate ... many plants of many kinds ... and to reflect that these elaborately constructed forms, so different from each other ...

Darwin: The final paragraph of "The Origin"

It is interesting to contemplate ... many plants of many kinds ... and to reflect that these elaborately constructed forms, so different from each other ... have all been produced by laws acting around us ... from so simple a beginning endless forms most beautiful and most wonderful have been, and are being evolved.

Components of a Chromosome

Arm: 10-500 Mb

Arm: 0-1000 Mb

Centromere

Telomeres

Genes!

Packaging - Division - Organization Replication and Transcription - Enzyme access - Regulation

- Basic 'unit' of DNA in a cell
- Basic unit of heredity Thomas Hunt Morgan 1911

Macromolecule of DNA

- very long, continuous
- Contains genes, regulatory elements, other sequences
- Structural components
- A broader definition of "chromosome"
 - includes the DNA-bound proteins which serve to package and manage the DNA.
- The word *chromosome* comes from the Greek χρώμα (chroma, colour) and σώμα (soma, body) due to its capacity to be stained very strongly

Somatic metaphase chromosomes

Arabidopsis

Human

Pine

Centromere

Telomere

The Genome and Chromosomes

- The DNA is organized in multiple chromosomes
- Each is a single, linear DNA molecule
- The DNA is packaged around proteins (histones)
- The nuclear chromosome has special sequences at its ends

- There are separate genomes in the plastids and mitochondria
- There can be viral and bacteria-like genomes in the nucleus and cytoplasm

Repetitive DNA-Sequences form the largest part of the genome

Genome size
145 Mbp
758 Mbp
12000 Mbp
8800 Mbp
15100 Mbp

These species are all diploid – 2x

3000 Mbp

Genome

- Genes and regulatory sequences make up a small proportion of the genome
- The majority of DNA sequences in all higher eukaryotic genomes are repetitive sequences (50-90%)
- JUNK no?; FUNCTION largely unknown

What is the rest of the genome?

- Repetitive DNA
 - Repeated genes
 - rDNA (45S and 5S)
 - Sequence motifs from 2 to 20,000 bp long ...
 - Repeated thousands of times in the genome

Aegilops umbellulata DAPI 18S-25S rDNA 5S rDNA

Xana Castilho & Pat Heslop-Harrison

Fluorsecence microscopy

Fluorescence microscope filter properties

violet blue cyan green yellow red

Fluorsecence microscopy

Multi-colour FISH:

- Hybridizing two or more DNA pobes simultaneous
- Multibandpass filters

Chromomycin A3: binds to GC rich DNA sequences

Fluorescent banding

DAPI: AT-rich ChromomycinA3: GC-rich

DAPI
Triticale: wheat x rye hybrid

In situ (and array) hybridization technology

Detection of Hybridization sites

Chromosome preparation

What are the most important things you have learned so far?

What are the most important things you have learned so far?

My answer: CONTACTS ... lecturers and other students. SOURCES OF INFORMATION ... solving the overload

÷ → C ↑ ⓒ ww BBC - Homepage ■ EJP A	w.google.com/ig AoB 💑 AoB Blog « 🗋 Post to CiteULike The Times Higher Educatio	Import to Mendeley 🚯 Blackboard 🗋 Share on FriendFeed 🗋 www.h	pa.org.uk/
Neb I mages Vide	os Maps News Shopping Gmail more - iGoogle	bogle Search I'm Feeling Lucky	Pat H
🗄 Home 🛛 👻	AoB Blog	MicrobiologyBytes	Gatsby Plants Plant News fee
Ipdates Friends	 Mechanical perturbation of Arabidopsis Darwin reviews reviewed Disproving a C4 reversion in Eragrostis 	 New Year resolution failure There's an awful lot of zombie ant fungi in Brazil Innate immune sensing of DNA viruses 	 India needs more plant tax Agriculture: A bowl half full Alien plant invaders threat Parks
Search contacts Pat Heslop-Harriso available David Ray Devid Ray Devid Ray	Google Reader: Starred items Image: Comparing chromosome and mitochondrial from Chromosome Research (Online First™) Image: Comparing chromosome Research (Online First™)	 Science of the Invisible Cracking the mysteries of R For the last two years I've been slowly working my way towards a new approach to teaching statistics. As my teaching load eases off I've finally Eace to face #scireadr A discussion breaks out #oerbital 	 BBC News - Science & Environ IF UK rocket test for 1,000mg The first full test firing of the rocket that will power a Bri to over 1,000mph (1,670kg will take place in the comin IF EU 'won't change carbon t IF Nasa Glory launch ends in
	 A Three-Dimensional RNA Motif in Potato from <u>The Plant Cell current issue</u> Improved reporting shows wider prevalence of from <u>Health Protection Agency</u> Pathh1: Plant Breeding: It's a Journey, Not a from Twitter / Pathh1 	Nature - Issue - nature.com science feeds	Weather Nimes, Languedoc-Roussi 14°C Current: Current

TweetDeck v0.37.5 \square

Search: annbot

Link: Feeding the World – who pays? http://dlvr.it/JQG9d

annbot, [+] Sun 06 Mar 12:52 via dlvr.it

Mechanical perturbation of Arabidopsis http://dlvr.it/JFF1m

annbot, [+] Fri 04 Mar 13:27 via dlvr.it

Darwin reviews reviewed http://dlvr.it/J82zN

annbot. [+] Thu 03 Mar 13:04 via dlvr.it

ANNbotRT

Ŀ

🕀 🚷

Search: pathh1

Feeding the World - who pays? Alun Cann's commentary on The Economist article on the 9 billion people question. http://t.co/VdB3e44

Pathh1, [+] Sun 06 Mar 15:16 via FriendFeed

Lots of good points on informal learning, social networks and teaching from Steve Wheeler, Plymouth. tks @rusource http://slidesha.re/e4Go8H

Pathh1, [+] Sun 06 Mar 10:50 via web

Plant Breeding: It's a Journey, Not a Destination. From US National Assn of Plant Breeders. http://bit.ly/iaoR79

Pathh1, [+] Fri 04 Mar 15:42 via TweetDeck

Search: chromosomes

Photosynthesis, Homologous Chromosomes, Cellular Respiration, Oxidative Phosphorylation, Meiosis, Deoxyribonucleic Acid. #FML B

۸

 Anthony_WSUC, [+] Mon 07 Mar 09:26 via txt

E

.

Réplication des chromosomes et lutte contre le #cancer http://goo.g/NS5W2 #biothérapies

 PierricChalois, [+] Mon 07 Mar 09:11 via web

Holy cow - read a great paper, was looking up more by same author she uses Mendeley - just asked to connect, Wow, Just wow,

 kerryjcom, (RT by mendeley_com), [+] Mon 07 Mar 11:49

NOR: rDNA loci vary in number, position and size

- Coding regions (nS) highly conserved, e.g. 18S gene of soybean shares 75% nucleotide homology with yeast.
 - Thus can compare over a long evolutionary distance
 - Can be used as anchors for PCR amplification
- Spacer regions highly variable
 - Species or below
 - Genus
 - Populations (sometimes)

IGS...InterGenic Spacer or non-transcribed spacer ITS...Internal Transcribed Spacer

Arabidopsis thaliana 2n=10

rDNA sites in Triticeae Genomes

What is the rest of the genome?

- Repetitive DNA
 - Repeated genes
 - rDNA (45S and 5S)
 - Sequence motifs from 2 to 20,000 bp long ...
 - Repeated thousands of times in the genome

Tandem Repeats

- Where each arrow is a single unit of a repeat
 - often a multiple of 180 bp but up to 10kb long

- Head-to-tail organization
- GCGCTAG GCGCTAG GCGCTAG GCGCTAG GCGCTAG GCGCTAG

Repeated DNA sequences

motifs of 2-1000s of bp, repeated 10-10 000x

- Tandem repeats
 - genes: rDNA, histones
 - Iong tandem repeats or satellite sequences
 - simple sequence repeats
 - Microsatellites
 - Minisatellites

Satellite: shoulder on CsCl gradient centrifuge or Band in restriction digest

- Where each arrow is a single unit of a repeat often a multiple of 180 bp but up to 10kb long
- GAGGCGTC GAGGCGTC GAGGCGTC GAGGCGTC GAGGCGTG GAGGCGTC GAGGCGTC GAGGCGTC GAGGCGTC GAGGCGTC GAGGCGTC GAGGCGTC

A complex sequence organization

Two turns = 147 bp + linker to next nucleosome

Nucleosomes in Rye

Digest intact chromatin (DNA + histone) with 1 micrococcal nuclease for a few seconds, 6 cutting between the nucleosomes. Then treat 5 with protease and run on agarose gel.

Vershinin &

Heslop-Harrison

bp 680 510 340 170 ਨੇ seconds

Arabidopsis thaliana

In situ hybridization with AtCen

HH, Murata, Motoyoshi, Schwarzacher. Plant Cell

												and the second se		
				←Prim	er site	∘ T→	Box	A	←	Primer	site	TT→		
		1	2	3		1	5		Ē	 ,	7	8		
	121	3456789012345	678901234567	890123	4567890	- 1123456'	7890123	245679	901234	1567890	11 234 5,	6789 Öl	2345678	9
8+HD220/2	1 - 33 <mark>(</mark>		'TC TC & & & CC TTT		TTACCC	LA A CT CC	N TO TENE	2T C T T T		CT TTC		C 8 8 G - G 8		Ē
A CHINE COY E	179- 1		1010/////00111	CT AT	T INGCOU			71 0 1 1 1					arcacia T C	- -
					T	-							I O -	-
ג+un220/2	- 307 <mark>.</mark> 1-	*		<u>.</u>	* · · · · · · · · · · · · · · · · · · ·	[<mark>-</mark>			8 T			····		-
ACHKZZU/ 3	1.50			G a	1 2 m				A 1		· · · · · ·	4		-
	159:	*		b	1	<mark>-</mark>			A. 1	🎽	· - <mark></mark>		A A.	-
	33/:	*		b	1 1 .	<mark>-</mark>			A. 1	· <mark>4</mark> ·	• • • • • •			-
	525:	÷		G	T I	* <mark>-</mark>			<u>190</u>	🗳				-
	693:	.												-
ATARLI	21:	.		G	Τ	<mark>:G</mark>			G1	· <mark>2</mark> ·		A.		-
	1:(.		G	ТС	<mark>-G</mark>			GT	<mark>2</mark>		- A.		-
ATAR12	1:(.	T	GT	Τ	<mark>}.</mark>			GT	<mark>2</mark>		–		-
ATAR13	1:(TC		TCT.	G2	<mark>4.</mark>			GG	<mark>6</mark>		–		-
ATAR14	1:(GT	–	CT.	G2	<mark>4.</mark>			GG	<mark>6</mark>	<mark>T</mark>	– '	Τ	-
AtMR	1:T. <mark>(</mark>			C	G	<mark>4.</mark>			GG	🤇		–	T	_
ATREAL LA	1:(C	G2	<mark>.</mark>			GG	🖸		–		_
ATREAL 1B	2.T. <mark>(</mark>	G	G	C	GC2	<mark>.</mark> c			GG	🤁		–	TTA.	_
ATREASI	1:(TC	G	Τ	.			AT.	🧕		–		_
ATREAS2	1:0			С	G				GG <mark>T</mark>		T	A T'	ТА.Т	
AtSATDNA2	1:		1:	c	G GJ				GG				G	
AtSATDNA4	361:			-			400):	GT	<u>a</u>				
														-
AtHR220/2	1 - AA(<u>CTTCTTCTTGCT</u>	TCTCAAAGCTTT	GATGGT	TTAGCCO	<mark>ia</mark> agteeu	Α ΤΑ Τ ΓΑ Γ	тсттт	GTCTT	I GT ATC '	ΓΤ <mark>ΓΤΑ ΑΙ</mark>	CAAG-GA	AACACTA	
1977 1977	80-	a	ТТ	GTG	G G (_	т. Т.	.cor. IGGT	GAG		AUC AV	Т	-
As271	80-	а	Т	GTG	6610			Τ Γ	GGT GGT	GAG.		ACG AA		-
0o714	80-т -		•	-TG TC	CCT (т с	CCT CCT					Ĩ.
89219	90-Т-		т.	-TC	001 0-G -			т. т.	/001 12/21			8 C C 88		Ċ.
лдэт <i>у</i> 8а574	90-1- 80- (T CO	10 8CC	A 0 C -			- I C	,001 1227	CAC.		ACC. AA.	·····	3
Aduct	00	2 A	1	AUG					.991			aco. AA.		•
\leftarrow - Primer site III - \rightarrow Box B														
		1	1	1		ı	l		1		l		1	
	9	0	Ĩ	2		3	4		5		6		7	
	012:	3456789012345	678901234567	890 12	3456789	90123456	678 901	234 <i>5</i> 6		2345678	3901 2:	3456789	012345	67
ג+¥D220/2	0 100 T T A (ACATTCCCCTTT	000 IC 880 TT	CTTATAC	TTC & & TC	070 -001 070 -000		,, 00 010 3 TZ 2 2 2	-010010 - TC 373	ру од — С. Ру се — Ан	0 100 100 Стосала,		20
ACHKZZO/Z	I IA(T C TA		AAG II	CITATAC	-ICAAIC		ATCAL	A IAAA	FICAIA.	LICG-A	CICCAAA	-ALACIC. -	ac
		······································	a. c a				· · · <mark>-</mark> · · ·					'		· ·
			8. 6					-	U C		· · · · ⁻ ·			- 1
ACHRZZU/3	I .						· · · <mark>- · · ·</mark>	I - L			· · · · - ·	'		
			A. A T				<mark>-</mark>	•	U		· · · · - ·	'		
		T <mark>GTA</mark>	H . G				<mark></mark>					'		

A. griffithiana (BamH1)

HH, Brandes2003

Haelll digests; Probe origin A. griffithiana A. pumila

A.grif

Arabidopis suecica Hybrid A. arenosa (pAa214 green) X A. thaliana (180bp red)

Kamm, HH et al.

Aegilops ventricosa 45S rDNA dpTa1

Bardsley & HH

Wheat Species Evolution

Common Ancestral species 2n=2x=14

Triticum tauschii 2n=2x=14 DD Aegilops uniaristata 2n=2x=14 NN

Hybridization and doubling of chromosome number

Aegilops ventricosa 2n=4x=28 DDNN

Differences between genomes

Major differences in the nature and amount of repetitive DNA: new & old

119.2 and the 120bp repeat family in cereal

120bp repeat unit family in *Triticum*, *Aegilops* and *Secale* species

> * Sequences used for *in situ* hybridization

Contento, Heslop-Harrison, Schwarzacher 2005

High copy spp: homogenized old (ABC) or new (D) variants Low copy spp: most old variants in low copy number (EF) See Kuhn, HH et al. 2009. Heredity & 2008. Chr. Res.

Arabidopis suecica Hybrid A. arenosa (pAa214 green) X A. thaliana (180bp red)

Kamm, HH et al.

Figure 2. Components of the Nuclear Genome and their Relationships

Heslop-Harrison & Schmidt 2007. Encyclopedia of Life Sciences

Simple sequence repeats

- Flanked by unique sequences (SSR/microsatellite markers) or
- Part of other repetitive elements
- ✓ Dispersed OR clustered in genome
- SSR markers are dispersed!

Simple Sequence Repeats

Sugar beet: Characteristic organization of each motif

Schmidt, HH et al.

Secale cereale 2n=14

DAPI

FITC/Alexa 488

Cy3/Alexa 594

Chromosome model

1R of rye

Telomeres pSc200 pSc250 pSc119.2 45s rDNA SSRs

- Derivative chromosome 1R of Lines 7-102 and 7-169

der1R

5S rDNA 45S rDNA pSc200 pSc119.2 AAC

AAC pSc119.2 pSc200 pTa71

Forsstrom and Schwarzacher 2000

- Iniversal in eukaryotes with only a few exceptions
- Dynamic
- Number of repeats varies: tissue, age and chromosome
- Added by telomerase

Oil Palm

1 a 1 a 1 ...

32 chromosomes DAPI; TTTAGGG telomere; 45S rDNA (1 major pair + minor) 5S rDNA (1 major + minor)

The Linear Chromosome

Tandem repeats Terminal repeats

Retroelements Simple sequence repeats

ŝ

Genes

Schmidt & Heslop-Harrison 1998

Repetitive Sequences

- The majority of the genomic DNA in most species (95% sometimes)
- **Tandem Repeats**
- Simple Sequence Repeats
- Dispersed Repeats
- **Functional Repeats**
- Retroelements

Retroelement abundance and diversity in barley

Barley gypsy: Vershinin, Druka, Kleinhofs, HH: PMB 2002; cf Brassica Alix & HH PMB 2005

PLANT MOLECULAR BIOLOGY

Retroelements in Brassica

Alix et al. 2005

Retrotransposons (-): The transposition cycle

DNA transposons Class II transposable elements Cut-and-paste

Retrotransposons Class I transposable elements RNA intermediate

Genome Specificity of a CACTA (En/Spm) Transposon

B. napus (AACC, 2n=4x=38) – hybridized with C-genome CACTA element red B. oleracea (CC, 2n=2x=18) B. rapa (AA, 2n=2x=20) Alix

Common structure of Retroelements

- gag core particle component
- en endonuclease
- rt reverse transcriptase
- LTR long terminal repeat
- env envelope glycoprotein

The Chromosome Model

- Tandem repeats with known function
 - Telomeric
 - Centromeric
 - rDNA
- Intercalary tandem repeat families
 - Dispersed repeats including
 - retroelements and SSRs
- O Genes and regulatory sequences

[500 nm

Schmidt & HH Trends Plant Sci

Bos taurus taurus vs Bos taurus indicus: 2n=60, XY

- But: B. taurus submetacentric Y
 - B. indicus acrocentric Y

Bovidae

Cattle, sheep, goats, and antelopes

Bovinae (oxen, cattle, buffalos, eland, kudu, and relatives) Alcelaphinae (hartebeests, wildebeests, and sassabies) Hippotraginae (addax, roan antelopes, sable antelopes, oryxes) Caprinae (sheep, goats, muskox, chamois, and relatives) Pantholops hodgsonii (chiru) Aepyceros melampus (impala) Cephalophinae (duikers) Reduncinae (reedbucks, waterbuck, kob, puku, and lechwes) Pelea capreolus (common rhebock) Antilopinae (gazelles, dik-diks, steenboks, and their relatives) Neotragus (dwarf antelopes) Oreotragus oreotragus (klipspringer) Miscellaneous fossil bovids ◆

http://tolweb.org/Bovidae/50878

Bovidae – Family

- Mammals
 - Order Artiodactyla (=Even-toed ungulates)
 - 3 groups: the Suiformes (pigs, peccaries, hippopotamuses), Tylopoda (camels, llamas) and Ruminantia (cattle, goats, sheep, deer, antelopes, giraffes)
 - 9 families (13 tribes) including Bovidinae
 - Family Bovidae
 - c. 137 species
 - Last species (new genus) discovered in 1992

Bovidae family

In ranges from 30 to 60 in different species

Galagher & Womak 1992)

including 4 bi-armed chromosomes = 58autosomal chromosome arms +X,Y

Syncerus caffer (African Buffalo or Cape Buffalo), a bovid from the family of the Bovineae

 Male Syncerus caffer QFH band karyotype (left 2 chrs) with cattle chrs to right
 Gallagher & Womak 1992

Tragelaphus strepsiceros or greater kudu

2n=31, X1 X2 Y 26 biarmed chromosomes, three acrocentric chromosomes (inc. X1), acrocentric X and a biarmed Y

Gallagher & Womack 1992

Figure 4. A male Tragelaphus strepsicerus (greater kudu) QFH-band karyotype (2n - 31) consisting of 26 biarmed autosomes, three acrocentric autosomes (one labeled as X2), an acrocentric X1, and a biarmed Y (the ancestral Y is fused to cattle equivalent autosome 13). The autosomal pairs are arranged and numbered (large numbers) according to relative size. The domestic cow equivalent chromosomes are arranged to the right of the greater kudu autosomes and are numbered (small numbers are placed toward the telomeric ends of the domestic cow acrocentric autosome) according to the Reading Conference (1980) standard. The banding pattern of cattle chromosome 25 does not precisely match the region of kudu chromosome 1 to which we believe it is homologous, but this placement is the only way we found to account for cattle 25 within the kudu karyotype. The greater kudu sex chromosomes and equivalent cattle chromosomes are arranged from left to right as X1 (greater kudu ancestral X), cattle X, greater kudu Y, greater kudu X2, and cattle autosome 13. White lines are positioned at the centromere of some chromosomes.

2n=54, XY three pairs biarmed chromosomes 60 autosomal arms

Sheep Ovis aries

Goat
Sheep
Cattle
Chromosome homologies and centromeric fusions

Paul Popescu

Bovidae Karyotype Evolution

- 2n ranges from 30 to 60 in different speciesBUT:
- Almost all have 58 autosomal chromosome arms and two sex chromosomes

Galagher & Womak 1992)

Bovidae Karyotype Evolution

- Almost all have 58 autosomal chromosome arms and two sex chromosomes but 2n from 30 to 60
- Chromosome arm homologies extensive BUT homologous biarmed chromosomes are rare
- Reproductive isolation (and speciation) may have followed centric fusion

(Galagher & Womak 1992)

Do we see chromosome fusion now?

Molecula **DO WE SE** cytogenetic analysis and centromeric satellite organization of a novel 8;11 translocation in sheep: a possible intermediate in biarmed chromosome evolution. 2003. Chaves, Adega, Wienberg, Guedes-Pinto, Heslop-Harrison

Satellite I and II probes in the

biarmed chromosomes of the sheep with 2n = 53, XY.

Chr (8;11), 2, 3, 1 are ordered from the most recent to the postulated evolutionarily oldest chromosome (8,11) showed satellite I proximal on both arms with satellite II covering the centromere, while the

evolutionarily derived fusion leading to Chrs 2 and 3 showed the opposite configuration, not obviously derived by a simple fusion. Chr 1 has lost the satellite I hybridization patterns. The novel t(8;11) provides strong evidence for an intermediate step in evolution of the biarmed chromosomes in sheep.

How many chromosomes?

Is the number constant in a species?

Cattle 2n=60 but some individuals have 2n=58 or 2n=59 because two chromosomes fuse Chromosomal evolution is happening now

The 1;29 fusion in cattle

- Found in multiple breeds
- Sometimes a founder effect (imported in one bull – e.g. Brahman to Africa)
- Weight But present even in major breeds
- Limited effect on fertility
- Probably positively selected for a difficult-toscore trait

Robertsonian Fusion

Bovid alpha-satellites and chromosome evolution

Goat Metaphase

Probed with Sheep Alpha Satellite

Raquel Chaves & HH 1998

Hybridization of sheep (clone pOaKB9) and cattle (pBtKB5) DNA satellite I probes to the X chromosome of most representative species listen in table 1. Bovinae subfamily shows only hybridization with the cattle satellite I and only in the X chromosome's centromeric regions of the tribe Tragelaphini was there signal from the cattle satellite I. Metaphases of subfamilies Hippotraginae, Alcelaphinae and Caprinae show positive in situ hybridization signals with both sheep and cattle satellite I probes. However, only the X chromosome centromeric regions of the Tribes Reduncini, Hippotragini and Aepycerotini show positive in situ hybridization signals with both satellite probes

Phylogenetic relationships and the primitive X chromosome inferred from chromosomal and satellite DNA analysis in Bovidae Raquel Chaves1,*, Henrique Guedes-Pinto1 and John S. Heslop-Harrison Proc Roy Soc B 2005

Bovidae – Family

- Mammals
 - Order Artiodactyla (=Even-toed ungulates)
 - 3 groups: the Suiformes (pigs, peccaries, hippopotamuses), Tylopoda (camels, llamas) and Ruminantia (cattle, goats, sheep, deer, antelopes, giraffes)
 - 9 families (13 tribes) including Bovidinae
 - Family Bovidae
 - c. 137 species
 - Last species (new genus) discovered in 1992

Translocation in Sus

High-resolution comparative chromosome painting in the Arizona collared peccary (Pecari tajacu, Tayassuidae): a comparison with the karyotype of pig and sheep Filomena Adega, Raquel Chaves, Andrea Kofler, Paul R. Krausman, Julio Masabanda, Johannes Wienberg & Henrique Guedes-Pinto. Chromosome Research 2006

Translocation in Sus

Complex Chaves 2005

- In the genepool
 - Allelic in one species
 - In different genomes
 - In different species
- From recombination
- From new mutations
 - Induced or natural
 - DNA sequence or retroelements

Polyploidy

- Polyploids have three or more complete sets of chromosomes
 - diploid 2n=2x
- r triploid 2n=3x
- tetraploid 2n=4x
- hexaploid 2n=6x
- octoploid 2n=8x
- Two types of polyploidy

Autopolyploidy A x A U AA AA Allopolyploidy A x B U AB U AABB

Triticale: wheat x rye hybrid

Breeding strategies

AABBDD x RR ABDR Double chromosomes AABBDDRR

Backcross to wheat Looses the R chromosomes eventually AABBDD+1R

Induce recombination AABBDD including 1BL/1RS

Total genomic DNA can be used as a probe to distinguish

 Genomes in sexual hybrids

Alien
chromosome
introgression

Triticum aestivum 2n=42+2 1B/1R translocation *T. bessarabicum* addition

Aegilops ventricosa 45S rDNA dpTa1

Bardsley & HH 1999

Lodging in cereals UK July 2007

α_βγ	αβ	αβγδ	αβγδ	α βγδε	εαβ
S 00 1A L 0 0				=00 []] []	
s [] [] 2A L [] [] []	0 N N				
s [] [] 3A i []					
s []					
4AL					
5AL					
s [] [] [] 6Al [] [][]	0 []	Ð			0 Û
s [] [] 7Al [] []					
5BS 7BS	. 00 8 8 0 0 6	5BL.			

Multiple dpTa1 variants of each chromosome

Bardsley, Schwarzacher & HH 2007

Inheritance of Chromosome 5D

Correlation between genetic relationships and similarity of dpTa1 hybridization

No correlation between genetic relationships and similarity of pSc119.2 hybridization

rRNA gene expression in Triticale

Four expression sites

Six gene sites

Modification of DNA Methylation

- Methylation widely implicated in gene expression control
- Treat with 5-azacytidine
 - N at carbon-5 position not C so –CH₃ cannot be added
- ✓ Effect of treatment on Triticale
- Ag-NOR method
 - see <u>www.methods.molcyt.com</u> methods page

rDNA methylation Probe wheat rDNA rye rDNA spacer Treatment water AZC water AZC

Modification of rDNA Methylation

- Stability of methylation
- Seedling treatment all 6 active for life
- Embryo treatment:
- First 7 days only wheat-origin active
- After 7 days rye and wheat-origin active

rDNA expression in Triticale

- Cobservation:
- Ag-staining showed 6 NORs sometimes
- These were in triticale with 12 rye chromosomes: 2D-2R substitution
- Found rather frequently so breeders must select it

Aegilops tauschii (D genome donor) in Iran

- 57 accessions
 collected
 - ssp. tauschii
 - *var. meyeri (*18)
 - var. tauschii (22)
 - var. anathera (4)
 - *var. meyeri* (12)

Hojjatollah Saeidi, Mohammad Reza Rahiminejad, Sadeq Vallian, HH Genetic Resources & Crop Plant Evolution 2006

Diversity in D genome

- Microsatellite markers
- 57 accessions of wild
 Aegilops tauschii (2n = 2x = 14; D genome)
- No SSR markers were characteristic for taxa or geographical origin
- High diversity present

Saeidi, HH et al. Genet Resources & Crop Evolution 2005

Aegilops tauschii in Iran

dpTa1-Repetitive banding pattern does correlate with taxonomic grouping

	539	12	1938	9.04	Tehay	Arcin	Acais	10526	#21	103	At yas	Atra	1400	1 and	ELM	Atra	142	At19
	8,			8		Ø.,	8	2		Q.			8	ď.	82	82	8' 824	8
2			Ð.															
3	5				D		Q'.		100 53			۲. L					Q '	7:
ч			Ten av	Dinny					- INT									
5		H lown a		MDON'S				E H					5	5				
6	D'		X ;	Z',	Ę,													8
7																		

Hojjatollah Saeidi and Pat Heslop-Harrison

UPGMA dendrograms of the relationships based on IRAP analysis of (A) accessions of Ae. tauschij subsp

Demonstration of the direction of distribution (phylogeography) even over short geographic distances

Phylogeography of *Ae. tauschii* Species originated from North of Iran and distributed in two directions.

tauschii genotype passes from middle parts of Alborz Mountains and the distributed eastward and westward (direction 1)

strangulata genotype are distributed along the Caspian Sea shore (direction 2)

An evolutionary model supported by molecular analyses

Saeidi, HH et al. 2010

UPGMA dendrograms of the relationships based on IRAP analysis of (A) accessions of Ae. tauschii subsp

Saeidi, H. et al. Ann Bot 2008 101:855-861; doi:10.1093/aob/mcn042

- Different DNA sequences evolve more-or-less independently
- There is no 'molecular clock' for many sequence types
- Multiple sequence types should be used to gain a full understanding of genome evolution

1 in 18

 \bigcirc

heat proteins: High bands = good bread CS1U(1B) CS1U(1D) dTIBL dTIDL dTIAS dTIAL CS TIBS CS1U(Au HMW Glutenin Subunits

Wheat - Aegilops umbellulata substitution line A94

2n = 6x = 42

Genomic DNA from Ae. umbellulata

pSc119.2 repeat

Xana Castilho

(a) Genetical map of the RFLP probes used. Genetical distances are approximate and based on Gale *et al.*, 1995 for the wheat 1B chromosome.

The order of the 5S rRNA and Nor-1 markers is reversed on wheat chromosome 1A.

(b) Physical maps of the wheat-Ae. umbellulata lines assigning the RFLP probes on the recombinant chromosome and on the background wheat

group 1 chromosomes. all lines carry a pair of 1D chromosome.

Physical map vs Genetic map

Genes are often clustered Genes (and recombination are often distal

Wheat Streak Mosaic Virus in North America Bob Graybosch, USDA

Thinopyron bessarabicum disomic addition to wheat (2n=6x+2=44)

Intermediate wheat-grass, western Nebraska

CULTIVAR

Registration of 'Mace' Hard Red Winter Wheat

R. A. Graybosch,* C. J. Peterson, P. S. Baenziger, D. D. Baltensperger, L. A. Nelson, Y. Jin, J. Kolmer, B. Seabourn, R. French, G. Hein, T. J. Martin, B. Beecher, T. Schwarzacher, and P. Heslop-Harrison

ABSTRACT

'Mace' (Reg. No. CV-1027, PI 651043) hard red winter wheat (*Triticum aestivum* L.) was developed by the USDA-ARS and the Nebraska Agricultural Experiment Station and released in December 2007. Mace was selected from the cross Yuma//PI 372129/3/CO850034/4/4*Yuma/5/(KS91H184/Arlin S//KS91HW29/3/NE89526). Mace primarily was released for its resistance to *Wheat streak mosaic virus* (WSMV) and adaptation to rainfed and irrigated wheat production systems in Nebraska and adjacent areas in the northern Great Plains. Mace was derived from a head selection made from a heterogeneous, in terms of field resistance to WSMV, F₅ line. Resistance to WSMV is conditioned by the *Wsm-1* gene, located on an introgressed chromosome arm from *Thinopyrum intermedium* (Host) Barkworth & D.R. Dewey [*Agropyron intermedium* (Horst.) Beauv.] present as a 4DL.4AgS chromosomal translocation. Mace was tested under the experimental designation N02Y5117.

Abbreviations: NRPN, Northern Regional Performance Nursery; PCR, polymerase chain reaction; WSBMV, *Wheat soilborne mosaic virus*; WSMV, *Wheat streak mosaic virus*.

Published in the Journal of Plant Registrations 3:51–56 (2009). doi: 10.3198/jpr2008.06.0345crc © Crop Science Society of America 677 S. Segoe Rd., Madison, WI 53711 USA

All rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Permission for printing and for reprinting the material contained herein has been obtained by the publisher. such line, subsequently named 'Mace' (Reg. No. CV-1027, PI 651043), was deemed suitable for cultivar release. Mace is a hard red winter wheat cultivar developed cooperatively by the USDA-ARS and the Nebraska Agricultural Experiment Station and released in 2007 by the developing institutions. Mace was released primarily for its field resistance to *Wheat streak mosaic virus* (WSMV) and adaptation to rainfed and irrigated wheat production systems in Nebraska and adjacent areas in the northern Great Plains. Resistance to WSMV is conditioned by the *Wsm-1* gene (Seifers et al., 1995), situated on an introgressed chromosome arm from

Wild banana species: *Musa acuminata* – A genome genome

Musa balbisiana – B

Basic ch 550 Mbr Most cu

size c.

Cavendish : the most common dessert banana cultivar 2n=3x=33; AAA genomes

2.5 Genomics – The genome and retroelements

putative copia

Retroelements Sequences which amplify through an RNA intermediate **730% to 50% of all the DNA!**

<++++ 0k	+++++ +++++++ 10k	20k 30k	++++++++++++++++++++++++++++++++++++++	++++++ + 50k		70k	> 80k
BAC MA4-86B	03						
Musa aci	uminata clone MA4-86	B03					
Gene Mu Mu86 ⊡~+∹ unkn	usa BO3_01 jown protein Mu86B03_02 ↓ putative DNA binding Mu86B03_03 ↓ unknown protein Mu86B03_04	Mu86B03_06 ←M putative polyprot g / transcription fac Mu86B03_07 M→ unknown prote	Mu86B03_09 ein putative cen Mu86 Hu86 → tor hypo Mu86 ↓ ↓ in puta	trosomin B B03_11 thetical prote B03_12 tive 26S prote Mu86B	Mu86B03_14 putative crystal] Mu86B03_15 ↔ in putative DN ase regulatory su 03_13	lin, gamma B A binding / trans bunit 4 homolog (Mu86B03_17	Mu86B03_19 ↔9 hypothetical protein cription factor TAT-binding protein homo:
	putative pro Mu86B03_05	tein dimerization 5 ∽ om		hypot	netical protein Mu86B03_ ↔∽# ™™	putative 26S p 16	rotease regulatory subuni
	putative p	bol polyprotein Mu86B03_08 ←∎ putative r	: etrotransposon de	·l1-46	putätive	26S protease reg Mu86B03_: ⊪→ putative	ulatory subunit 4 homolo; 18 SETDB1-associated prote; Mu86B03_20 m⊖→ putative gag-pol po Mu86B03_21 ↔⊖∽⊕∽

Teo, Tan, Ho, Faridah, Othman, HH, Kalendar, Schulman 2005 *J Plant Biol*

hAT1 in Musa acuminata F and R primers indicated by blue arrows in sequence

2011/03/17

hAT1 insertion sites in *Musa* diversity collectionhAT486F and hAT037RTop bands (560-bp) amplified hAT element and lower bands amplifying the

The hAT1 insertion sites in *Musa with* hAT486F and hAT037R in: 6) *acuminata*, 8) *acuminata*, 16) *acuminata*, 17) AAB, 22) *acuminata*, 23) AB cv.

A-genome specifichAT inthreeMusahybrids(2n=3x=33)

Banana Streak ParaRetrovirus (BSV)

- ✓ Double stranded DNA is infective
- // Insect vector
- Unexpected epidemiology
 - Appearance after cold or tissue culture

Glyn Harper & Roger Hull

Nuclear Copies of BSV in Banana

DNA Fibre Hybridization

Nuclear Copies of BSV in Banana

Oil palm: Elaeis guineensis

Malaysian Palm Oil Board Alex Vershinin, Sybille Kubis, Maria Madon, Xana Castilho, Trude Schwarzacher

Epigenetics Phenotype appears 5 years after tissue culture

Modulation of Methylation

McrBC

unusual restriction enzyme cutting between methylated cytosine (^mC) sites

Cuts ^mC NNNNNNNN^mC

Leaves CNNNNNNNN C

N typically 20 to 40 bases

Meth

- McrBC shows substantial reduction in methylation in tissue culture lines
- Cuts methylated DNA

Kubis, Castilho, Vershinin, HH 2003

3/17/2011

Meth

- McrBC digests probed with gypsy clones
- present only in N and T lines
- Similar with copia probe

Transcriptional Activity

- Copia mRNA is present tissue culture
- Analysis by RT-PCR
- 260bp product in some lines

Modulation of Methylation Anti-methylcytosine antibody

3/17/2011

Evolution → Epigenetics → Development

Phenotype Multiple abnormalities

Genetic changes non-reverting

Changes seen, some reverting

(Male/Female) Normal Differentiation

Cause

Chromosomal loss, deletion or translocation Gene mutation / base pair changes **Telomere shortening** Retro)transposon insertion **Retrotransposon activation** SSR expansion **Methylation** Heterochromatinization Chromatin remodelling Histone modification

Aegilops ventricosa 45S rDNA dpTa1

Bardsley & HH 1999

Super-Domestication: United Nations

Future – MDGs

Millennium Development Goals Goal 1 – Eradicate extreme poverty and hunger

- Goal 2 Achieve universal primary education
- Goal 3 Promote gender equity and empower women
- Goal 4 Reduce child mortality
- Goal 5 Improve maternal health
- Goal 6- Combat HIV/AIDS, malaria and other diseases
- **Goal 7 Ensure environmental sustainability**
- Goal 8 Develop a global partnership for development

Convention on Biodiversity ("Rio Convention"): inventory the worlds diversity

... needs for agriculture: not the only reasons for genomics Moral imperative not to destroy that we have in the world

AoB Blog « aobblog.com/2010/11/the-roadside-botanist-bananas-and-cassava-biodive

banana genotype was rather flavourless and starchy (Prata Ana), but two others emphasized what we in the temperate countries miss: Garantida II with citrus flavours overlaying a sweet smooth texture, while Caipira had a more savoury and vanilla custard taste. But the

Banana genotypes

GerR

Conventional Breeding Cross the best with the best and hope for something better

Superdomestication

To Decide what is wanted and then plan how to get it

- variety crosses
 - mutations
- genepool
 - genes

FINANCIAL TIMES

From Prof Donald Braben and others. Sir, We the undersigned scientists write to draw attention to a neglected aspect of the current economic crisis. Robert Solow won the Nobel Prize in economics in 1987 for his 1950s discovery that *technical change* was the biggest source of growth, a discovery that seems to have been forgotten.

Scientific advances are not predictable.

Pat Heslop-Harrison, University of Leicester

Future – Pollution and land use

Threats to sustainability: no different for 10,000 years

 Habitat destruction Climate change (abiotic stresses) Diseases (biotic stresses) Changes in what people want Blindness to what is happening Unwillingness to change

	year (millions)
item	2007
People	6,602
Maize	785
Rice, paddy	652
Wheat	607
Potatoes	322
Sugar beet	248
Cassava	228
Soybeans	216
Oil palm fruit	192
Barley	136
Sweet potatoes	126
Tomatoes	126
Watermelons	93
Bananas	81
Seed cotton	73
Cabbages and other bra	69
Grapes	66
Sorghum	65
Onions, dry	64
Apples	64
Oranges	64
Coconuts	55
Yams	52
Rapeseed	49
Cucumbers and gherkin	45
Groundnuts, with shell	35
Plantains	34
Mangoes, mangosteens	33
Eggplants (aubergines)	32
Millet	32

FAO Statistics 2007

All plant crops with >30M tons annual production

excluding sugar cane and 'other vegetables'

People: WHO

Calories are pretty important –

	year (millions)		
item	1961	2007	1
People	3,090	6,602	
Maize	205	785	
Rice, paddy	216	652	
Wheat	222	607	
Potatoes	271	322	
Sugar beet	161	248	
Cassava	71	228	
Soybeans	27	216	
Oil palm fruit	14	192	
Barley	72	136	
Sweet potatoes	98	126	
Tomatoes	28	126	
Watermelons	18	93	
Bananas	21	81	
Seed cotton	27	73	
Cabbages and other bra	23	69	
Grapes	43	66	
Sorghum	41	65	
Onions, dry	14	64	
Apples	17	64	
Oranges	16	64	
Coconuts	24	55	
Yams	8	52	
Rapeseed	4	49	
Cucumbers and gherkin	10	45	
Groundnuts, with shell	14	35	
Plantains	13	34	
Mangoes, mangosteens	11	33	
Eggplants (aubergines)	7	32	
Millet	26	32	

	year (millions)			
item	1961	2007	2007/1961	
People	3,090	6,602	2.1	
Maize	205	785	3.8	
Rice, paddy	216	652	3.0	
Wheat	222	607	2.7	
Potatoes	271	322	1.2	
Sugar beet	161	248	1.5	
Cassava	71	228	3.2	
Soybeans	27	216	8.0	
Oil palm fruit	14	192	13.7	
Barley	72	136	1.9	
Sweet potatoes	98	126	1.3	
Tomatoes	28	126	4.5	
Watermelons	18	93	5.2	
Bananas	21	81	3.9	
Seed cotton	27	73	2.7	
Cabbages and other bra	23	69	3.0	
Grapes	43	66	1.5	
Sorghum	41	65	1.6	
Onions, dry	14	64	4.6	
Apples	17	64	3.8	
Oranges	16	64	4.0	
Coconuts	24	55	2.3	
Yams	8	52	6.5	
Rapeseed	4	49	12.3	
Cucumbers and gherkin	10	45	4.5	
Groundnuts, with shell	14	35	2.5	
Plantains	13	34	2.6	
Mangoes, mangosteens	11	33	3.0	
Eggplants (aubergines)	7	32	4.6	
Millet	26	32	1.2	

	year (millions)				
item	1961	2007	2007/1961		
Oil palm fruit	14	192	13.7		
Rapeseed	4	49	12.3		
Soybeans	27	216	8.0		
Yams	8	52	6.5		
Watermelons	18	93	5.2		
Onions, dry	14	64	4.6		
Eggplants (aubergines)	7	32	4.6		
Tomatoes	28	126	4.5		
Cucumbers and gherkin	10	45	4.5		
Oranges	16	64	4.0		
Banana <i>s</i>	21	81	3.9		
Maize	205	785	3.8		
Apples	17	64	3.8		
Cassava	71	228	3.2		
Rice, paddy	216	652	3.0		
Cabbages and other bra	23	69	3.0		
Mangoes, mangosteens	11	33	3.0		
Wheat	222	607	2.7		
Seed cotton	27	73	2.7		
Plantain <i>s</i>	13	34	2.6		
Groundnuts, with shell	14	35	2.5		
Coconuts	24	55	2.3		
People	3,090	6,602	2.1		
Barley	72	136	1.9		
Sorghum	41	65	1.6		
Sugar beet	161	248	1.5		
Grapes	43	66	1.5		
Sweet potatoes	98	126	1.3		
Millet	26	32	1.2		
Potatoes	271	322	1.2		

Plant Genome Evolution and Diversity

- 1. Genomes and genomics
- 2. Markers from DNA
- 3. Diversity and its use
- 4. Challenges and breeding

The Linear Chromosome

Tandem repeats

Terminal repeats

Retroelements Simple sequence repeats

Genes

CytoGenomics ...

- The genepool has the diversity to address these challenges ...
- New methods to exploit and characterize germplasm let use make better and sustainable use of the genepool

Species evolution Polyploidy Diversity, Genes and Genomics: Sequence evolution Chromosome evolution

Genome diversity

Centromeres/mitosis

Nuclear architecture

Epigenetics Chromatin

Meiosis/recombination

Origins Phylogeny Diversity Introgression Selection Pre-Breeding Propagation Varieties

Plant Molecular Cytogenetics Pat Heslop-Harrison

phh4@le.ac.uk

www.molcyt.com User&PW = 'visitor'

This talk will be linked from homepage

Also: www.sblab.org www.crocusbank.org

www.biobanana.com www.musagenomics.org

Weed control Monocultures Suitable inputs (nitrogen) Diseases - co-evolution Post-harvest losses Alien species

Do we need change? Do we need faster change?

- **Crop varieties**
- -High yield
- -High quality and safe
- -Easy to grow agronomically
- -Disease resistant
- -Insect/nematode resistant
- -Efficient water use
- -Secure, stable production
- -Environmentally friendly

-Not invasive

Triticale: a wheat x rye hybrid